

I-FAVORABLE SPACES AND INVERSE SYSTEMS.

ANDRZEJ KUCHARSKI AND SZYMON PLEWIK

ABSTRACT. It is showed that any compact space X is I-favorable if, and only if X can be representing as a limit of σ -complete inverse system of compact metrizable spaces with skeletal bonding maps.

[Compact openly generated spaces.]

In several papers [13], [14] and [15], E.V. Shchepin considered a few classes of compact spaces. Among others, he introduced the class of compact openly generated spaces. A compact space X is called *openly generated*, whenever X is a limit of a σ -complete inverse system of metrizable spaces with open bonding maps. Since Ivanov's result [9]: *A compact space X is openly generated if, and only if its superextension is a Dugundji space*; Shchepin established that the classes of openly generated compact spaces and of κ -metrizable spaces are the same, see Theorem 21 in [15].

[Limits of inverse systems with skeletal bonding maps.]

We consider the class of topological (compact) spaces which widen openly generated spaces. Our's class consists of limits of σ -complete inverse systems of compact metrizable spaces with skeletal bonding maps. It occurs that compact spaces from this class are the same as I-favorable spaces, Theorems 1 and 3. Any continuous and open map is skeletal, hence every compact openly generated space has to be I-favorable.

[The converse is not true.]

There are extremely disconnected and I-favorable spaces. For instance βN , i.e. the Čech-Stone compactification of positive integers with the discrete topology, is I-favorable and extremely disconnected, but βN is not openly generated, since any compact extremely disconnected and openly generated space has to be discrete, see Theorem 11 in [13].

[Connections with Boolean algebras.]

A Boolean algebra \mathbb{B} is semi-Cohen (regularly filtered) if, and only if $[\mathbb{B}]^\omega$ has a closed unbounded set of countable regular subalgebras, in other words $[\mathbb{B}]^\omega$ contains a club filter. The Stone space of a semi-Cohen algebras is I-favorable, compare [2] and [7]. Thus our's results develop facts on semi-Cohen algebras, compare Theorem 4.3 in [2].

[Sketch of results.]

We modify quotient topologies and quotient maps. We introduce and consider identification topologies and identification maps. We extract conditions (\mathcal{W}^T) from properties of cozero sets. Frink's theorem is used to show that X/T is completely regular, whenever T is a ring of subsets of X and each $W \in T$ fulfills (\mathcal{W}^T) . We introduce skeletal families to modify the essensial property of club filters, in particular the condition (\mathcal{S}) . Representations of I-favorable compact spaces as limits of σ -complete inverse systems of compact metrizable spaces with skeletal bonding maps are our's main result.

[Main results.]

Representations of I-favorable compact spaces as limits of σ -complete inverse systems of compact metrizable spaces with skeletal bonding maps are our's main result. These results are similar to Shchepin's theory of openly generated spaces.

Theorem 1. *If X is a I-favorable compact space, then*

$$X = \varprojlim \{X_\sigma, \pi_\sigma^\sigma, \Sigma\},$$

where $\{X_\sigma, \pi_\sigma^\sigma, \Sigma\}$ is a σ -complete inverse system, all spaces X_σ are compact and metrizable, and all bonding maps π_σ^σ are skeletal.

Theorem 2. *Let $\{X_\sigma, \pi_\sigma^\sigma, \Sigma\}$ be a σ -complete inverse system with all bonding maps skeletal. If all spaces X_σ are metrizable and separable, then the limit*

$$X = \varprojlim \{X_\sigma, \pi_\sigma^\sigma, \Sigma\}$$

is I-favorable.

[Inverse systems: σ -complete.]

A directed set Σ is said to be σ -complete if any countable chain of its elements has least upper bound in Σ . An inverse system $\{X_\sigma, \pi_\sigma^\sigma, \Sigma\}$ is said to be a σ -complete, whenever Σ is σ -complete and for every chain $\{\sigma_n : n \in \omega\} \subseteq \Sigma$, such that $\sigma = \sup\{\sigma_n : n \in \omega\} \in \Sigma$, there holds

$$X_\sigma = \varprojlim \{X_{\sigma_n}, \pi_{\sigma_n}^{\sigma_{n+1}}\},$$

compare E.V. Shchepin [15] (1981). For other details see R. Engelking [5] (1977), pages 135 - 144.

[Skeletal functions.]

