

BASE MATRIX TREE FOR DOUGHNUTS

PIOTR KALEMBA, SZYMON PLEWIK, AND ANNA WOJCIECHOWSKA

Notations.

For a set x , let $|x|$ denote its cardinality and let $[\omega]^\omega = \{X \subseteq \omega : |X| = \omega\}$. If $S \subseteq [\omega]^\omega$, then put $S^* = \{x \Delta P : P \in S \text{ and } x \in [\omega]^{<\omega}\}$. (...)

Doughnut property.

In [5] C. Di Prisco and J. Henle introduced the so-called doughnut property: For $A \subseteq B \subseteq \omega$ with $B \setminus A \in [\omega]^\omega$, the set

$$\langle A, B \rangle = \{X \in [\omega]^\omega : A \subseteq X \subseteq B\}$$

is called *doughnut*. A subset $S \subseteq [\omega]^\omega$ has the *doughnut property*, whenever it contains or is disjoint from some doughnut.

First place finite or infinite.

If $\langle A, B \rangle$ and $\langle C, D \rangle$ are doughnuts, then the intersection $\langle A, B \rangle \cap \langle C, D \rangle$ is finite or is a doughnut. But, for $a, c \in [\omega]^{<\omega}$ and $B, D \in [\omega]^\omega$ the intersection $\langle a, B \rangle \cap \langle c, D \rangle$ is empty or has the cardinality continuum.

CD sets and *ND* sets.

Following L. Halbeisen [8] we call a subset $S \subseteq [\omega]^\omega$ *completely doughnut*, briefly S is a *CD* set, whenever for each doughnut $\langle A, B \rangle$ there exists a doughnut $\langle C, D \rangle \subseteq \langle A, B \rangle$ such that

$$\langle C, D \rangle \subseteq S \text{ or } \langle C, D \rangle \cap S = \emptyset.$$

But, whenever always holds $\langle C, D \rangle \cap S = \emptyset$, then S is called *doughnut null*, briefly S is a *ND* set.

σ -field, σ - ideal

Any subset of a *ND* set is a *ND* and *CD* set. Also, each complement of a *CD* set is a *CD* set, too. The family of all *CD* sets is a σ -field and the family of all *ND* sets is a σ - ideal, see facts 1.3, 1.5 and 1.6 in Halbeisen [8].

Comparison with completely Ramsey sets.

Notions of *CD* set and *ND* set are counterparts of completely Ramsey set, i.e. *CR* set, and nowhere Ramsey set, i.e. *NR* set. Indeed, *CR* sets was introduced by J. Sliver [12]. F. Galvin and K. Prikry showed that all *CR* sets form a σ -field, see Lemmas 6 and 10 in [7]. Thus, the definition of a *NR* set is natural: Any *CR* set S such that each subset $P \subseteq S$ is a *CR* set is called *NR* set.

Families of CR and CD sets are different.

One can check that any Bernstein subset restricted to a doughnut $\langle A, B \rangle$, where $A \in [\omega]^\omega$, is NR and not CD . If \mathcal{H} is a base matrix tree, for exact definition of \mathcal{H} see the base matrix lemma, i.e. Lemma 2.11 in [2], then $(\bigcup \mathcal{H})^*$ is not a CR set and one can check that $(\bigcup \mathcal{H})^*$ is a ND set. Small sets with respect to the completely Ramsey property, i.e. NR sets, can be CD , and conversely, small sets with respect to the completely doughnut property, i.e. ND sets, can be CR . So, we have to modify a proof of the base matrix lemma - see B. Balcar and P. Simon [3].

* -doughnuts.

For $A \subseteq^* B \subseteq \omega$ with $B \setminus A \in [\omega]^\omega$, we call the set

$$\langle A, B \rangle^* = \{X : A \subseteq^* X \subseteq^* B\}$$

* -doughnut.

