

A TASTE OF SET THEORY: EXERCISE 9

BOAZ TSABAN

Question 1. Prove:

- (1) For each $\nu > \kappa$ and each μ , the property $\kappa \rightarrow (\kappa)^\nu_\mu$ is trivial.
- (2) If $\sigma < \nu \leq \text{cf}(\lambda)$ and $\kappa \rightarrow (\lambda)^\nu_\mu$ holds, then $\kappa \rightarrow (\lambda)^\sigma_\mu$ holds as well.

[*Hint.* Given a coloring F of $[\kappa]^\sigma$, define a coloring G of $[\kappa]^\nu$ by $G(B) = F(\text{first } \sigma \text{ elements of } B)$. Assume that $M \in [\kappa]^\lambda$ is G -monochromatic. $\text{otp } M \geq |M| = \lambda$, so take $N \subseteq M$ such that $\text{otp } N = \lambda$. N is also G -monochromatic. If $A \in [N]^\sigma$, then A is bounded in N and can therefore be extended from above to a set $B \in [N]^\nu$.]

Question 2. Prove:

- (1) For each infinite κ, λ, ν such that $\nu \leq \lambda \leq \kappa$ (and $\nu < \kappa$), and each $\mu > 1$, $\kappa \not\rightarrow (\lambda)^\nu_\mu$. (So ν must be finite for the property to make sense.)
[*Hint.* For $A, B \in [\kappa]^\nu$, define $A \sim B$ if $A \Delta B$ is finite. Fix a representative from each equivalence class, and define $F(A) = |A \Delta R| \bmod 2$ where R is the fixed representative of A 's equivalence class.]
- (2) What does (2) of Question 1 add to (1) of the current question?

Question 3. Prove:

- (1) Each strictly increasing or strictly decreasing sequence in \mathbb{R} (with respect to its usual order $<$) is countable.
- (2) $\mathbb{R} \not\rightarrow (\aleph_1)_2^2$.
[*Hint.* Let \prec be a wellordering of \mathbb{R} and define $F : [\mathbb{R}]^2 \rightarrow 2$ by $F(\{x, y\}) = 1$ if $<$ and \prec agree on x, y (i.e., “ $x < y$ and $x \prec y$ ”, or “ $y < x$ and $y \prec x$ ”), and 0 if they disagree. If $M \in [\mathbb{R}]^{\aleph_1}$ is monochromatic for F , then $\alpha = \text{otp}(M, \prec) \geq \aleph_1$. Use (1).]
- (3) $2^{\aleph_0} \not\rightarrow (\aleph_1)_2^2$.
- (4) $\aleph_1 \not\rightarrow (\aleph_1)_2^2$, so Ramsey's Theorem does not hold for \aleph_1 instead of \aleph_0 .

Definitions. A family $\mathcal{A} \subseteq [\omega]^\omega$ is *centered* if for each finite $\mathcal{F} \subseteq \mathcal{A}$, $\cap \mathcal{F}$ is infinite. For $A, B \subseteq \omega$, $A \subseteq^* B$ means that $A \setminus B$ is finite. $P \in [\omega]^\omega$ is a *pseudo-intersection* of \mathcal{A} if for each $A \in \mathcal{A}$, $P \subseteq^* A$.

Question 4. Prove:

- (1) There is a countable centered family $\mathcal{A} \subseteq [\omega]^\omega$ such that $\cap \mathcal{A} = \emptyset$.
- (2) Every countable centered family $\mathcal{A} \subseteq [\omega]^\omega$ has a pseudo-intersection.

[*Hint.* Let $\mathcal{A} = \{A_n : n \in \omega\}$, and for each n choose $a_n \in A_1 \cap A_2 \dots \cap A_n$.]

Good luck!