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Notations.

For a set x, let |x| denote its cardinality and let
[ω]ω = {X ⊆ ω : |X| = ω}. If S ⊆ [ω]ω, then put
S∗ = {x4 P : P ∈ S and x ∈ [ω]<ω}. (...)

Doughnut property.

In [5] C. Di Prisco and J. Henle introduced the
so-called doughnut property: For A ⊆ B ⊆ ω with
B \ A ∈ [ω]ω, the set

< A, B >= {X ∈ [ω]ω : A ⊆ X ⊆ B}
is called doughnut. A subset S ⊆ [ω]ω has the
doughnut property, whenever it contains or is dis-
joint from some doughnut.

Fisrt palce finite or infinite.

If < A,B > and < C,D > are doughnuts, then
the intersection < A, B > ∩ < C, D > is finite or is
a doughnut. But, for a, c ∈ [ω]<ω and B, D ∈ [ω]ω

the intersection < a, B > ∩ < c, D > is empty or
has the cardinality continuum.

1



CD sets and ND sets.

Following L. Halbeisen [8] we call a subset S ⊆
[ω]ω completely doughnut, briefly S is a CD set,
whenever for each doughnut < A, B > there exists
a doughnut < C, D >⊆< A, B > such that

< C, D >⊆ S or < C, D > ∩S = ∅.
But, whenever always holds < C, D > ∩S = ∅,
then S is called doughnut null, briefly S is a ND
set.

σ-field, σ- ideal

Any subset of a ND set is a ND and CD set.
Also, each complement of a CD set is a CD set,
too. The family of all CD sets is a σ-field and the
family of all ND sets is a σ- ideal, see facts 1.3, 1.5
and 1.6 in Halbeisen [8].

Comparison with completely Ramsey sets.

Notions of CD set and ND set are counterpars of
completely Ramsey set, i.e. CR set, and nowhere
Ramsey set, i.e. NR set. Indeed, CR sets was in-
troduced by J. Sliver [12]. F. Galvin and K. Prikry
showed that all CR sets form a σ-field, see Lemmas
6 and 10 in [7]. Thus, the definition of a NR set
is natural: Any CR set S such that each subset
P ⊆ S is a CR set is called NR set.
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Families of CR and CD sets are diffenrent.

One can check that any Berstein subset restricted
to a doughnut < A,B >, where A ∈ [ω]ω, is NR
and not CD. If H is a base matrix tree, for ex-
act definition of H see the base matrix lemma, i.e.
Lemma 2.11 in [2], then (

⋃
H)∗ is not a CR set

and one can check that (
⋃
H)∗ is a ND set. Small

sets with respect to the completly Ramsey property,
i.e. NR sets, can be CD, and conversely, small sets
with respect to the completly doughnut property,
i.e. ND sets, can be CR. So, we have to modify a
proof of the base matrix lemma - see B. Balcar and
P. Simon [3].
∗-doughnuts.

For A ⊆∗ B ⊆ ω with B \ A ∈ [ω]ω, we call the
set

< A, B >∗= {X : A ⊆∗ X ⊆∗ B}
∗−doughnut.

Lemma 1. If {< An, Bn >: n ∈ ω} is a sequence
of doughnuts decreasing with respect to the inclu-
sion, then there exists a doughnut < C, D > such
that < C, D >⊆< An, Bn >∗, for each n ∈ ω.

Proof. Because of, gaps of type (ω, ω∗) and
ω−limits do not exist. �

∗-disjoint.

If < A,B > and < C,D > are doughnuts, then
the intersection < A, B >∗ ∩ < C, D >∗ is count-
able or has the cardinality continuum, i.e. is a
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∗−doughnut. Whenever < A, B >∗ ∩ < C, D >∗

is countable, then < A,B >∗ and < C, D >∗ are
called ∗−disjoint.

Lemma 2. If S ∈ ND, then for any doughnut
< A,B > there exist a doughnut < C,D >⊆<
A, B > such that < C, D >∗ ∩S∗ = ∅.

Proof. The family of ND is a σ−ideal which is in-
variant under finite translations. �

D−partition.

Call a family P of ∗−doughnuts to be a
D−partition, if P consists of ∗−doughnuts such
that any two elements of P are ∗−disjoint, and
P is maximal with respect to the inclusion. A
D−partition P refines a D−partition Q (briefly
P ≺ Q), if for each < A,B >∗∈ P there exists
< C, D >∗∈ Q such that < A, B >∗⊆< C, D >∗.

Shattering matrix.

Any collection of D−partitions is called ma-
trix. A matix H is called shattering, if for each
∗−doughnut < A, B >∗ there exists P ∈ H
and < A1, B1 >∗, < A2, B2 >∗∈ P such that
< A1, B1 >∗ ∩ < A,B >∗ and < A2, B2 >∗ ∩ <
A, B >∗ are different ∗−doughnuts. Let κ(ND) be
the least cardinality of a shattering matrix.

