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1. Introduction and preliminaries.

Spaces=Tychonoff.

N,Q,P and R will be used to denote the pos-

itive integers, the rationals, the irrationals

and the reals, respectively.

For a space X, we denote by Cp(X) the space

of all real-valued continuous functions on X

with the topology of pointwise convergence.

Let c be the cardinality of R.

b =min{|B| : B is an unbounded family in ωω}.

p = min{|F| : F is a subfamily of [ω]ω with the

sfip which has no infinite pseudo-intersection}.



2. The Fréchet property of Cp(X)

Definition. (1) X is strictly Fréchet if An ⊂
X and x ∈ An (n ∈ ω) imply that there exists

{xn}n∈ω such that xn ∈ An and xn → x.

(2) X is Fréchet if A ⊂ X and x ∈ A imply

that there exists {xn}n∈ω ⊂ A such that xn →
x.

(3) X is sequential if for every non-closed

set A in X, there exist a point x ∈ X−A and

a sequence {xn}n∈ω ⊂ A such that xn → x.

(4) X has countable tightness if A ⊂ X and

x ∈ A imply that there exists B ⊂ A such that

x ∈ B and |B| = ω.

first countable ⇒ strictly Fréchet ⇒ Fréchet

⇒ sequential ⇒ countable tightness

Fact. Cp(X) is first countable iff X is count-

able.



Theorem(Arhangel’skii,1976; Pytkeev, 1982).

The following are equivalent.

(1) Cp(X) has countable tightness;

(2) Every finite power of X is Lindelöf.

Definition. A family A of subsets of a set X

is an ω-cover of X if every finite subset of

X is contained in some member of A.

Definition(Gerlits, Nagy, 1982). A space X

satisfies property (ε) if every open ω-cover

of X contains a countable ω-subcover of X.

Proposition(Gerlits, Nagy, 1982). Every fi-

nite power of X is Lindelöf iff X satisfies (ε).

For a sequence {An}n∈ω of subsets of a set

X, we put

LimAn =
⋃
n∈ω

⋂
m≥nAm.



Definition(Gerlits, Nagy, 1982). A space X

satisfies property (γ) if for every open ω-

cover U of X, there exists {Un}n∈ω ⊂ U with

X = LimUn.

Theorem(Gerlits, Nagy, 1982; Gerlits, 1983).

The following are equivalent.

(1) Cp(X) is strictly Fréchet;

(2) Cp(X) is Fréchet;

(3) Cp(X) is sequential;

(4) X satisfies (γ).

Fact. If a space X satisfies (γ), then for

every sequence {Un}n∈ω of open ω-covers of

X, there exists {Un}n∈ω such that Un ∈ Un
and X = LimUn.

We recall properties (δ) and (*) which are

weaker than property (γ). If A is a family of



subsets of a set X, then we denote by L(A)

the smallest family of subsets of X which

contains A and is closed under the operation

Lim. For a sequence φ = {Un}n∈ω of open

covers of a space X, a set A ⊂ X is said

to be φ-small if for every n ∈ ω there exist

k ∈ ω and members Ui ∈ Un+i (i < k) with

A ⊂ ⋃
i<k Ui.

Definition(Gerlits, Nagy, 1982). (1) A space

X has property (δ) if for every open ω-cover

U of X, X ∈ L(U) holds;

(2) A space X has property (*) if for every

sequence φ = {Un}n∈ω of open covers of X,

X is the union of countably many φ-small

sets.

Definition. A space X has the Rothberger

property if for every sequence {Un}n∈ω of

open covers of X, there exist Un ∈ Un (n ∈ ω)

with X =
⋃
n∈ω Un.



Theorem(Gerlits, Nagy, 1982). The follow-
ing implications hold:

(γ)⇒ (δ) ⇒ (*) ⇒ the Rothberger property.

Every subset of R satisfying the Rothberger
property has strong measure zero. R. Laver
constructed a model of ZFC in which every
set having strong measure zero is countable.
Hence, in the Laver’s model, every subset of
R satisfying (γ) is countable.

Corollary(Galvin, Miller, 1984). The follow-
ing equality holds:

p =min{|X| : X ⊂ R and Cp(X) is not Fréchet}.

Therefore every subset of R of cardinality less
than c satisfies (γ) iff p = c.

[MA] If X ⊂ R and |X| < c, then X has prop-
erty (γ).

