
A TASTE OF SET THEORY: EXERCISE 10

BOAZ TSABAN

Question 2 is not for credit. It is fine not to solve it. If you solve it, it will be
checked but not graded.

Definition. F is a filter on S if:
(1) F ⊆ P (S);
(2) S ∈ F ;
(3) ∅ /∈ F ;
(4) ∀A ∈ F∀B ⊆ S, A ⊆ B −→ B ∈ F ;
(5) ∀A,B ∈ F , A ∩B ∈ F .

Question 1. Prove (shortly!) that in the definition filter, each of the following
changes can be made without leading to any mathematical difference:

(a) Item (2) can be replaced by: (2’) F 6= ∅.
(b) Item (3) can be replaced by: (3’) F 6= P (S).
(c) Item (5) can be replaced by: (5’) ∀n∀A1, . . . , An ∈ F , A1 ∩ · · · ∩An ∈ F .

Definition. A filter F on S is maximal if there is no filter G on S such that F ( G.
A filter F on S is an ultrafilter if for each A ⊆ S, A ∈ F or S \A ∈ F .

Question 2. Let F be a filter on S. F is maximal if, and only if, F is an ultrafilter.

Definition. A filter F on S is principal if there is A ⊆ S such that F = {B ⊆ S :
A ⊆ B}.

Question 3.
(1) If F is an ultrafilter on S and A = B ∪ C ∈ F , then B ∈ F or C ∈ F .
(2) For each principal ultrafilter F on S, there is x ∈ S such that F = {A ⊆

S : x ∈ A}.

Definition. The Fréchet filter on an infinite set S is Fr = {A ⊆ S : |S \A| < ℵ0}.

Question 4. For each infinite S, the Fréchet filter on S is:
(1) A filter on S.
(2) A nonprincipal filter on S.
(3) Not an ultrafilter on S.
(4) There is an ultrafilter on S containing Fr.

Hint. Use transfinite induction or Zorn’s Lemma to obtain a maximal filter
F containing Fr, and use Question 2.

(5) Each filter on S which contains Fr is nonprincipal.

Definition. An entire measure µ on S is a function µ : P (S) → [0, 1] such that:
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(1) µ(∅) = 0, µ(S) = 1.
(2) For each A ⊆ B ⊆ S, µ(A) ≤ µ(B).
(3) For each s ∈ S, µ({s}) = 0.
(4) For all pairwise disjoint sets A0, A1, . . . ⊆ S, µ(

⋃
n∈N An) =

∑∞
n=1 µ(An).

Say that µ is an entire pseudomeasure on S if it satisfies (1),(2),(3), and
(4’) For each disjoint A,B ⊆ S, µ(A ∪B) = µA + µB.

Question 5. For a nonprincipal ultrafilter F on an infinite set S, define µF :
P (S) → {0, 1} by µF (A) = 1 if A ∈ F , and µF (A) = 0 otherwise.

(1) µF is an entire pseudomeasure on S.
(2) For each infinite S, there is an entire pseudomeasure on S.

Hint. Question 4.

Good luck!
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