A continuous function is called *skeletal* whenever for any non-empty open sets $U \subseteq X$ the closure of $f[U]$ has non-empty interior. If X is a compact space and Y Hausdorff, then a continuous $f : X \rightarrow Y$ is skeletal if, and only if $\text{Int } f[U] \neq \emptyset$, for every open $U \neq \emptyset$. In the literature one can find equivalent notions: *almost-open* or *semi-open*; see A. Arhangelskii [1] (1962), and H. Herrlich and G.E. Strecker [8] (1968). We call such maps skeletal following J. Mioduszewski and L. Rudolf [11] (1969).

[Remainder of βN .]

There exist topological spaces with no skeletal map onto a dense in itself metrizable space. For example, the remainder of the Čech-Stone compactification βN . In fact, any space such that every decreasing sequence of open nonempty subsets has the intersection with non-empty interior has no skeletal map onto a dense in itself and Hausdorff space.

[Souslin lines, density topologies.]

If I is a compact segment of connected Souslin line and X is metrizable, then each skeletal map $f : I \rightarrow X$ has to be constant. Indeed, let Q be a countable and dense subset of $f[I] \subseteq X$. Suppose a skeletal map $f : I \rightarrow X$ is non constant. Then the preimage $f^{-1}(Q)$ is nowhere dense in I as countable union of nowhere dense subset of a Souslin line. So, for each open set $V \subseteq I \setminus f^{-1}(Q)$ there holds $\text{Int } f[V] = \emptyset$, a contradiction. Another example is a regular Baire space X with a category measure μ such that $\mu(X) = 1$, for a definition of this space see [12, pp. 86 - 91].

[Independent example.]

In [3] A. Błaszczyk and S. Shelah considered separable extremely disconnected spaces without skeletal map onto a dense in itself metrizable space. Theirs result is stated in terms of Boolean algebra: *There is a nowhere dense ultrafilter on ω if, and only if there is a complete, atomless, σ -centered Boolean algebra which contains no regular, atomless, countable subalgebra.*

[Open-open game.]

Players are playing with a topological space X in the open-open game. Player I chooses a non-empty open subset $A_0 \subseteq X$ at the beginning. Then Player II chooses a non-empty open subsets $B_0 \subseteq A_0$. Player I chooses a non-empty open subset $A_n \subseteq X$ at the n -th round, and then Player II chooses a non-empty open subset $B_n \subseteq A_n$. Player I wins, whenever the union $B_0 \cup B_1 \cup \dots \subseteq X$ is dense. One can assume that Player II wins for other cases. The space X is called *I-favorable* whenever Player I can be insured that he wins no matter how Player II plays. In other words, Player I has a winning strategy. For more details about the open-open game see P. Daniels, K. Kunen and H. Zhou [4] (1994).

[Club filter.]

Fix a π -base \mathcal{Q} for a space X . Following [4], compare [10], any family $\mathcal{C} \subset [\mathcal{Q}]^\omega$ is called a *club filter* whenever:

The family \mathcal{C} is closed under ω -chains with respect to inclusion;

For any countable subfamily $\mathcal{A} \subseteq \mathcal{Q}$, where \mathcal{Q} is the π -base fixed above, there exists $\mathcal{P} \in \mathcal{C}$ such that $\mathcal{A} \subseteq \mathcal{P}$; and

(S). *For any non-empty open set V and each $\mathcal{P} \in \mathcal{C}$ there is $W \in \mathcal{P}$ such that if $U \in \mathcal{P}$ and $U \subseteq W$, then U meets V , i.e. $U \cap V \neq \emptyset$.*

[Known characterization.]

There holds, see [4] Theorem 1.6, compare [10] Lemmas 3 and 4: *A topological space has a club filter if, and only if it is I-favorable.* In the next part we modify a little the definition of club filters.

[Skeletal families.]

Any \mathcal{P} closed under a winning strategy for Player I fulfills (\mathcal{S}) , hence the condition (\mathcal{S}) gives reasons to look into I-favorable spaces with respect to skeletal families. A family \mathcal{P} of open subsets of a space X is called *skeletal family*, whenever for every non-empty open set $V \subseteq X$ there exists $W \in \mathcal{P}$ such that $U \subseteq W$ and $\emptyset \neq U \in \mathcal{P}$ implies $U \cap V \neq \emptyset$.

Lemma 3. *Let $f : X \rightarrow Y$ be a continuous function and let \mathcal{B} be a π -base for Y . The family $\{f^{-1}(V) : V \in \mathcal{B}\}$ is skeletal if, and only if f is a skeletal map.*

[Identification maps, topologies.]

