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1. Introduction and preliminaries.
Spaces=Tychonoff.

N, Q,P and R will be used to denote the pos-
itive integers, the rationals, the irrationals
and the reals, respectively.

For a space X, we denote by Cp(X) the space
of all real-valued continuous functions on X
with the topology of pointwise convergence.
Let ¢ be the cardinality of R.

b =min{|B| : B is an unbounded family in w“}.

p = min{|F| : Fis a subfamily of [w]¥ with the
sfip which has no infinite pseudo-intersection}.



2. The Fréchet property of Cp(X)

Definition. (1) X is strictly Fréchet if A, C
X and z € A, (n € w) imply that there exists

(2) X is Fréchet if AC X and z € A imply
that there exists {zn}ncw C A such that z, —

I.

(3) X is sequential if for every non-closed
set A in X, there exist a pointxz € X — A and
a sequence {xn}new C A such that z,, — z.

(4) X has countable tightness if A C X and
x € A imply that there exists B C A such that
r € B and |B| = w.

first countable = strictly Fréchet = Fréchet
= sequential = countable tightness

Fact. Cp(X) is first countable iff X is count-
able.



Theorem(Arhangel’skii,1976; Pytkeev, 1982).
The following are equivalent.

(1) Cp(X) has countable tightness;
(2) Every finite power of X is Lindelof.

Definition. A family A of subsets of a set X
IS an w-cover of X if every finite subset of
X is contained in some member of A.

Definition(Gerlits, Nagy, 1982). A space X
satisfies property (¢) if every open w-cover
of X contains a countable w-subcover of X.

Proposition(Gerlits, Nagy, 1982). Every fi-
nite power of X is Lindelof iff X satisfies ().

For a sequence {Ap}necw Of subsets of a set
X, we put



Definition(Gerlits, Nagy, 1982). A space X
satisfies property (v) if for every open w-
cover U of X, there exists {Up}tnecw C U with
X =LimUy,.

Theorem(Gerlits, Nagy, 1982; Gerlits, 1983).
T he following are equivalent.

(1) Cp(X) is strictly Fréchet;

(2) Cp(X) is Fréchet;

(3) Cp(X) is sequential;

(4) X satisfies (7).

Fact. If a space X satisfies (v), then for
every sequence {Un}new Of Open w-covers of

X, there exists {Up}new such that U, € U,
and X = Lim Uy,.

We recall properties (§) and (*) which are
weaker than property (v). If A is a family of



subsets of a set X, then we denote by L(A)
the smallest family of subsets of X which
contains A and is closed under the operation
Lim. For a sequence ¢ = {Un}tnew Of Open
covers of a space X, a set A C X is said
to be ¢-small if for every n € w there exist
k € w and members U; € U,4; (i < k) with
A C U<k Us.

Definition(Gerlits, Nagy, 1982). (1) A space
X has property (9) if for every open w-cover
U of X, X € L(U) holds;

(2) A space X has property (*) if for every
sequence ¢ = {Un}necw OF Open covers of X,
X is the union of countably many ¢-small
sets.

Definition. A space X has the Rothberger
property if for every sequence {Up}new OF
open covers of X, there exist U, € U, (n € w)
with X = U, e Un.



Theorem(Gerlits, Nagy, 1982). The follow-
ing implications hold:

(v)= (6) = (*) = the Rothberger property.

Every subset of R satisfying the Rothberger
property has strong measure zero. R. Laver
constructed a model of ZFC in which every
set having strong measure zero is countable.
Hence, in the Laver's model, every subset of
R satisfying (v) is countable.

Corollary(Galvin, Miller, 1984). The follow-
ing equality holds:

p=min{|X]|: X C Rand Cy(X) is not Fréchet}.

Therefore every subset of R of cardinality less
than ¢ satisfies (v) iff p = c.

[IMA] If X C R and |X| < ¢, then X has prop-
erty (v).

Example(Galvin ,Miller,1984). [MA] there ex-
ists a subset X C R satisfying (v) of cardi-
nality c.



