

III Workshop on Coverings, Selections
and Games in Topology
Vrnjačka Banja, April 25–29, 2007

S₁(Γ, Γ) and wQN

Lev Bukovský

Institute of Mathematics
P. J. Šafárik University, Košice
bukovsky@kosice.upjs.sk

The work has been supported by the grant 1/3002/06 of Slovak Grant Agency
VEGA.

f_n, f – real valued functions from X into $\langle 0, 1 \rangle$.

$\{f_n\}_{n=0}^{\infty}$ **quasinormally converges** to f on a set X , written $f_n \xrightarrow{\text{QN}} f$, if there exists a sequence of positive reals $\varepsilon_n \rightarrow 0$ (a **control**) such that

$$(\forall x \in X)(\exists k)(\forall n > k)|f_n(x) - f(x)| \leq \varepsilon_n.$$

$\{f_n\}_{n=0}^{\infty}$ **discretely converges** to f on a set X , written $f_n \xrightarrow{\text{D}} f$, if

$$(\forall x \in X)(\exists k)(\forall n > k)f_n(x) = f(x).$$

A topological space X is a **QN-space** if every sequence of continuous functions $f_n \rightarrow 0$ on X also $f_n \xrightarrow{\text{QN}} 0$ quasi-normally on X .

A topological space X is a **wQN-space** if from every sequence of continuous functions $f_n \rightarrow 0$ on X one can choose a subsequence $f_{n_m} \xrightarrow{\text{QN}} 0$ on X .

Every topological space is supposed to be perfectly normal with a countable base, if you want, even metric separable.

We can tacitly assume that X is infinite since almost all considered properties are trivial for finite spaces. $\mathcal{U} \subseteq \mathcal{P}(X)$ is a cover of X if $X = \bigcup \mathcal{U}$ and $X \notin \mathcal{U}$.

An infinite cover \mathcal{U} is a **γ -cover** if every $x \in X$ lies in all but finitely many members of \mathcal{U} .

A γ -cover \mathcal{U} is **shrinkable**, if there exists a closed γ -cover \mathcal{V} that is a refinement of \mathcal{U} .

$\Omega(X)$, $\Gamma(X)$, $\Gamma^{co}(X)$, and $\Gamma^{sh}(X)$ – the set of all open covers, open γ -covers, clopen γ -covers, and open shrinkable γ -covers of X , respectively.

We shall deal with countable covers.

$\mathcal{A}(X)$, $\mathcal{B}(X)$ families of covers of a topological space X . X is an **$S_1(\mathcal{A}, \mathcal{B})$ -space** if for every sequence $\{\mathcal{U}_n\}_{n=0}^{\infty}$ of covers from \mathcal{A} there exist sets $U_n \in \mathcal{U}_n$ such that $\{U_n; n \in \omega\} \in \mathcal{B}$.

Theorem 1 (M. Scheepers [Sc3]).

$S_1(\Gamma, \Gamma)$ -space is a wQN-space.

Conjecture 1. Perfectly normal wQN-space has property $S_1(\Gamma, \Gamma)$.

X has **SSP** if for any sequence of sequences $f_{n,m}$, $n, m \in \omega$ of continuous functions such that $f_{n,m} \rightarrow 0$ on X for every n , there exists an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $f_{n,m_n} \rightarrow 0$ on X . By M. Scheepers and D. Fremlin

Theorem 2 ([Sc3] – [Fr2]).

$$\text{wQN} \equiv \text{SSP}.$$

M. Scheepers [Sc2] $\text{QN} \rightarrow (\alpha_1)$.

M. Sakai [Sa] and L. B. and J. Haleš [BH2] independently $(\alpha_1) \rightarrow \text{QN}$, $\text{QN} \rightarrow S_1(\Gamma, \Gamma)$.

Theorem 3 (L.B.–J. Haleš [BH2]).

$$\text{wQN} \equiv S_1(\Gamma^{sh}, \Gamma) \equiv S_1(\Gamma^{co}, \Gamma).$$

$f : X \rightarrow \mathbb{R}$ is **lower (upper) semicontinuous** if for every real a the set $\{x \in X : f(x) > a\}$ ($\{x \in X : f(x) < a\}$) is open.

X is a **wQN_{*}-space** if from every sequence of lower semicontinuous functions $f_n \rightarrow 0$ on X one can choose a subsequence $f_{m_n} \xrightarrow{\text{QN}} 0$ on X .

wQN^{*}-space ... upper semicontinuous.