Lemma 3. If a matix H is of the cardinality less
than κ(ND), then there exists a D−partition P
which refines any Q ∈ H.
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Proof. Take a doughnut < A, B >. Let H(A, B)
be a relative matrix with respect to < A, B > and
H. H(A, B) is not shaterring in < A, B >. So,
there exists a doughnut < C, D >⊆< A, B >
such that there exists < AP , BP >∗∈ P with
< C, D >∗⊆< AP , BP >∗, for every P ∈ H.
Choose a D−partition P consisting of a such <
C, D >∗. �

Corollary 4. κ(ND) is a regular and uncoutable
cardinal number.

Proof. One can take a shaterring matrix H = {Pα :
α < κ(ND)} such that α < β implies Pβ ≺ Pα.
Any cofinal family of D− partitions from H consti-
tutes a shaterring matrix, hence κ(ND) has to be
regular. κ(ND) is uncoutable, by Lemma 1. �

D-base matrix tree.

Theorem 5. There exists a matrix H = {Pα : α <
κ(ND)} which is well ordered by the inverse of ≺.
Moreover, for each ∗−doughnut < A, B >∗ there
is < C, D >∗∈

⋃
H such that < C, D >∗⊆<

A, B >∗.

Proof. Take a shaterring matrix H = {Pα : α <
κ(ND)} such that α < β implies Pβ ≺ Pα. Let
J c(Pα) denotes the family of all ∗−doughnuts <
A, B >∗ such that each < A, B >∗∈ J c(Pα) is not
∗−disjoint with continuum many elements of Pα.
Let F : J c(Pα) → Pα be an one-to-one function
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such that F (G) ∩ G is a ∗−doughnut, for every
G ∈ J c(Pα). One can define F by a transfinite
induction. Take a D−partinion

Q ⊇ {F (G) ∩G : G ∈ J c(Pα)}.
Having these, one can improve H to obtain Pα+1 ≺
Q and Pα+1 ≺ Pα. One obtains that, if <
A, B >∗∈ J c(Pα), then there is < C, D >∗∈ Pα+1

with < C, D >∗⊆< A, B >∗.
We should prove that, for each ∗−doughnut <

A, B >∗ there exist α < κ(ND) and < C, D >∗∈
Pα such that < C, D >∗⊆< A, B >∗, i.e. for
each ∗−doughnut < A, B >∗ there exists α <
κ(ND) such that < A,B >∗∈ J c(Pα). In-
deed, fix a ∗−doughnut < A, B >∗. Let B0

α0
and B1

α0
be two different ∗−doughnuts belong-

ing to Pα0 such that D0
α0

=< A,B >∗ ∩B0
α0

and D1
α0

=< A, B >∗ ∩B1
α0

are ∗−doughnuts.
Thus, Di0

α0
⊆< A,B >∗ for i0 ∈ {0, 1}. In-

ductively, let B
i0i1...in−10
αn and B

i0i1...in−11
αn be two

different ∗−doughnuts belonging to Pαn such
that D

i0i1...in−10
αn =< A, B >∗ ∩B

i0i1...in−10
αn

and D
i0i1...in−11
αn =< A, B >∗ ∩B

i0i1...in−11
αn are

∗−doughnuts. We get
Di0i1...in

αn
⊆ Di0i1...in−1

αn−1
⊆< A, B >∗ .

If β = sup{αn : n ∈ ω}, then < A,B >∗∈
J c(Pβ+1), by Lemma 1. �
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Applications to ND sets

Lemma 6. If P is a D−partition, then the com-
plement of the union

⋃
P is a ND set.

Proof. Take a doughnut < A, B >. There exists
< C, D >∈ P such that < A ∪ C, B ∩ D > is a
doughnut contained in

⋃
P . �

Lemma 7. If S ⊆ [ω]ω is a ND set, then there
exists a D−partition P such that

⋃
P ∩ S = ∅.

Proof. If S is a ND set, then S∗ is a ND set,
too. Thus for any doughnut < A, B > there ex-
ists a doughnut < C, D >⊆< A, B > such that
< C,D >∗ ∩S∗ = ∅. Choose a D−partition P
consisting of a such < C, D >∗. �

Corollary 8. κ(ND) ≤ add(ND).

On Halbeisen’s question.

In Halbeisen [8] it was stated the questions:
add(CD) = cov(ND)?

We answer, consistently under κ(ND) = cf 2ω or
there are no κ(ND)−limits, this question yes. This
is a counterpart to Plewik’s result add(CR) =
cov(NR), [10].

Theorem 9. add (CD) = cov (ND).

Some inequalities with add(CD) one can find in
J. Brendle [4].
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Topologization following Aniszczyk and Schilling.

Methods of B. Aniszczyk [1] or K. Schilling [11]
could be adopted for doughnuts.

Theorem 10. There exists a topology such that CD
sets are exactly sets with the Baire property and
ND sets are exactly nowhere dense sets.

Therefore add(ND) = add(CD). Halbeisen [8]
has the same, but for pseudo-topologies.
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