3. The k-Fréchet property of Cp(X).

Definition(Arhangel’skii). A space X is k-
Fréchet if for every open subset U of X and
every point x € U, there exists a sequence
{xn}new C U such that z, — =x.

Example. The arbitrary power of R is k-
Fréchet.

Definition. A family {Aa}acn Of subsets of a
space X is strongly point-finite if for every
a € n, there exists an open set U, of X such
that An C Us and {Ua}acn is point-finite.

Definition. A space X has property (k) if
every pairwise disjoint sequence of finite sub-
sets of X has a strongly point-finite subse-
quence.



Theorem(Sakai). The following are equiva-
lent.

(1) Cp(X) is k-Fréchet;

(2) the sequential closure of every open set
of Cp(X) is closed;

(3) X satisfies (k).

Proposition. (1) Property (k) is hereditary
with respect to subspaces and finite powers;

(2) Let f: X — Y be a one-to-one contin-
uous map. If Y satisfies (k), then X also
satisfies (k);

(3) If every point of X has a neighborhood
satisfying (k), then X also satisfies (k). In
particular, property (k) is preserved by the
topological sum.



Proposition. Every scattered space satisfies

(k).

Definition. (1) A subset X of R is a \-set if
every countable subset of X is a Gs-set of X.

(2) A subset X of R is always of the first
category (or perfectly meager) for every
perfect set P of R (i.e. P is dense in itself
and closed in R), the set PN X is of the first
category in P.

(3) A subset of R is a Sierpinski set (Lusin
set) if it is uncountable and the intersection
with every set of Lebesgue measure zero (ev-
ery set of the first category) is countable.

Every Sierpinski set is a A\-set. Every \-set is
always of the first category.

Theorem(Sakai). Every A-set of R satisfies
(), and every subset of R satisfying (k) is
always of the first category.



Thus a Sierpinski set satisfies (k), but a Lusin
set does not satisfy (k). We have the fol-
lowing implications. The implication “(*) =
always of the first category” is due to Gerlits
and Nagy.

(v) = (6) = (%)

Y U

A-set = (k) = always of the first category

Example (1) [CH] there exists a space which
is always of the first category and does not
satisfy (k). Let f : P — P be a one-to-one
continuous map such that for every Lusin set
L Cc P, f(L) is always of the first category.
Take a Lusin set L C P and consider f(L). It
is always of the first category, but it does not
satisfy (k). If it had this property, L would
also have this property. This is a contradic-
tion.



(2) There exists a space satisfying (x) which
is not a A-space. Let [w]<¥ U X C 2% be the
space satisfying (v) (hence (k)) constructed
under Martin’s axiom by Galvin and Miller,
where the set X has cardinality continuum.
For any open U D [w]<%, X —U has cardinality
less than ¢. Therefore [w]<¥ is not a Gs-set
of [w]<¥ U X.

Question. Does the following equality hold?:

b =min{|X| : X C R and Cp(X) is not «-
Fréchet}.

Rothberger proved that the equality b =min{|X| :
X C R and X is not a \-set}.

Question. Let X be a A-set which is not
a MN-set. Such a set was given in ZFC by
Rothberger. Let C' be a countable set of R
such that X UC is not a A-set. Then X U(C
IS @ non-A-set which is always of the first
category. Does the set X U C satisfy (k)7



4. The Pytkeev property and the weak Fréchet
property of Cp(X).

For x € X, a family N/ of subsets of X is a
m-network at x if every neighborhood of x
contains some member of N.

Definition. (1) A space X is subsequential
if it is homeomorphic to a subspace of a se-
quential space;

(2) A space X is a Pytkeev space if A C
X and x € A — A imply that there exists a
countable m-network at x of infinite subsets
of A.

