

A TASTE OF SET THEORY: EXERCISES 12 AND 13

BOAZ TSABAN

Undefined terminology and some hints can be found in Exercises 10 and 11 or in the lecture.

1. If there is a strongly unbounded $S \subseteq \mathbb{N}^{\mathbb{N}}$ of cardinality κ , then $\mathfrak{b} \leq \kappa$ and $\text{cf}(\kappa) \leq \mathfrak{d}$.
Hint for the second assertion. If $D \subseteq \mathbb{N}^{\mathbb{N}}$ is dominating, then $S = \bigcup_{g \in D} \{f \in S : f \leq^* g\}$.

Definition. A filter \mathcal{F} on \mathbb{N} is *free* if $\bigcap \mathcal{F} = \emptyset$.

2. Let \mathcal{F} be a filter on \mathbb{N} .

- (1) \mathcal{F} is free if, and only if, $Fr \subseteq \mathcal{F}$.
- (2) If \mathcal{F} is free, then \mathcal{F} is nonprincipal.
- (3) If \mathcal{F} is a nonprincipal *ultrafilter*, then \mathcal{F} is free.

Definition. Let \mathcal{F} be a filter on \mathbb{N} .

For $f, g \in \mathbb{N}^{\mathbb{N}}$, $f \leq_{\mathcal{F}} g$ means: $\{n : f(n) \leq g(n)\} \in \mathcal{F}$.

Similarly, $f <_{\mathcal{F}} g$ means $\{n : f(n) < g(n)\} \in \mathcal{F}$.

A set $B \subseteq \mathbb{N}^{\mathbb{N}}$ is $\leq_{\mathcal{F}}$ -unbounded if for each $f \in \mathbb{N}^{\mathbb{N}}$ there is $g \in B$ such that $g \not\leq_{\mathcal{F}} f$.

$\mathfrak{b}(\mathcal{F})$ is the minimal cardinality of a $\leq_{\mathcal{F}}$ -unbounded set $B \subseteq \mathbb{N}^{\mathbb{N}}$.

$S = \{f_{\alpha} : \alpha < \mathfrak{b}(\mathcal{F})\} \subseteq \mathbb{N}^{\mathbb{N}}$ is a $\mathfrak{b}(\mathcal{F})$ -scale if it is $\leq_{\mathcal{F}}$ -unbounded, and $\leq_{\mathcal{F}}$ -increasing with α (that is, for all $\alpha < \beta < \mathfrak{b}(\mathcal{F})$, $f_{\alpha} \leq_{\mathcal{F}} f_{\beta}$).

3. Prove:

- (1) $\leq_{Fr} = \leq^*$ (i.e., the two relations are the same), and $\mathfrak{b}(Fr) = \mathfrak{b}$.
- (2) For each filter \mathcal{F} on \mathbb{N} :
 - (a) $\leq_{\mathcal{F}}$ is a reflexive and transitive relation on $\mathbb{N}^{\mathbb{N}}$.
 - (b) There is a $\mathfrak{b}(\mathcal{F})$ -scale.
 - (c) $\mathfrak{b}(\mathcal{F})$ is regular.
- (3) For each free filter \mathcal{F} on \mathbb{N} :
 - (a) $\mathfrak{b} \leq \mathfrak{b}(\mathcal{F})$.
 - (b) Each $\mathfrak{b}(\mathcal{F})$ -scale is strongly unbounded.
- (4) Let \mathcal{F} be the principal filter $\{A \subseteq \mathbb{N} : n \in A\}$:
 - (a) What is $\mathfrak{b}(\mathcal{F})$?
 - (b) Each $\mathfrak{b}(\mathcal{F})$ -scale is bounded (with respect to \leq^*).
- (5) If \mathcal{F} is an ultrafilter on \mathbb{N} , then $f \not\leq_{\mathcal{F}} g \Leftrightarrow g <_{\mathcal{F}} f$.

Definition. Let \mathcal{F} be a filter on \mathbb{N} . $D \subseteq \mathbb{N}^{\mathbb{N}}$ is $\leq_{\mathcal{F}}$ -dominating if for each $g \in \mathbb{N}^{\mathbb{N}}$ there exists $f \in D$ such that $g \leq_{\mathcal{F}} f$.