Let \mathcal{P} be a family of subsets of X . We say that $y \in [x]_{\mathcal{P}}$, whenever for every $V \in \mathcal{P}$ there holds $x \in V$ if, and only if $y \in V$. The family of all classes $[x]_{\mathcal{P}}$ is denoted X/\mathcal{P} . Put $q(x) = [x]_{\mathcal{P}}$. The function $q : X \rightarrow X/\mathcal{P}$ is called an *identification map*. The minimal topology on X/\mathcal{P} , containing images $q[V] = \{[x]_{\mathcal{P}} : x \in V\}$ for $V \in \mathcal{P}$, is called an *identification topology*. If X is a compact space and X/\mathcal{P} is Hausdorff, then the identification map $q : X \rightarrow X/\mathcal{P}$ is the natural quotient mapping. Also, the identification topology coincides with the quotient topology, compare [5] p. 124.

Corollary 4. *Let \mathcal{P} be a family of open subsets of X . If $X = \bigcup \mathcal{P}$ and \mathcal{P} is closed under finite intersections, then the identification map $q : X \rightarrow X/\mathcal{P}$ is continuous. Moreover, the family $\{[V] : V \in \mathcal{P}\}$ is a base for the identification topology on X/\mathcal{P} .*

[Property of cozero sets.]

$(\mathcal{W}^{\mathcal{T}})$: *There exist sets $\{U_n : n \in \omega\} \subseteq \mathcal{T}$ and $\{V_n : n \in \omega\} \subseteq \mathcal{T}$ such that $U_k \subseteq (X \setminus V_k) \subseteq U_{k+1}$, for any $k \in \omega$, and $\bigcup\{U_n : n \in \omega\} = W$.*

[T_2 and T_3 spaces.]

Lemma 5. *If \mathcal{T} is a family of sets such that each $W \in \mathcal{T}$ fulfills $(\mathcal{W}^{\mathcal{T}})$, then X/\mathcal{T} is Hausdorff.*

Lemma 6. *Let \mathcal{T} be a family of sets such that each $W \in \mathcal{T}$ fulfills $(\mathcal{W}^{\mathcal{T}})$. If \mathcal{T} is closed under finite intersections, then X/\mathcal{T} is regular.*

[Completely regular spaces.]

To get that X/\mathcal{P} is completely regular we should apply the Frink's theorem, see [6] or [5] p. 72. Recall a reformulation of this theorem.

Theorem [O. Frink (1964)]. *A T_1 -space X is completely regular if, and only if there exists a base \mathcal{B} satisfying:*

- (1) *If $x \in U \in \mathcal{B}$, then there exists $V \in \mathcal{B}$ such that $x \notin V$ and $U \cup V = X$;*
- (2) *If $U, V \in \mathcal{B}$ and $U \cup V = X$, then there exists disjoint sets $M, N \in \mathcal{B}$ such that $X \setminus U \subseteq M$ and $X \setminus V \subseteq N$. *

Theorem 7. *If \mathcal{T} be a ring of subsets of X such that each $W \in \mathcal{T}$ fulfills the conditions $(\mathcal{W}^{\mathcal{T}})$, then X/\mathcal{T} is a completely regular space.*

[Identification maps are skeletal.]

Suppose that, each $W \in \mathcal{T}$ fulfills $(\mathcal{W}^{\mathcal{T}})$. If \mathcal{T} is finite, then X/\mathcal{T} is discrete, as a finite Hausdorff space. Whenever \mathcal{T} is countable and closed under finite intersections, then X/\mathcal{T} is a Hausdorff and regular space with a countable base. Then it is a metrizable separable space.

Theorem 8. *If a ring \mathcal{P} of open subsets of X is closed under a winning strategy and each $W \in \mathcal{P}$ fulfills $(\mathcal{W}^{\mathcal{P}})$, then X/\mathcal{P} with the identification topology is completely regular and the identification map $q : X \rightarrow X/\mathcal{P}$ is skeletal.*

[\mathcal{T} -clubs.]

We introduce \mathcal{T} -clubs, i.e. club filters with some additional properties. Consider a collection $\mathcal{C} = \{\mathcal{P}(\mathcal{Q}) : \mathcal{Q} \in [\mathcal{T}]^\omega\}$ such that each $\mathcal{P} \in \mathcal{C}$ is countable and closed under a winning strategy for Player I and all strategies σ_k^* : i.e. any $W \in \mathcal{P}$ fulfills $(\mathcal{W}^{\mathcal{P}})$; and closed under finite intersections and finite unions. Then, the family \mathcal{C} is called \mathcal{T} -club.