Example(Galvin ,Miller,1984). [MA] there ex-
ists a subset X ⊂ R satisfying (γ) of cardi-
nality c.



3. The κ-Fréchet property of Cp(X).

Definition(Arhangel’skii). A space X is κ-

Fréchet if for every open subset U of X and

every point x ∈ U , there exists a sequence

{xn}n∈ω ⊂ U such that xn → x.

Example. The arbitrary power of R is κ-

Fréchet.

Definition. A family {Aα}α∈η of subsets of a

space X is strongly point-finite if for every

α ∈ η, there exists an open set Uα of X such

that Aα ⊂ Uα and {Uα}α∈η is point-finite.

Definition. A space X has property (κ) if

every pairwise disjoint sequence of finite sub-

sets of X has a strongly point-finite subse-

quence.



Theorem(Sakai). The following are equiva-

lent.

(1) Cp(X) is κ-Fréchet;

(2) the sequential closure of every open set

of Cp(X) is closed;

(3) X satisfies (κ).

Proposition. (1) Property (κ) is hereditary

with respect to subspaces and finite powers;

(2) Let f : X → Y be a one-to-one contin-

uous map. If Y satisfies (κ), then X also

satisfies (κ);

(3) If every point of X has a neighborhood

satisfying (κ), then X also satisfies (κ). In

particular, property (κ) is preserved by the

topological sum.



Proposition. Every scattered space satisfies

(κ).

Definition. (1) A subset X of R is a λ-set if

every countable subset of X is a Gδ-set of X.

(2) A subset X of R is always of the first

category (or perfectly meager) for every

perfect set P of R (i.e. P is dense in itself

and closed in R), the set P ∩X is of the first

category in P .

(3) A subset of R is a Sierpiński set (Lusin

set) if it is uncountable and the intersection

with every set of Lebesgue measure zero (ev-

ery set of the first category) is countable.

Every Sierpiński set is a λ-set. Every λ-set is

always of the first category.

Theorem(Sakai). Every λ-set of R satisfies

(κ), and every subset of R satisfying (κ) is

always of the first category.



Thus a Sierpiński set satisfies (κ), but a Lusin

set does not satisfy (κ). We have the fol-

lowing implications. The implication “(*) ⇒
always of the first category” is due to Gerlits

and Nagy.

(γ) ⇒ (δ) ⇒ (*)

⇓ ⇓

λ-set ⇒ (κ) ⇒ always of the first category

Example (1) [CH] there exists a space which

is always of the first category and does not

satisfy (κ). Let f : P → P be a one-to-one

continuous map such that for every Lusin set

L ⊂ P, f(L) is always of the first category.

Take a Lusin set L ⊂ P and consider f(L). It

is always of the first category, but it does not

satisfy (κ). If it had this property, L would

also have this property. This is a contradic-

tion.



(2) There exists a space satisfying (κ) which

is not a λ-space. Let [ω]<ω ∪X ⊂ 2ω be the

space satisfying (γ) (hence (κ)) constructed

under Martin’s axiom by Galvin and Miller,

where the set X has cardinality continuum.

For any open U ⊃ [ω]<ω, X−U has cardinality

less than c. Therefore [ω]<ω is not a Gδ-set

of [ω]<ω ∪X.

Question. Does the following equality hold?:

b =min{|X| : X ⊂ R and Cp(X) is not κ-

Fréchet}.

Rothberger proved that the equality b =min{|X| :
X ⊂ R and X is not a λ-set}.

Question. Let X be a λ-set which is not

a λ
′
-set. Such a set was given in ZFC by

Rothberger. Let C be a countable set of R

such that X ∪ C is not a λ-set. Then X ∪ C
is a non-λ-set which is always of the first

category. Does the set X ∪ C satisfy (κ)?



4. The Pytkeev property and the weak Fréchet

property of Cp(X).

For x ∈ X, a family N of subsets of X is a

π-network at x if every neighborhood of x

contains some member of N .

Definition. (1) A space X is subsequential

if it is homeomorphic to a subspace of a se-

quential space;

(2) A space X is a Pytkeev space if A ⊂
X and x ∈ A − A imply that there exists a

countable π-network at x of infinite subsets

of A.