(3) A space X is weakly Fréchet if A C X
and x € A — A imply that there exists a pair-
wise disjoint family {Fy}new Of finite subsets
of A such that for every neighborhood U of
x, UN F, = 0 for all but finitely many n € w.

subsequential = Pytkeev = weakly Fréchet
= countable tightness



Theorem(Malykhin, 1999). (1) Cp(I) is not
subsequential, where [ is the unit interval.

(2) For a compact space X Cp(X) is subse-
quential iff it is Fréchet.

Question. Find a characterization of subse-
quentiality of Cp(X) in terms of X.

Definition. (1) An open w-cover Y of a space
X is non-trivial if X ¢ U,

(2) An open w-cover U of X is w-shrinkable if
there exists a closed w-cover {C(U) : U € U}
with C(U) Cc U for every U € U.

Definition. A space X has property (x) if for
every w-shrinkable non-trivial open w-cover U
of X, there exists {Up}new Of subfamilies of
U such that |Up| = w and {NUn}tnew IS an
w-cover of X.



Theorem(Sakai, 2003). The following are
equivalent.

(1) Cp(X) is a Pytkeev space;
(2) X satisfies ().

Proposition(Sakai). Property () implies prop-
erty (m).

Question. Does property (7) imply property
(6) (or ()7

Proposition. (1) Property (7) is hereditary
with respect to continuous images;

(2) Let {Xp}new be an increasing cover of X.
If each X, satisfies («), then X also satisfies

(7);

(3) If a space X satisfies (7), then the topo-
logical sum of countably many copies of X
also satisfies (7).



Gerlits and Nagy noted that every space sat-
isfying (9) is zero-dimensional.

Fact. Every space with (x)is zero-dimensional.

Definition(Kocinac, Scheepers). A space X
has the w-grouping property if for every
non-trivial open w-cover U of X, there ex-
ists a pairwise disjoint sequence {Up}tnecw OF
finite subfamilies of U such that every finite
subset of X is contained in some member of
Uy, Tfor all but finitely many n € w.

Definition. A space X has property (w-~)
if for every w-shrinkable non-trivial open w-
cover U of X, there exists a pairwise dis-
joint sequence {Un}new OF finite subfamilies
of U such that every finite subset of X is
contained in some member of U, for all but
finitely many n € w.



Theorem(Sakai, 2003). Tthe following are
equivalent.

(1) Cp(X) is weakly Fréchet;
(2) X satisfies (wr).

Corollary. If X has the w-grouping property,
then Cp(X) is weakly Fréchet.

Question. Does property (w~) imply the w-
grouping property?

Proposition. (1) Property (w~) is hereditary
with respect to continuous images;

(2) If a space X satisfies (w+), then the topo-
logical sum of countably many copies of X
also satisfies (w-).

A subset A of R is said to have universal
measure zero if for every Borel measure p on
R there exists a Borel set B with A C B and



w(B) = 0, where a Borel measure means a
countably additive, atomless (i. e. u({z}) =
O for each z € X), finite measure.

Theorem(Sakai, 2003). Let X be a subset
of R. If X satisfies («w), then X has univer-
sal measure zero and is always of the first
category.

Theorem(Sakai). Let B be a non-trivial count-
able w-cover of Borel sets of P. Then there

exists a pairwise disjoint sequence {By }necw Of

finite subfamilies of B such that every finite

subset of X is contained in some member of
B, for all but finitely many n € w. In par-

ticular, every analytic set has the w-grouping

property.

Corollary. Cp(P) is weakly Fréchet.

Proposition. For every free ultrafilter F on
w, Cp(F) is not weakly Fréchet.



KocCinac and Scheepers conjectured that b is
the minimal cardinality of a set X C R such
that Cp(X) is not weakly Fréchet.

Theorem(Tsaban, 2004). The following equal-
ity holds:

b =min{|X|: X C R and Cy(X) is not weakly
Fréchet}.

Question. Determine the minimal cardinality
of a set X C R such that X does not satisfy

(7).



