A TASTE OF SET THEORY: EXERCISE 10

BOAZ TSABAN

Question 2 is not for credit. It is fine not to solve it. If you solve it, it will be
checked but not graded.

Definition. F is a filter on S if:
(1) F < P(S);
(2) SeF;
(3) 0 ¢ F;
(4) VAe F¥YBC S, ACB— Be F;
(5) VA, Be F,AnNBe F.
Question 1. Prove (shortly!) that in the definition filter, each of the following
changes can be made without leading to any mathematical difference:
(a) Ttem (2) can be replaced by: (2') F # 0.
(b) Item (3) can be replaced by: (3’) F # P(S5).
(¢) Item (5) can be replaced by: (5") ¥nVAy,..., A, € F, AinN---NA, € F.

Definition. A filter F on S is mazimal if there is no filter G on S such that F C G.
A filter F on S is an ultrafilter if for each AC S, A€ For S\ A€ F.

Question 2. Let F be a filter on .S. F is maximal if, and only if, F is an ultrafilter.

Definition. A filter F on S is principal if there is A C S such that F ={B C S :
A C B}.

Question 3.
(1) If F is an ultrafilter on S and A=BUC € F,then B€ F or C € F.

(2) For each principal ultrafilter F on S, there is z € S such that F = {4 C
S:xe A}

Definition. The Fréchet filter on an infinite set S is Fr = {A C S : |S\ A] < No}.

Question 4. For each infinite S, the Fréchet filter on S is:

(1) A filter on S.

(2) A nonprincipal filter on S.

(3) Not an ultrafilter on S.

(4) There is an ultrafilter on S containing Fr.
Hint. Use transfinite induction or Zorn’s Lemma to obtain a maximal filter
F containing Fr, and use Question 2.

(5) Each filter on S which contains Fr is nonprincipal.

Definition. An entire measure p on S is a function p : P(S) — [0, 1] such that:
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(1) p(@) =0, u(S) =1.
(2) For each AC BC S, u(A) < u(B).
(3) For each s € S, u({s}) = 0.
(4) For all pairwise disjoint sets Ag, Ay,... C S, (U, en An) = 2oy 1(An).
Say that u is an entire pseudomeasure on S if it satisfies (1),(2),(3), and
(4’) For each disjoint A, B C S, u(AU B) = pA+ uB.

Question 5. For a nonprincipal ultrafilter F on an infinite set S, define ur :
P(S) —{0,1} by pr(A) =1if A€ F, and pur(A) = 0 otherwise.
(1) pr is an entire pseudomeasure on S.
(2) For each infinite S, there is an entire pseudomeasure on S.
Hint. Question 4.

Good luck!
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