Lemma 1. *If $\{\langle A_n, B_n \rangle : n \in \omega\}$ is a sequence of doughnuts decreasing with respect to the inclusion, then there exists a doughnut $\langle C, D \rangle$ such that $\langle C, D \rangle \subseteq \langle A_n, B_n \rangle^*$, for each $n \in \omega$.*

Proof. Because of, gaps of type (ω, ω^*) and ω -limits do not exist. \square

* -disjoint.

If $\langle A, B \rangle$ and $\langle C, D \rangle$ are doughnuts, then the intersection $\langle A, B \rangle^* \cap \langle C, D \rangle^*$ is countable or has the cardinality continuum, i.e. is a

**-doughnut.* Whenever $\langle A, B \rangle^* \cap \langle C, D \rangle^*$ is countable, then $\langle A, B \rangle^*$ and $\langle C, D \rangle^*$ are called **-disjoint*.

Lemma 2. *If $S \in ND$, then for any doughnut $\langle A, B \rangle$ there exist a doughnut $\langle C, D \rangle \subseteq \langle A, B \rangle$ such that $\langle C, D \rangle^* \cap S^* = \emptyset$.*

Proof. The family of ND is a σ -ideal which is invariant under finite translations. \square

D-partition.

Call a family \mathcal{P} of **-doughnuts* to be a *D-partition*, if \mathcal{P} consists of **-doughnuts* such that any two elements of \mathcal{P} are **-disjoint*, and \mathcal{P} is maximal with respect to the inclusion. A *D-partition* \mathcal{P} *refines* a *D-partition* \mathcal{Q} (briefly $\mathcal{P} \prec \mathcal{Q}$), if for each $\langle A, B \rangle^* \in \mathcal{P}$ there exists $\langle C, D \rangle^* \in \mathcal{Q}$ such that $\langle A, B \rangle^* \subseteq \langle C, D \rangle^*$.

Shattering matrix.

Any collection of *D-partitions* is called *matrix*. A matrix \mathcal{H} is called *shattering*, if for each **-doughnut* $\langle A, B \rangle^*$ there exists $\mathcal{P} \in \mathcal{H}$ and $\langle A_1, B_1 \rangle^*, \langle A_2, B_2 \rangle^* \in \mathcal{P}$ such that $\langle A_1, B_1 \rangle^* \cap \langle A, B \rangle^*$ and $\langle A_2, B_2 \rangle^* \cap \langle A, B \rangle^*$ are different **-doughnuts*. Let $\kappa(ND)$ be the least cardinality of a shattering matrix.

Lemma 3. *If a matix \mathcal{H} is of the cardinality less than $\kappa(ND)$, then there exists a *D-partition* \mathcal{P} which refines any $\mathcal{Q} \in \mathcal{H}$.*

Proof. Take a doughnut $\langle A, B \rangle$. Let $\mathcal{H}(A, B)$ be a relative matrix with respect to $\langle A, B \rangle$ and \mathcal{H} . $\mathcal{H}(A, B)$ is not shaterring in $\langle A, B \rangle$. So, there exists a doughnut $\langle C, D \rangle \subseteq \langle A, B \rangle$ such that there exists $\langle A_P, B_P \rangle^* \in \mathcal{P}$ with $\langle C, D \rangle^* \subseteq \langle A_P, B_P \rangle^*$, for every $\mathcal{P} \in \mathcal{H}$. Choose a D -partition \mathcal{P} consisting of a such $\langle C, D \rangle^*$. \square

Corollary 4. $\kappa(ND)$ is a regular and uncountable cardinal number.

Proof. One can take a shaterring matrix $\mathcal{H} = \{\mathcal{P}_\alpha : \alpha < \kappa(ND)\}$ such that $\alpha < \beta$ implies $\mathcal{P}_\beta \prec \mathcal{P}_\alpha$. Any cofinal family of D -partitions from \mathcal{H} constitutes a shaterring matrix, hence $\kappa(ND)$ has to be regular. $\kappa(ND)$ is uncountable, by Lemma 1. \square

D -base matrix tree.