5. Tightness-like properties of Cp(X).

Definition. (1) (Arhangel’skii) A space X has
countable fan tightness if A, C X and x &
Ap (n € w) imply that there exists {Fj}new
of finite subsets such that F, C A, and x €

UnEw Fn-

(2) (Sakai) A space X has countable strong
fan tightness if A, C X and z € A, (n €
w) imply that there exists {xn}necw such that
xn € Ap and x € {xy, 1 n € wW}.

strictly Fréchet = countable strong fan tight-
ness = countable fan tightness = countable
tightness.

Definition. A space X has the Menger prop-
erty if for every sequence {Up}new OF Open
covers of X, there exist a finite subfamily
Vn C Up (n € w) such that U,e,Un is a cover
of X.



Theorem(Arhangel’skii, 1986). The follow-
ing are equivalent.

(1) Cp(X) has countable fan tightness;

(2) Every finite power of X has the Menger
property.

The condition (2) in this theorem can be
characterized in terms of an w-cover.

Proposition(Just, Miller, Scheepers, Szepty-
cki, 1996). The following are equivalent.

(1) Every finite power of X has the Menger
property;

(2) For every sequence {Up}necw Of Open w-
covers of X, there exist a finite subfamily
Vn C Up (n € w) such that U,e,Un is an w-
cover of X.



Theorem(Sakai, 1988). The following are
equivalent.

(1) Cp(X) has countable strong fan tight-
ness;

(2) Every finite power of X has the Roth-
berger property;

(3) For every sequence {Up}new Of Open w-
covers of X, there exist U, € U, (n € w) such
that {Up}new is an w-cover of X.

Proposition(Sakai). Every Pytkeev space with
countable fan tightness has countable strong
fan tightness.

Corollary. Let X be a space satisfying ().
If every finite power of X has the Menger
property, then every finite power of X has
the Rothberger property.



6. The results of KoCinac and Scheepers.

Definition. A space X has the Hurewicz
property if for every sequence {Up}new OF
open covers of X, there exist a finite sub-
family V), C Up (n € w) such that every point
of X is contained in |JV, for all but finitely
many n € w.

Proposition(Kocinac, Scheepers, 2003). The
following are equivalent.

(1) Every finite power of X has the Hurewicz
property;

(2) Every finite power of X has the Menger
property and X has the w-grouping property;

(3) For every sequence {Up}new Of Open w-
covers of X, there exist a finite subfamily
Vn C Un (n € w) such that every finite subset
of X is contained in some member of V,, for
all but finitely many n € w.



The following local property of a space was
considered by KocCinac and Scheepers.

Definition. A space X is weakly Fréchet in
the strict sence if A, C X and z € A, (n €
w) imply that there exists {Fp}new Of finite
subsets such that F,, C A, and for every
neighborhood U of =, U N Fy, # 0 for all but
finitely many n € w.

Theorem(Kocinac, Scheepers, 2003). For a
space X, the following are equivalent.

(1) Cp(X) is weakly Fréchet in the strict sence;

(2) Cp(X) has countable fan tightness and is
weakly Fréchet;

(3) Every finite power of X has the Hurewicz
property.

Note that C,(P) is weakly Fréchet, but it is
not weakly Fréchet in the strict sence.



Proposition(Kocinac, Scheepers, 2003). The
following equality holds:

b =min{|X|: X C R and C,(X) is not weakly
Fréchet in the strict sence }.

Let us recall property (*) considered in the
second section. Nowik, Scheepers and Weiss
gave a characterization of property (*).

Theorem(Nowik, Scheepers, Weiss, 1998).
The following are equivalent.

(1) X has property (*);

(2) X has both the Hurewicz property and
the Rothberger property.

Hence KocCinac and Scheepers proved:

Theorem(KocCinac, Scheepers, 2002). The
following are equivalent.

(1) Cp(X) has countable strong fan tightness
and is weakly Fréchet;

(2) Every finite power of X has property (*).



7. AP and WAP properties of Cp(X).

An AP-space was introduced Pultr and Tozzi(1993)
and a WAP-space was considered by Simon(1994).
“AP" is “"Approximation by Points” and “WAP"

Is “Weak Approximation by Points”.

