

## A TASTE OF SET THEORY: EXERCISE 11

BOAZ TSABAN

**1.** Assume that  $\mu$  is a (nontrivial probability) measure on a set  $X$ ,  $\alpha < \aleph_1$ , and  $(A_\beta : \beta < \alpha)$  is an  $\alpha$ -sequence of  $\mu$ -measurable sets. Prove:

- (1) If the sequence is increasing with  $\alpha$  (i.e.,  $A_\beta \subseteq A_\gamma$  for all  $\beta < \gamma$ ), then  $\mu(\bigcup_{\beta < \alpha} A_\beta) = \sup\{\mu(A_\beta) : \beta < \alpha\}$ .
- (2) If the sequence is decreasing with  $\alpha$  (i.e.,  $A_\beta \supseteq A_\gamma$  for all  $\beta < \gamma$ ), then  $\mu(\bigcap_{\beta < \alpha} A_\beta) = \inf\{\mu(A_\beta) : \beta < \alpha\}$ . (In particular, if  $\mu(A_\beta) > 1/2$  for all  $\beta < \alpha$ , then  $\mu(\bigcap_{\beta < \alpha} A_\beta) \geq 1/2$ .)

*Hint.* For (1), consider the sets  $A_{\beta+1} \setminus A_\beta$ . For (2), use (1).

**2.** Prove:

- (1) For each transitive set  $A$ ,  $A \subseteq P(A)$ .
- (2) For each transitive set  $A$ ,  $P(A)$  is transitive.
- (3) For each  $\alpha$ ,  $V_\alpha$  is transitive.
- (4) For all  $\alpha \leq \beta$ ,  $V_\alpha \subseteq V_\beta$ .

*Definition.* For each  $x$ , define the *rank* of  $x$  to be  $\text{rank}(x) = \min\{\alpha : x \in V_{\alpha+1}\}$ .

**3.** Prove:

- (1) For each  $\alpha$ ,  $V_\alpha = \{x : \text{rank}(x) < \alpha\}$ .
- (2) For all  $x, y$ : If  $x \in y$ , then  $\text{rank}(x) < \text{rank}(y)$ .
- (3) For each  $y$ ,  $\text{rank}(y) = \sup\{\text{rank}(x) + 1 : x \in y\}$ .
- (4) For each  $\alpha$ ,  $\text{rank}(\alpha) = \alpha$ .
- (5) For each  $\alpha$ ,  $V_\alpha \cap ON = \alpha$ .

**4.** Prove:

- (1) For each  $x$ , the ranks of  $\bigcup x, P(x), \{x\}$ , are all less than  $\text{rank}(x) + \omega$  (ordinal addition).
- (2) For all  $x, y$ , the ranks of  $x \times y, x \cup y, x \cap y, \{x, y\}, (x, y), {}^y x$ , are all less than  $\max\{\text{rank}(x), \text{rank}(y)\} + \omega$ .
- (3)  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \in V_{\omega+\omega}$ .

*Good luck!*

DEPARTMENT MATHEMATICS, BAR-ILAN UNIVERSITY; AND DEPARTMENT MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE

*E-mail address:* [tsaban@math.biu.ac.il](mailto:tsaban@math.biu.ac.il)  
*URL:* <http://www.cs.biu.ac.il/~tsaban>