

A TASTE OF SET THEORY: EXERCISE 4

BOAZ TSABAN

1. Prove that AC implies the Well Ordering Principle.

Hint: Let A be given. Let f be a choice function on $\mathcal{F} = P(A) \setminus \{\emptyset\}$. Fix $b \notin A$.

Use f and the Recursion Theorem to define $G : ON \rightarrow V$ such that $G(\alpha) \in A \setminus \{G(\beta) : \beta < \alpha\}$ if this set is nonempty, and $G(\alpha) = b$ otherwise. Show that G induces a bijection g from $\gamma = \sup\{\alpha : G(\alpha) \neq b\}$ (why is this a set?) to A . Order A by $a_1 < a_2$ iff $g^{-1}(a_1) < g^{-1}(a_2)$.

Look up *Partially ordered set* in Wikipedia. *Zorn's Lemma* is the following statement: Let A be a nonempty set partially ordered by \leq , such that each linearly ordered subset B of A is bounded in A .¹ Then there is a maximal element in A .²

It is not difficult to see that Zorn's Lemma implies AC (see booklet, Page 61).

2. Prove that AC implies Zorn's Lemma.

Hint: Assume that there is *no* maximal element in A . Since AC implies the Well-Ordering Principle, there is a well-ordering \prec of A . Show that we can define $\mathbf{G} : \mathbf{ON} \rightarrow A$ such that:

- (1) $\mathbf{G}(0)$ is the first element of A (with respect to \prec);
- (2) For each successor ordinal $\alpha = \beta + 1$, $\mathbf{G}(\beta + 1)$ is the first element $a \in A$ (with respect to \prec) such that $\mathbf{G}(\beta) < a$; and
- (3) For each limit ordinal α , $\mathbf{G}(\alpha)$ is an upper-bound (with respect to $<$) of $\{\mathbf{G}(\beta) : \beta < \alpha\}$.

Show that \mathbf{G} is one-to-one.

3. Prove the following assertions:

- (a) Assume that $f : \alpha \rightarrow ON$ is an increasing function (that is, for all $\beta < \gamma < \alpha$, $f(\beta) < f(\gamma)$). Then for each $\beta < \alpha$, $f(\beta) \geq \beta$.

¹I.e., there is $a \in A$ such that for each $b \in B$, $b \leq a$.

²I.e., there is $a \in A$ such that there is *no* $a' \in A$ satisfying $a < a'$.

(b) Let α be an ordinal and $F \subseteq \alpha$. Then the order type of F is $\leq \alpha$.

Hint for (b): Let β be the order type of F , and $f : \beta \rightarrow F$ be an order isomorphism. Then f is increasing.

4. Prove:

- (1) $A \preceq B \Leftrightarrow |A| \leq |B|$. (*Hint for \Rightarrow :* Question 3.)
- (2) $A \prec B \Leftrightarrow |A| < |B|$.
- (3) $A \approx B \Leftrightarrow |A| = |B|$.

Good luck!