

A TASTE OF SET THEORY: EXERCISE 10

BOAZ TSABAN

Definition. A subset C of a partially ordered set P is *cofinal* (in P) if for each $p \in P$, there is $d \in D$ such that $p \leq d$. The *cofinality* of P , denoted $\text{cof}(P, \leq)$, is the minimal cardinality of a cofinal subset of P .

For example, for an ordinal α , $\text{cof}(\alpha, \leq)$ is just $\text{cf}(\alpha)$.

1. Consider $\mathbb{N}^\mathbb{N}$ with the partial order defined by $f \leq g$ if and only $f(n) \leq g(n)$ for all n . Prove that $\text{cof}(\mathbb{N}^\mathbb{N}, \leq) = \mathfrak{d}$.

2. Prove:

(1) For each singular κ , $\text{cof}([\kappa]^{\text{cf}(\kappa)}, \subseteq) > \kappa$.

[Hint. The proof of König's Lemma.]

(2) Show that (1) implies König's Lemma for singular κ .

(3) What is $\text{cof}([\kappa]^{\text{cf}(\kappa)}, \subseteq)$ when κ is regular?

Definition. A nonempty family $\mathcal{S} \subseteq [\mathbb{N}]^{\aleph_0}$ is a *superfilter* (on \mathbb{N}) if for all $A, B \subseteq \mathbb{N}$:

(a) If $A \in \mathcal{S}$ and $B \supseteq A$, then $B \in \mathcal{S}$.

(b) If $A \cup B \in \mathcal{S}$, then $A \in \mathcal{S}$ or $B \in \mathcal{S}$.

3. Prove:

(1) There is a superfilter on \mathbb{N} which is not a filter.

(2) The definition of superfilter does not change if we assume that A, B are disjoint in (b).

(3) If we make the change suggested in (2), and in addition we replace there *or* by *exclusive or*, we obtain a characterization of (nonprincipal) ultrafilter on \mathbb{N} .

Good luck!

DEPARTMENT MATHEMATICS, BAR-ILAN UNIVERSITY; AND DEPARTMENT MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE

E-mail address: tsaban@math.biu.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>