$\mathfrak{d}(\mathcal{F})$ is the minimal cardinality of a $\leq_{\mathcal{F}}$ -dominating subset of $\mathbb{N}^{\mathbb{N}}$.

$S = \{f_{\alpha} : \alpha < \mathfrak{d}(\mathcal{F})\} \subseteq \mathbb{N}^{\mathbb{N}}$ is a $\mathfrak{d}(\mathcal{F})$ -scale if it is dominating, and for all $\alpha < \beta < \mathfrak{d}(\mathcal{F})$, $f_{\beta} \not\leq_{\mathcal{F}} f_{\alpha}$.

4. Prove:

- (1) $\mathfrak{d}(Fr) = \mathfrak{d}$.
- (2) For each free filter \mathcal{F} on \mathbb{N} :
 - (a) $\mathfrak{d}(\mathcal{F}) \leq \mathfrak{d}$.
 - (b) There is a $\mathfrak{d}(\mathcal{F})$ -scale.
 - (c) Every $\mathfrak{d}(\mathcal{F})$ -scale is strongly unbounded.
 - (d) There is a strongly unbounded $S \subseteq \mathbb{N}^{\mathbb{N}}$ such that $|S| = \text{cf}(\mathfrak{d}(\mathcal{F}))$.
- (3) For each free filter \mathcal{F} on \mathbb{N} , $\mathfrak{b} \leq \mathfrak{b}(\mathcal{F}) \leq \text{cf}(\mathfrak{d}(\mathcal{F})) \leq \mathfrak{d}(\mathcal{F}) \leq \mathfrak{d}$.
- (4) For each ultrafilter \mathcal{F} on \mathbb{N} , $\mathfrak{b}(\mathcal{F}) = \mathfrak{d}(\mathcal{F})$.

5. Assume that κ is minimal on which there is an entire measure. Prove:

- (1) For each strongly unbounded $S \subseteq \mathbb{N}^{\mathbb{N}}$, $\kappa \neq |S|$.

Hint. Assume that μ is an entire measure on S .

For all $n, m \in \mathbb{N}$, define $U_{n,m} = \{f \in S : f(n) \leq m\}$.

For each n , $\bigcup_{m=1}^{\infty} U_{n,m} = S$, and the sets $U_{n,m}$ are increasing with m .

For each n there is $g(n) \in \mathbb{N}$ such that $\mu(U_{n,g(n)}) > 1 - \frac{1}{2^n}$. $\mu(\bigcup_{n=1}^{\infty} S \setminus U_{n,g(n)}) < 1$.

Let $V = \bigcap_{n=1}^{\infty} U_{n,g(n)} = \{f \in S : f \leq g\}$. $|V| < |S|$.

$\mu(S \setminus V) < 1$, thus $\mu(V) > 0$.

- (2) For each free filter \mathcal{F} on \mathbb{N} , $\kappa \notin \{\mathfrak{b}(\mathcal{F}), \text{cf}(\mathfrak{d}(\mathcal{F})), \mathfrak{d}(\mathcal{F})\}$.

- (3) $\kappa \notin \{\mathfrak{b}, \text{cf}(\mathfrak{d}), \mathfrak{d}\}$.

- (4) The *Banach-Kuratowski Theorem*: If there is an entire measure on $[0, 1]$, then CH fails.

6 (Bonus). Prove:

- (1) There is a set $D \subseteq \mathbb{N}^{\mathbb{N}}$ such that $|D| = \mathfrak{d}$ and for each $f \in \mathbb{N}^{\mathbb{N}}$, there is $g \in D$ such that $f(n) \leq g(n)$ for all n .
- (2) Question 4(2)(a) is true for all filters.
- (3) Question 4(2)(b) is true for all filters.
- (4) Question 5(2) is true for all filters.

Hint for (4). Given \mathcal{F} , let $A = \bigcap \mathcal{F}$. Assume $A \neq \emptyset$. Consider the following cases separately: A is finite; A is infinite and $A \in \mathcal{F}$; A is infinite and $A \notin \mathcal{F}$. In the last case, define an appropriate filter on $\mathbb{N} \setminus A$, and consider the case that $\mathbb{N} \setminus A$ is finite and the case that it is infinite.

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>