Definition. (1) A space X is an AP-space if
for every A C X and every point x € A — A,
there exists a set B C A such that B = BU

(2) A space X is a WAP-space if for every
non-closed set A in X, there exist a point =z €
A—A and a set B C A such that B = BU{xz}.

Obviously we have the following implications:

Fréchet = sequential

Y U
AP = WAP



Bella and Yaschenko gave a space X (1999)
such that Cp(X) is WAP, but not AP.

A space X is w-yY-monolithic if the closure
of every countable subset of X has countable
pseudocharacter in itself.

Lemma(Bella, Yaschenko, 1999). Every w-
-monolithic space with countable fan tight-
ness is an AP-space.

Theorem(Bella, Yaschenko, 1999). If a space
X is o-compact, then Cp(X) is an AP-space.

If X is separable, then Cp(X) has countable
pseudocharacter. Hence, if X C R and every
finite power of X has the Menger property,
then Cp(X) is an AP-space.

On the other hand:
Theorem(Tkachuk, Yaschenko, 2001). If Cp(X)

IS an AP-space and X is paracompact, then
X has the Menger property.



Corollary. Cp(P) is not an AP-space.

There exist many open questions on the AP-
property and the WAP-property of C,(X).

We should note that the WAP-property is im-
portant when we study the Ms3-Mq-problem.
It is a famous longstanding open problem in
general topology which asks whether every
Ms-space is M7. Let Cp(X) be the space
of all continuous real-valued functions on a
space X with the compact-open topology.
Gartside and Reznichenko proved in 2000 that
the space C,(PP) is an M3-space. So far, it is
open whether Cp(P) is M. Mizokami et al.
showed in 2001 that every M3-space with the
WAP-property is an Mq-space. Therefore it
IS important to investigate the WAP-property
of C.(P). It is open whether C(P) is a WAP-
space.



8. Arhangel’skii's a;-properties of Cp(X).

Definition(Arhangel’skii, 1972). For i =1,
2, 3 and 4, a space X is an q;-space if for
every countable family {Sy}new Of Sequences

converging to some point x € X, there exists
a sequence S converging to x such that:

(a1) Sn — S is finite for all n € w;

(an) Sp NS is infinite for all n € w;

(a3) SpNS is infinite for infinitely many n € w;
(ag) SN S # O for infinitely many n € w.

Theorem(Scheepers, 1998). Cp(X) has prop-
erty ao iff it has property a4.

An open cover U of a space X is a y-cover
if every point of X is contained in all but
finitely many members of U.



Theorem(Scheepers, 1999). For a perfectly
normal space X, the following are equivalent.

(1) Cp(X) is an ap-space;

(2) For every sequence {Up}tnecw Of y-covers
of X, there exist U, € U, (n € w) such that
{Un}new is a y-cover of X.

Definition. (1) (Bukovska, 1991). Let f
and fn(n € w) be real-valued functions on
a space X. We say that {fn}necw CcOnverges
quasinormally to f if there exists a sequence
{en}new OFf positive real numbers such that
n”—>moo€” = 0 and for each =z € X |fn(x) —

f(x)| < en holds for all but finitely many

n c w.

(2) (Bukovsky, Reclaw, Repisky, 1991). A
space X is a QN-space if whenever a se-
quence {fn}tncw C Cp(X) converges to f €
Cp(X), the convergence is quasinormal con-
vergence.



Theorem(Scheepers, 1998). If Cp(X) is an
a1-Space, then X is a QN-space.

Reclaw proved that every QN-space of real
numbers is a o-set. On the other hand, Scheep-
ers showed that for a Sierpinski set X, Cp(X)

IS an «aq-Space.

Question. Find a characterization of a1-space
Cp(X) in terms of X.

Proposition(Scheepers, 1998). The follow-
ing equality holds:

b =min{|X| : X C R and Cy(X) is not an
a1-Space}l.



