

A TASTE OF SET THEORY: EXERCISE 10

BOAZ TSABAN

Question 2 is not for credit. It is fine not to solve it. If you solve it, it will be checked but not graded.

Definition. \mathcal{F} is a *filter* on S if:

- (1) $\mathcal{F} \subseteq P(S)$;
- (2) $S \in \mathcal{F}$;
- (3) $\emptyset \notin \mathcal{F}$;
- (4) $\forall A \in \mathcal{F} \forall B \subseteq S, A \subseteq B \implies B \in \mathcal{F}$;
- (5) $\forall A, B \in \mathcal{F}, A \cap B \in \mathcal{F}$.

Question 1. Prove (shortly!) that in the definition *filter*, each of the following changes can be made without leading to any mathematical difference:

- (a) Item (2) can be replaced by: (2') $\mathcal{F} \neq \emptyset$.
- (b) Item (3) can be replaced by: (3') $\mathcal{F} \neq P(S)$.
- (c) Item (5) can be replaced by: (5') $\forall n \forall A_1, \dots, A_n \in \mathcal{F}, A_1 \cap \dots \cap A_n \in \mathcal{F}$.

Definition. A filter \mathcal{F} on S is *maximal* if there is no filter \mathcal{G} on S such that $\mathcal{F} \subsetneq \mathcal{G}$. A filter \mathcal{F} on S is an *ultrafilter* if for each $A \subseteq S$, $A \in \mathcal{F}$ or $S \setminus A \in \mathcal{F}$.

Question 2. Let \mathcal{F} be a filter on S . \mathcal{F} is maximal if, and only if, \mathcal{F} is an ultrafilter.

Definition. A filter \mathcal{F} on S is *principal* if there is $A \subseteq S$ such that $\mathcal{F} = \{B \subseteq S : A \subseteq B\}$.

Question 3.

- (1) If \mathcal{F} is an ultrafilter on S and $A = B \cup C \in \mathcal{F}$, then $B \in \mathcal{F}$ or $C \in \mathcal{F}$.
- (2) For each *principal ultrafilter* \mathcal{F} on S , there is $x \in S$ such that $\mathcal{F} = \{A \subseteq S : x \in A\}$.

Definition. The *Fréchet filter* on an infinite set S is $Fr = \{A \subseteq S : |S \setminus A| < \aleph_0\}$.

Question 4. For each infinite S , the Fréchet filter on S is:

- (1) A filter on S .
- (2) A *nonprincipal* filter on S .
- (3) Not an ultrafilter on S .
- (4) There is an ultrafilter on S containing Fr .
Hint. Use transfinite induction or Zorn's Lemma to obtain a maximal filter \mathcal{F} containing Fr , and use Question 2.
- (5) Each filter on S which contains Fr is nonprincipal.

Definition. An *entire measure* μ on S is a function $\mu : P(S) \rightarrow [0, 1]$ such that:

- (1) $\mu(\emptyset) = 0, \mu(S) = 1.$
- (2) For each $A \subseteq B \subseteq S, \mu(A) \leq \mu(B).$
- (3) For each $s \in S, \mu(\{s\}) = 0.$
- (4) For all pairwise disjoint sets $A_0, A_1, \dots \subseteq S, \mu(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$

Say that μ is an *entire pseudomeasure* on S if it satisfies (1),(2),(3), and

- (4') For each disjoint $A, B \subseteq S, \mu(A \cup B) = \mu A + \mu B.$

Question 5. For a *nonprincipal* ultrafilter \mathcal{F} on an infinite set S , define $\mu_{\mathcal{F}} : P(S) \rightarrow \{0, 1\}$ by $\mu_{\mathcal{F}}(A) = 1$ if $A \in \mathcal{F}$, and $\mu_{\mathcal{F}}(A) = 0$ otherwise.

- (1) $\mu_{\mathcal{F}}$ is an entire pseudomeasure on S .
- (2) For each infinite S , there is an entire pseudomeasure on S .

Hint. Question 4.

Good luck!