(3) A space X is weakly Fréchet if A ⊂ X

and x ∈ A−A imply that there exists a pair-

wise disjoint family {Fn}n∈ω of finite subsets

of A such that for every neighborhood U of

x, U ∩ Fn �= ∅ for all but finitely many n ∈ ω.

subsequential ⇒ Pytkeev ⇒ weakly Fréchet

⇒ countable tightness



Theorem(Malykhin, 1999). (1) Cp(I) is not

subsequential, where I is the unit interval.

(2) For a compact space X Cp(X) is subse-

quential iff it is Fréchet.

Question. Find a characterization of subse-

quentiality of Cp(X) in terms of X.

Definition. (1) An open ω-cover U of a space

X is non-trivial if X /∈ U;

(2) An open ω-cover U of X is ω-shrinkable if

there exists a closed ω-cover {C(U) : U ∈ U}
with C(U) ⊂ U for every U ∈ U.

Definition. A space X has property (π) if for

every ω-shrinkable non-trivial open ω-cover U
of X, there exists {Un}n∈ω of subfamilies of

U such that |Un| = ω and {⋂Un}n∈ω is an

ω-cover of X.



Theorem(Sakai, 2003). The following are

equivalent.

(1) Cp(X) is a Pytkeev space;

(2) X satisfies (π).

Proposition(Sakai). Property (δ) implies prop-

erty (π).

Question. Does property (π) imply property

(δ) (or (γ))?

Proposition. (1) Property (π) is hereditary

with respect to continuous images;

(2) Let {Xn}n∈ω be an increasing cover of X.

If each Xn satisfies (π), then X also satisfies

(π);

(3) If a space X satisfies (π), then the topo-

logical sum of countably many copies of X

also satisfies (π).



Gerlits and Nagy noted that every space sat-

isfying (δ) is zero-dimensional.

Fact. Every space with (π)is zero-dimensional.

Definition(Kočinac, Scheepers). A space X

has the ω-grouping property if for every

non-trivial open ω-cover U of X, there ex-

ists a pairwise disjoint sequence {Un}n∈ω of

finite subfamilies of U such that every finite

subset of X is contained in some member of

Un for all but finitely many n ∈ ω.

Definition. A space X has property (wγ)

if for every ω-shrinkable non-trivial open ω-

cover U of X, there exists a pairwise dis-

joint sequence {Un}n∈ω of finite subfamilies

of U such that every finite subset of X is

contained in some member of Un for all but

finitely many n ∈ ω.



Theorem(Sakai, 2003). Tthe following are

equivalent.

(1) Cp(X) is weakly Fréchet;

(2) X satisfies (wγ).

Corollary. If X has the ω-grouping property,

then Cp(X) is weakly Fréchet.

Question. Does property (wγ) imply the ω-

grouping property?

Proposition. (1) Property (wγ) is hereditary

with respect to continuous images;

(2) If a space X satisfies (wγ), then the topo-

logical sum of countably many copies of X

also satisfies (wγ).

A subset A of R is said to have universal

measure zero if for every Borel measure μ on

R there exists a Borel set B with A ⊂ B and



μ(B) = 0, where a Borel measure means a

countably additive, atomless (i. e. μ({x}) =

0 for each x ∈ X), finite measure.

Theorem(Sakai, 2003). Let X be a subset

of R. If X satisfies (π), then X has univer-

sal measure zero and is always of the first

category.

Theorem(Sakai). Let B be a non-trivial count-

able ω-cover of Borel sets of P. Then there

exists a pairwise disjoint sequence {Bn}n∈ω of

finite subfamilies of B such that every finite

subset of X is contained in some member of

Bn for all but finitely many n ∈ ω. In par-

ticular, every analytic set has the ω-grouping

property.

Corollary. Cp(P) is weakly Fréchet.

Proposition. For every free ultrafilter F on

ω, Cp(F) is not weakly Fréchet.



Kočinac and Scheepers conjectured that b is

the minimal cardinality of a set X ⊂ R such

that Cp(X) is not weakly Fréchet.

Theorem(Tsaban, 2004). The following equal-

ity holds:

b =min{|X| : X ⊂ R and Cp(X) is not weakly

Fréchet}.

Question. Determine the minimal cardinality

of a set X ⊂ R such that X does not satisfy

(π).