Theorem 5. There exists a matrix $\mathcal{H} = \{\mathcal{P}_\alpha : \alpha < \kappa(ND)\}$ which is well ordered by the inverse of \prec . Moreover, for each $*\text{-doughnut } \langle A, B \rangle^*$ there is $\langle C, D \rangle^* \in \bigcup \mathcal{H}$ such that $\langle C, D \rangle^* \subseteq \langle A, B \rangle^*$.

Proof. Take a shaterring matrix $\mathcal{H} = \{\mathcal{P}_\alpha : \alpha < \kappa(ND)\}$ such that $\alpha < \beta$ implies $\mathcal{P}_\beta \prec \mathcal{P}_\alpha$. Let $J^c(\mathcal{P}_\alpha)$ denotes the family of all $*\text{-doughnuts } \langle A, B \rangle^*$ such that each $\langle A, B \rangle^* \in J^c(\mathcal{P}_\alpha)$ is not $*\text{-disjoint with continuum many elements of } \mathcal{P}_\alpha$. Let $F : J^c(\mathcal{P}_\alpha) \rightarrow \mathcal{P}_\alpha$ be an one-to-one function

such that $F(G) \cap G$ is a $*$ -doughnut, for every $G \in J^c(\mathcal{P}_\alpha)$. One can define F by a transfinite induction. Take a D -partinion

$$\mathcal{Q} \supseteq \{F(G) \cap G : G \in J^c(\mathcal{P}_\alpha)\}.$$

Having these, one can improve \mathcal{H} to obtain $\mathcal{P}_{\alpha+1} \prec \mathcal{Q}$ and $\mathcal{P}_{\alpha+1} \prec \mathcal{P}_\alpha$. One obtains that, if $\langle A, B \rangle^* \in J^c(\mathcal{P}_\alpha)$, then there is $\langle C, D \rangle^* \in \mathcal{P}_{\alpha+1}$ with $\langle C, D \rangle^* \subseteq \langle A, B \rangle^*$.

We should prove that, for each $*$ -doughnut $\langle A, B \rangle^*$ there exist $\alpha < \kappa(ND)$ and $\langle C, D \rangle^* \in \mathcal{P}_\alpha$ such that $\langle C, D \rangle^* \subseteq \langle A, B \rangle^*$, i.e. for each $*$ -doughnut $\langle A, B \rangle^*$ there exists $\alpha < \kappa(ND)$ such that $\langle A, B \rangle^* \in J^c(\mathcal{P}_\alpha)$. Indeed, fix a $*$ -doughnut $\langle A, B \rangle^*$. Let $B_{\alpha_0}^0$ and $B_{\alpha_0}^1$ be two different $*$ -doughnuts belonging to \mathcal{P}_{α_0} such that $D_{\alpha_0}^0 = \langle A, B \rangle^* \cap B_{\alpha_0}^0$ and $D_{\alpha_0}^1 = \langle A, B \rangle^* \cap B_{\alpha_0}^1$ are $*$ -doughnuts. Thus, $D_{\alpha_0}^{i_0} \subseteq \langle A, B \rangle^*$ for $i_0 \in \{0, 1\}$. Inductively, let $B_{\alpha_n}^{i_0 i_1 \dots i_{n-1} 0}$ and $B_{\alpha_n}^{i_0 i_1 \dots i_{n-1} 1}$ be two different $*$ -doughnuts belonging to \mathcal{P}_{α_n} such that $D_{\alpha_n}^{i_0 i_1 \dots i_{n-1} 0} = \langle A, B \rangle^* \cap B_{\alpha_n}^{i_0 i_1 \dots i_{n-1} 0}$ and $D_{\alpha_n}^{i_0 i_1 \dots i_{n-1} 1} = \langle A, B \rangle^* \cap B_{\alpha_n}^{i_0 i_1 \dots i_{n-1} 1}$ are $*$ -doughnuts. We get

$$D_{\alpha_n}^{i_0 i_1 \dots i_n} \subseteq D_{\alpha_{n-1}}^{i_0 i_1 \dots i_{n-1}} \subseteq \langle A, B \rangle^*.$$