If $|X| < \mathfrak{b}$ then X is a wQN_{*}-space. X has **SSP_{*}** if for any sequence of sequences $\{\{f_{n,m}\}_{m=0}^{\infty}\}_{n=0}^{\infty}$ of lower semicontinuous functions such that $f_{n,m} \rightarrow 0$ on X for every n there exists an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $f_{n,m_n} \rightarrow 0$ on X . X has **SSP*** if for any sequence of sequences $\{\{f_{n,m}\}_{m=0}^{\infty}\}_{n=0}^{\infty}$ of upper semicontinuous functions such that $f_{n,m} \rightarrow 0$ on X for every n there exists an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $f_{n,m_n} \rightarrow 0$ on X .

Theorem 4. $wQN_* \equiv SSP_*$.

Proof: $f_{n,m}$ lower semicontinuous, $f_{n,m} \rightarrow 0$ on X for every n . Set

$$g_m(x) = \sum_{n=0}^{\infty} \min\{2^{-n}, f_{n,m}(x)\}.$$

g_m is lower semicontinuous and $g_m \rightarrow 0$ on X . Therefore there exists an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $g_{m_n} \xrightarrow{QN} 0$ on X with the control $\{2^{-n}\}_{n=0}^{\infty}$. If $g_{m_n}(x) < 2^{-n}$ then

$$\min\{2^{-n}, f_{n,m_n}(x)\} = f_{n,m_n}(x) < 2^{-n}.$$

Hence $f_{n,m_n} \xrightarrow{QN} 0$ on X . If $f_m \rightarrow 0$ on X are lower semicontinuous then $2^n f_m(x) \rightarrow 0$ for every fixed n . By **SSP_{*}** there exists an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such

$$2^n f_{m_n} \rightarrow 0 \text{ on } X.$$

Then $f_{m_n} \xrightarrow{QN} 0$ on X with control $\{2^{-n}\}_{n=0}^{\infty}$.

q.e.d.

Theorem 5. $SSP^* \rightarrow wQN^*$.

Problem 1. $wQN^* \rightarrow SSP^* ?$

X has the property $\gamma\gamma_{co}$ if every γ -cover of X has a clopen γ -cover refinement (J. Haleš [Ha]). Similarly $\gamma\gamma_{sh}$.

If $\text{Ind}(X) = 0$, i.e. every two disjoint closed sets may be separated by a clopen set, then $\gamma\gamma_{co} \equiv \gamma\gamma_{sh}$.

A wQN-space with $\gamma\gamma_{sh}$ is a $S_1(\Gamma, \Gamma)$ -space.

Theorem 6 (essentially J. Haleš [Ha]).

- a) γ -space has $\gamma\gamma_{co}$.
- b) σ -space has $\gamma\gamma_{sh}$.

Theorem 7. $S_1(\Gamma, \Gamma) \rightarrow wQN^*$.

Theorem 8. $wQN_* \rightarrow S_1(\Gamma, \Gamma)$.

Proof: Since $wQN_* \rightarrow wQN$ the space X has $\text{Ind}(X) = 0$. Also X is a $S_1(\Gamma^{sh}, \Gamma)$ -space. It suffices to show that X has the property $\gamma\gamma_{co}$. We show

$$SSP_* \rightarrow \gamma\gamma_{co}.$$

Let $\{U_n : n \in \omega\}$ be a γ -cover. Since X is perfectly normal and $\text{Ind}(X) = 0$, there are clopen sets $F_{n,m}$ such that

$$U = \bigcup_m F_{n,m}, \quad F_{n,m} \subseteq F_{n,m+1}.$$

We set

$$f_{n,m}(x) = \begin{cases} 1 & \text{for } x \in F_{n,m}, \\ 0 & \text{for } x \in X \setminus F_{n,m}. \end{cases}$$

$$f_n(x) = \begin{cases} 1 & \text{for } x \in U_n, \\ 0 & \text{for } x \in X \setminus U_n. \end{cases}$$