5. Tightness-like properties of Cp(X).

Definition. (1) (Arhangel’skii) A space X has

countable fan tightness if An ⊂ X and x ∈
An (n ∈ ω) imply that there exists {Fn}n∈ω
of finite subsets such that Fn ⊂ An and x ∈
⋃
n∈ω Fn.

(2) (Sakai) A space X has countable strong

fan tightness if An ⊂ X and x ∈ An (n ∈
ω) imply that there exists {xn}n∈ω such that

xn ∈ An and x ∈ {xn : n ∈ ω}.

strictly Fréchet ⇒ countable strong fan tight-

ness ⇒ countable fan tightness ⇒ countable

tightness.

Definition. A space X has the Menger prop-

erty if for every sequence {Un}n∈ω of open

covers of X, there exist a finite subfamily

Vn ⊂ Un (n ∈ ω) such that
⋃
n∈ω Un is a cover

of X.



Theorem(Arhangel’skii, 1986). The follow-

ing are equivalent.

(1) Cp(X) has countable fan tightness;

(2) Every finite power of X has the Menger

property.

The condition (2) in this theorem can be

characterized in terms of an ω-cover.

Proposition(Just, Miller, Scheepers, Szepty-

cki, 1996). The following are equivalent.

(1) Every finite power of X has the Menger

property;

(2) For every sequence {Un}n∈ω of open ω-

covers of X, there exist a finite subfamily

Vn ⊂ Un (n ∈ ω) such that
⋃
n∈ω Un is an ω-

cover of X.



Theorem(Sakai, 1988). The following are

equivalent.

(1) Cp(X) has countable strong fan tight-

ness;

(2) Every finite power of X has the Roth-

berger property;

(3) For every sequence {Un}n∈ω of open ω-

covers of X, there exist Un ∈ Un (n ∈ ω) such

that {Un}n∈ω is an ω-cover of X.

Proposition(Sakai). Every Pytkeev space with

countable fan tightness has countable strong

fan tightness.

Corollary. Let X be a space satisfying (π).

If every finite power of X has the Menger

property, then every finite power of X has

the Rothberger property.



6. The results of Kočinac and Scheepers.

Definition. A space X has the Hurewicz

property if for every sequence {Un}n∈ω of

open covers of X, there exist a finite sub-

family Vn ⊂ Un (n ∈ ω) such that every point

of X is contained in
⋃Vn for all but finitely

many n ∈ ω.

Proposition(Kočinac, Scheepers, 2003). The

following are equivalent.

(1) Every finite power of X has the Hurewicz

property;

(2) Every finite power of X has the Menger

property and X has the ω-grouping property;

(3) For every sequence {Un}n∈ω of open ω-

covers of X, there exist a finite subfamily

Vn ⊂ Un (n ∈ ω) such that every finite subset

of X is contained in some member of Vn for

all but finitely many n ∈ ω.



The following local property of a space was

considered by Kočinac and Scheepers.

Definition. A space X is weakly Fréchet in

the strict sence if An ⊂ X and x ∈ An (n ∈
ω) imply that there exists {Fn}n∈ω of finite

subsets such that Fn ⊂ An and for every

neighborhood U of x, U ∩ Fn �= ∅ for all but

finitely many n ∈ ω.

Theorem(Kočinac, Scheepers, 2003). For a

space X, the following are equivalent.

(1) Cp(X) is weakly Fréchet in the strict sence;

(2) Cp(X) has countable fan tightness and is

weakly Fréchet;

(3) Every finite power of X has the Hurewicz

property.

Note that Cp(P) is weakly Fréchet, but it is

not weakly Fréchet in the strict sence.



Proposition(Kočinac, Scheepers, 2003). The
following equality holds:

b =min{|X| : X ⊂ R and Cp(X) is not weakly
Fréchet in the strict sence }.

Let us recall property (*) considered in the
second section. Nowik, Scheepers and Weiss
gave a characterization of property (*).

Theorem(Nowik, Scheepers, Weiss, 1998).
The following are equivalent.

(1) X has property (*);

(2) X has both the Hurewicz property and
the Rothberger property.

Hence Kočinac and Scheepers proved:

Theorem(Kočinac, Scheepers, 2002). The
following are equivalent.

(1) Cp(X) has countable strong fan tightness
and is weakly Fréchet;

(2) Every finite power of X has property (*).



7. AP and WAP properties of Cp(X).

An AP-space was introduced Pultr and Tozzi(1993)

and a WAP-space was considered by Simon(1994).