If $\beta = \sup\{\alpha_n : n \in \omega\}$, then $\langle A, B \rangle^* \in J^c(\mathcal{P}_{\beta+1})$, by Lemma 1. \square

Applications to ND sets

Lemma 6. *If \mathcal{P} is a D –partition, then the complement of the union $\bigcup \mathcal{P}$ is a ND set.*

Proof. Take a doughnut $\langle A, B \rangle$. There exists $\langle C, D \rangle \in \mathcal{P}$ such that $\langle A \cup C, B \cap D \rangle$ is a doughnut contained in $\bigcup \mathcal{P}$. \square

Lemma 7. *If $S \subseteq [\omega]^\omega$ is a ND set, then there exists a D –partition \mathcal{P} such that $\bigcup \mathcal{P} \cap S = \emptyset$.*

Proof. If S is a ND set, then S^* is a ND set, too. Thus for any doughnut $\langle A, B \rangle$ there exists a doughnut $\langle C, D \rangle \subseteq \langle A, B \rangle$ such that $\langle C, D \rangle^* \cap S^* = \emptyset$. Choose a D –partition \mathcal{P} consisting of a such $\langle C, D \rangle^*$. \square

Corollary 8. $\kappa(ND) \leq add(ND)$.

On Halbeisen's question.

In Halbeisen [8] it was stated the questions:

$$add(CD) = cov(ND) ?$$

We answer, consistently under $\kappa(ND) = \text{cf } 2^\omega$ or there are no $\kappa(ND)$ –limits, this question yes. This is a counterpart to Plewik's result $add(CR) = cov(NR)$, [10].

Theorem 9. $add(CD) = cov(ND)$.

Some inequalities with $add(CD)$ one can find in J. Brendle [4].

Topologization following Aniszczyk and Schilling.

Methods of B. Aniszczyk [1] or K. Schilling [11] could be adopted for doughnuts.

Theorem 10. *There exists a topology such that CD sets are exactly sets with the Baire property and ND sets are exactly nowhere dense sets.*

Therefore $\text{add}(ND) = \text{add}(CD)$. Halbeisen [8] has the same, but for pseudo-topologies.

REFERENCES

- [1] B. Aniszczyk, *Remarks on σ -algebra of (s) -measurable sets*, Bull. Polish Acad. Sci. Math. 35 (1987), no. 9-10, 561–563.
- [2] B. Balcar, J. Pelant and P. Simon, *The space of ultrafilters on N covered by nowhere dense sets*, Fund. Math. 110 (1980), no. 1, 11–24.
- [3] B. Balcar and P. Simon, *Disjoint refinement*, Handbook of Boolean algebras, North-Holland, Amsterdam, (1989) Vol. 2, 333–388.
- [4] J. Brendle, *Strolling through paradise*, Fund. Math. 148 (1995), no. 1, 1–25.
- [5] C. Di Prisco and J. Henle, *Doughnuts, floating ordinals, square brackets, and ultrafilters*, J. Symbolic Logic 65 (2000), no. 1, 461–473.
- [6] E. Ellentuck, *A new proof that analytic sets are Ramsey*, J. Symbolic Logic 39 (1974), 163–165.
- [7] F. Galvin and K. Prikry, *Borel sets and Ramsey’s theorem*, J. Symbolic Logic 38 (1973), 193–198.
- [8] L. Halbeisen, *Making doughnuts of Cohen reals*, Math. Log. Q. 49 (2003), no. 2, 173–178.
- [9] G. Moran and D. Strauss, *Countable partitions of product spaces*, Mathematika 27 (1980), no. 2, 213–224.
- [10] Sz. Plewik, *On completely Ramsey sets*, Fund. Math. 127 (1987), no. 2, 127–132.
- [11] K. Schilling, *Some category bases which are equivalent to topologies*, Real Anal. Exchange 14 (1988/89), no. 1, 210–214.
- [12] J. Silver, *Every analytic set is Ramsey*, J. Symbolic Logic 35 (1970), 60–64.