[Properties of \mathcal{T} -clubs.]

Any \mathcal{T} -club \mathcal{C} is closed under ω -chains with respect to the inclusion and each $\mathcal{P} \in \mathcal{C}$ is a ring of sets. Each $\mathcal{P} \in \mathcal{C}$ fulfills $(\mathcal{W}^{\mathcal{P}})$. Additionally, any $\mathcal{P} \in \mathcal{C}$ is closed under a winning strategy for Player I, hence for each $\mathcal{P} \in \mathcal{C}$ the identification map $q_{\mathcal{P}} : X \rightarrow X/\mathcal{P}$ is skeletal and onto a metrizable separable space. These properties suffice to build an inverse system with skeletal bonding maps onto metrizable separable spaces.

[\mathcal{T} -clubs and inverse systems.]

Any \mathcal{T} -club \mathcal{C} is directed by the inclusion. For each $\mathcal{P} \in \mathcal{C}$ it is assigned the identification space X/\mathcal{P} and the skeletal function $q_{\mathcal{P}} : X \rightarrow X/\mathcal{P}$. If $\mathcal{P}, \mathcal{R} \in \mathcal{C}$ and $\mathcal{P} \subseteq \mathcal{R}$, then put $q_{\mathcal{P}}^{\mathcal{R}}([x]_{\mathcal{R}}) = [x]_{\mathcal{P}}$. Thus, we have defined the inverse system $\{X/\mathcal{R}, q_{\mathcal{P}}^{\mathcal{R}}, \mathcal{C}\}$. In this inverse system spaces X/\mathcal{R} are metrizable and separable, bonding maps $q_{\mathcal{P}}^{\mathcal{R}}$ are skeletal and the directed set \mathcal{C} is σ -complete.

[Completely regular cases.]

Lemma 9. *Let X be a I -favorable completely regular space. If \mathcal{C} is a \mathcal{T} -club, then $Y = \varprojlim \{X/\mathcal{R}, q_{\mathcal{P}}^{\mathcal{R}}, \mathcal{C}\}$ contains a dense subspace homeomorphic with X .*

Back to the main results.

REFERENCES

- [1] A. Arhangelskii, *On open and almost-open mappings of topological spaces*, (Russian) Dokl. Akad. Nauk SSSR 147 (1962), 999 - 1002.
- [2] B. Balcar, T. Jech and J. Zapletal, *Semi-Cohen Boolean algebras*, Ann. of Pure and Appl. Logic 87 (1997), no. 3, 187 - 208.
- [3] A. Błaszczyk and S. Shelah, *Regular subalgebras of complete Boolean algebras*, J. Symbolic Logic 66 (2001), no. 2, 792 - 800.
- [4] P. Daniels, K. Kunen and H. Zhou, *On the open-open game*, Fund. Math. 145 (1994), no. 3, 205 - 220.
- [5] R. Engelking, *General topology*, Polish Scientific Publishers, Warszawa (1977)
- [6] O. Frink, *Compactifications and semi-normal spaces*, Amer. J. Math. 86 (1964), 602 - 607.
- [7] L. Heindorf and L. Shapiro, *Nearly Projective Boolean Algebras*, Lecture Notes in Mathematics, 1596. Springer-Verlang, Berlin, (1994).
- [8] H. Herrlich and G.E. Strecker, *H-closed spaces and reflective subcategories*, Math. Ann. 177 (1968), 302 - 309.
- [9] A. V. Ivanov, *Superextensions of openly generated compacta*, (Russian) Dokl. Akad. Nauk SSSR 259 (1981), no. 2, 275 -278.
- [10] A. Kucharski and Sz. Plewik *Game approach to universally Kuratowski-Ulam spaces*, Topology Appl. 154 (2007), no. 2, 421 - 427.
- [11] J. Mioduszewski and L. Rudolf *H-closed and extremely disconnected Hausdorff spaces*, Dissertationes Math. 66 (1969).
- [12] J. Oxtoby, *Measure and Category*, Graduate Texts in Mathematics, vol. 2, Springer, New York, (1971).
- [13] E.V. Shchepin, *Topology of limit spaces with uncountable inverse spectra*, (Russian) Uspehi Mat. Nauk 31 (1976), no. 5 (191), 191 - 226.
- [14] E.V. Shchepin, *On κ -metrizable spaces*, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43 1979), no. 2, 442 - 478.
- [15] E.V. Shchepin, *Functors and uncountable powers of compacta*, (Russian) Uspekhi Mat. Nauk 36 (1981), no. 3(219), 3 - 62.