“AP” is “Approximation by Points” and “WAP”

is “Weak Approximation by Points”.

Definition. (1) A space X is an AP-space if

for every A ⊂ X and every point x ∈ A − A,

there exists a set B ⊂ A such that B = B ∪
{x}.

(2) A space X is a WAP-space if for every

non-closed set A in X, there exist a point x ∈
A−A and a set B ⊂ A such that B = B∪{x}.

Obviously we have the following implications:

Fréchet ⇒ sequential
⇓ ⇓

AP ⇒ WAP



Bella and Yaschenko gave a space X (1999)

such that Cp(X) is WAP, but not AP.

A space X is ω-ψ-monolithic if the closure

of every countable subset of X has countable

pseudocharacter in itself.

Lemma(Bella, Yaschenko, 1999). Every ω-

ψ-monolithic space with countable fan tight-

ness is an AP-space.

Theorem(Bella, Yaschenko, 1999). If a space

X is σ-compact, then Cp(X) is an AP-space.

If X is separable, then Cp(X) has countable

pseudocharacter. Hence, if X ⊂ R and every

finite power of X has the Menger property,

then Cp(X) is an AP-space.

On the other hand:

Theorem(Tkachuk, Yaschenko, 2001). If Cp(X)

is an AP-space and X is paracompact, then

X has the Menger property.



Corollary. Cp(P) is not an AP-space.

There exist many open questions on the AP-

property and the WAP-property of Cp(X).

We should note that the WAP-property is im-

portant when we study the M3-M1-problem.

It is a famous longstanding open problem in

general topology which asks whether every

M3-space is M1. Let Ck(X) be the space

of all continuous real-valued functions on a

space X with the compact-open topology.

Gartside and Reznichenko proved in 2000 that

the space Ck(P) is an M3-space. So far, it is

open whether Ck(P) is M1. Mizokami et al.

showed in 2001 that every M3-space with the

WAP-property is an M1-space. Therefore it

is important to investigate the WAP-property

of Ck(P). It is open whether Ck(P) is a WAP-

space.



8. Arhangel’skii’s αi-properties of Cp(X).

Definition(Arhangel’skii, 1972). For i =1,

2, 3 and 4, a space X is an αi-space if for

every countable family {Sn}n∈ω of sequences

converging to some point x ∈ X, there exists

a sequence S converging to x such that:

(α1) Sn − S is finite for all n ∈ ω;

(α2) Sn ∩ S is infinite for all n ∈ ω;

(α3) Sn∩S is infinite for infinitely many n ∈ ω;

(α4) Sn ∩ S �= ∅ for infinitely many n ∈ ω.

Theorem(Scheepers, 1998). Cp(X) has prop-

erty α2 iff it has property α4.

An open cover U of a space X is a γ-cover

if every point of X is contained in all but

finitely many members of U.



Theorem(Scheepers, 1999). For a perfectly

normal space X, the following are equivalent.

(1) Cp(X) is an α2-space;

(2) For every sequence {Un}n∈ω of γ-covers

of X, there exist Un ∈ Un (n ∈ ω) such that

{Un}n∈ω is a γ-cover of X.

Definition. (1) (Bukovská, 1991). Let f

and fn(n ∈ ω) be real-valued functions on

a space X. We say that {fn}n∈ω converges

quasinormally to f if there exists a sequence

{εn}n∈ω of positive real numbers such that

lim
n→∞ εn = 0 and for each x ∈ X |fn(x) −
f(x)| < εn holds for all but finitely many

n ∈ ω.

(2) (Bukovský, Reclaw, Repiský, 1991). A

space X is a QN-space if whenever a se-

quence {fn}n∈ω ⊂ Cp(X) converges to f ∈
Cp(X), the convergence is quasinormal con-

vergence.



Theorem(Scheepers, 1998). If Cp(X) is an

α1-space, then X is a QN-space.

Reclaw proved that every QN-space of real

numbers is a σ-set. On the other hand, Scheep-

ers showed that for a Sierpiński set X, Cp(X)

is an α1-space.

Question. Find a characterization of α1-space

Cp(X) in terms of X.

Proposition(Scheepers, 1998). The follow-

ing equality holds:

b =min{|X| : X ⊂ R and Cp(X) is not an

α1-space}.


