

A TASTE OF SET THEORY: HINT FOR EXERCISE NUMBER 2

BOAZ TSABAN

Here is a hint for:

4. Recall that a set X is *inductive* if: $\emptyset \in X$, and for each $x \in X$, $x \cup \{x\} \in X$ too. Define

$$\omega = \bigcap \{X : X \text{ is inductive}\}.$$

Prove the following facts:

- (1) If a set X is inductive, then $X \cap Ord$ is inductive.
- (2) ω is an ordinal.
- (3) ω is a *limit* ordinal.
- (4) ω is the *least* nonzero limit ordinal.

Fill in the details in the following claims:

ω is a set (of ordinals).

Since ω is a set, it cannot be that $Ord \subseteq \omega$.

So let γ be the first ordinal such that $\gamma \notin \omega$.

$\gamma \subseteq \omega$.

Prove that γ is inductive, and therefore $\omega \subseteq \gamma$.

γ is an ordinal. It is not a successor ordinal.

$\gamma \neq 0$.

If $\alpha < \gamma$ and $\alpha \neq 0$ and α is a limit ordinal, then α is inductive, so $\alpha \in \omega \subseteq \alpha$.

Contradiction.

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>

Date: 7 Mar 05 CE.