

A TASTE OF SET THEORY: EXERCISE NUMBER 4

BOAZ TSABAN

Remark. In all of our exercises, you may use the Axiom of Choice when it seems needed.

1. Recall that a (binary) relation E on a set P is *well-founded* if in each nonempty $A \subseteq P$ there is an element a which is minimal with respect to E (i.e., there is no $b \in A$ such that $b E a$). Prove the equivalence of the following assertions:

- (1) E is well-founded.
- (2) There is no sequence of elements $a_0, a_1, a_2, \dots \in P$ such that for each n , $a_{n+1} E a_n$.

2. Recall that for a set A ,

$$|A| = \min\{\alpha : \exists \text{bijection } f : \alpha \rightarrow A\}.$$

For sets A, B , write $A \preceq B$ if there exists a one-to-one function $f : A \rightarrow B$. Prove that the following are equivalent:

- (1) $A \preceq B$.
- (2) There is a function $g : B \rightarrow A$ which is onto.
- (3) $|A| \leq |B|$.

3. Prove that the cardinal arithmetic operations satisfy:

$$\kappa^{\lambda+\mu} = \kappa^\lambda \cdot \kappa^\mu$$

for all cardinals κ, λ, μ .

Good luck!

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il
URL: <http://www.cs.biu.ac.il/~tsaban>

Date: 21 Mar 05 CE.