

A TASTE OF SET THEORY: EXERCISE 4

BOAZ TSABAN

Question 2.12 (Page 26). Let F be a set of ordinals. Prove that $\cup F$ is an ordinal.

Question 2.15 (Page 27). Prove that the following properties are equivalent for an ordinal α :

- (1) α is a limit ordinal.
- (2) $\alpha = \sup\{\xi : \xi < \alpha\}$.
- (3) For each cofinal $A \subseteq \alpha$, $\alpha = \sup A$.

Question 3.7 (Page 30). Let α, β be ordinals. Prove:

- (1) $\alpha + 1 = S(\alpha)$.
- (2) $\alpha + S(\beta) = S(\alpha + \beta)$.
- (3) If $\alpha < \beta$, then for each ordinal γ , $\gamma + \alpha < \gamma + \beta$.
- (4) If $\alpha < \beta$, then for each ordinal γ , $\alpha + \gamma \leq \beta + \gamma$.
- (5) Give an example showing that \leq cannot be improved to $<$ in (4).

Question 4.2 (Page 31). Prove that for each natural number n , $n \cdot \omega = \omega$.

Good luck!