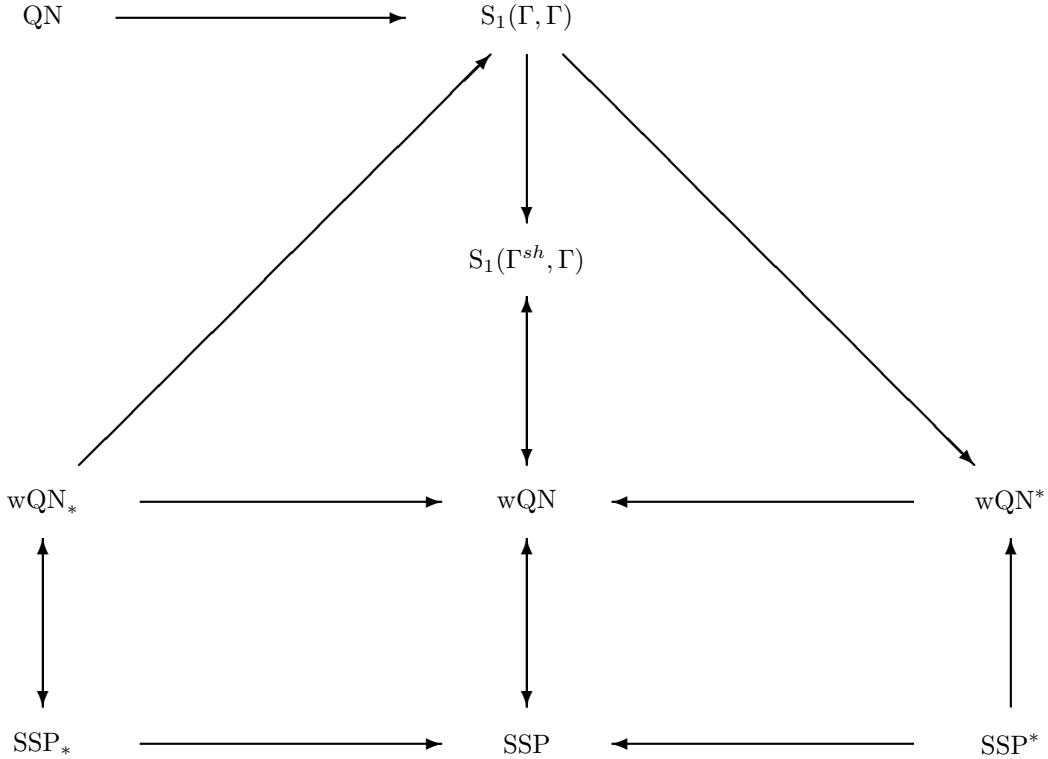
$f_{n,m}$ is continuous, f_n is lower semicontinuous, $f_{n,m} \nearrow f_n$ and $f_n \nearrow 1$. For every fixed n we have $(f_n - f_{n,m}) \rightarrow 0$ on X . By SSP_* there exists an increasing sequence $\{m_n\}_{n=0}^\infty$ such that $(f_n - f_{n,m_n}) \rightarrow 0$ on X and therefore $f_{n,m_n} \rightarrow 1$. If $x \in X$ then

$$(\exists n_0)(\forall n \geq n_0) f_{n,m_n}(x) > \frac{1}{2},$$

i.e. for all $n \geq n_0$ we have $x \in F_{n,m_n}$.

Therefore $F_{n,m_n}, n \in \omega$ is a clopen γ -cover. Since $F_{n,m_n} \subseteq U_n$ we are done.

q.e.d.



Added after Workshop:

The results by B. Tsaban and L. Zdomskyj presented at Workshop imply that a QN-space is a wQN_* -space. Moreover we have realized that the implication " wQN_* -space \rightarrow QN-space" is almost trivial. Thus

$$wQN_*\text{-space} = \text{QN-space}.$$

REFERENCES

- [BH1] Bukovský L. and Haleš J., *On Hurewicz Properties*, Topology Appl. **132** (2003), 71–79.
- [BH2] Bukovský L. and Haleš J., *QN-spaces, wQN -spaces and covering properties*, Topology Appl. **154** (2007), 848–858.
- [BKR] L. Bukovský, Kholshchevnikova N. N. and Repický M., *Thin Sets of Harmonic Analysis and Infinite Combinatorics*, Real Anal. Exchange **20** (1994–95), 454–509.
- [BRR1] Bukovský L., Recław I. and Repický M., *Spaces not distinguishing pointwise and quasinormal convergence of real functions*, Topology Appl. **41** (1991), 25–40.
- [BRR2] Bukovský L., Recław I. and Repický M., *Spaces not distinguishing convergences of real-functions*, Topology Appl. **112** (2001), 13–40.
- [Fr1] Fremlin D. H., *Sequential Convergence in $C_p(X)$* , Comment. Math. Univ. Carolin., **35** (1994), 371–382
- [Fr2] Fremlin D. H., SSP and wQN .
<http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm>, Notes of 14.01.2003.
- [Ha] Haleš J., *On Scheepers' Conjecture*, Acta Univ. Carolinae–Math. Phys. **46** (2005), 27–31.
- [Sa] Sakai M., *The sequence selection properties of $CP(X)$* , Topology Appl. **154** (2007), 552–560.
- [Sc1] Scheepers M., *Combinatorics of open covers I: Ramsey theory*, Topology Appl. **69** (1996), 31–62.
- [Sc2] Scheepers M., *$C_p(X)$ and Arhangel'skii's α_i -spaces*, Topology Appl. **89** (1998), 265–275.
- [Sc3] Scheepers M., *Sequential convergences in $C_p(X)$ and a covering property*, East–West J. of Mathematics 1 (1999), 207–214.