

Families of Trigonometric
Thin Sets
and
Related Exceptional Sets

Lev Bukovský

Institut of Mathematics, Faculty of Sciences,
P. J. Šafárik University, Košice
bukovsky@kosice.upjs.sk

Trigonometric series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos 2\pi n x + b_n \sin 2\pi n x), \quad (1)$$

$a_n, b_n, n \in \omega$ reals, $b_0 = 0$.

A. Denjoy and N. N. Luzin, Comptes Rendus des l'Académie des Sciences de Paris, 1912, identical title

*Sur l'absolue convergence
des séries trigonométriques*

Theorem 1 (A. Denjoy – N. N. Luzin) *If series (1) absolutely converges on a set of positive Lebesgue measure, then*

$$\sum_{n=0}^{\infty} (|a_n| + |b_n|) < \infty,$$

i.e. the series (1) absolutely converges everywhere.

Theorem 2 (N. N. Luzin) *If series (1) absolutely converges on a non-meager set, then*

$$\sum_{n=0}^{\infty} (|a_n| + |b_n|) < \infty,$$

i.e. the series (1) absolutely converges everywhere.

A set $A \subseteq \mathbb{T}$ is an **AC**-set if every trigonometric series (1) converging absolutely on A converges absolutely everywhere.

An **N**-set = not an **AC**-set.

R. Salem: A is an **N**-set if and only if there exists a sequence $\{a_n\}_{n=0}^{\infty}$ of nonnegative reals such that $\sum_{n=0}^{\infty} a_n = \infty$ and $\sum_{n=0}^{\infty} a_n \|nx\| < \infty$ for every $x \in A$

G is a locally compact topological group, \widehat{G} its dual group. Elements of \widehat{G} are **characters**. Banach space $C^*(X)$ of continuous bounded real functions on $X \subseteq G$ with the norm

$$\|f\| = \sup\{|f(x)|; x \in X\}.$$

A set X is a **Dirichlet set** if 1_X belongs to the closure of $\widehat{G}|X$.

X is a Dirichlet set if and only if there exists an increasing sequence $\{n_k\}_{k=0}^{\infty}$ of positive integers such that $\|n_k\|$ converges uniformly to 0 on X .

$C^*(X)^*$ is the dual space of $C^*(X)$. Weak topology: the weakest topology in which every $F \in C^*(X)^*$ is continuous. A locally compact set $X \subseteq G$ is a weak Dirichlet set if 1_X belongs to the closure of $\widehat{G}|X$ in the weak topology.

Riesz Theorem: $C^*(X)^*$ is the space of all Borel measures on X . X is a weak Dirichlet set if and only for every positive Borel measure μ on X there exists an increasing sequence $\{n_k\}_{k=0}^\infty$ such that

$$\lim_{k \rightarrow \infty} \int_X \|n_k x\| d\mu(x) = 0.$$

Generally a set $X \subseteq \mathbb{T}$ is a **weak Dirichlet set** (shortly **wD-set**) if there exists a universally measurable set $X \subseteq \mathbb{T}$ such that for every positive Borel measure μ on B there exists an increasing sequence $\{n_k\}_{k=0}^\infty$ such that

$$\lim_{k \rightarrow \infty} \int_B \|n_k x\| d\mu(x) = 0.$$

The families will be denoted \mathcal{D} , \mathcal{N} , and $w\mathcal{D}$.

Dirichlet set \rightarrow N-set \rightarrow weak Dirichlet set.

A family $\mathcal{F} \subseteq \mathcal{P}(\mathbb{T})$ is a **family of thin sets** iff

- (a) $\{x\} \in \mathcal{F}$ for every $x \in \mathbb{T}$;
- (b) if $B \subseteq A \in \mathcal{F}$ then $B \in \mathcal{F}$;
- (c) no interval belongs to \mathcal{F} .

Theorem 3 \mathcal{N} is a family of thin sets.

A set $\mathcal{G} \subset \mathcal{F}$ is a **basis of \mathcal{F}** if for every $A \in \mathcal{F}$ there exists a set $B \in \mathcal{G}$ such that $A \subseteq B$.

$\{A \in \mathcal{N}; A \text{ is a } F_\sigma \text{ set}\}$ is a basis of \mathcal{N} .

Arithmetical difference

$$A - A = \{z \in \mathbb{T}; (\exists x, y \in A) z = x - y\}.$$

Theorem 4 (H. Steinhaus) *If A has positive measure or possesses the Baire property and is not meager then $A - A$ contains an open interval.*

Theorem 5 *If a family of thin sets \mathcal{F} with a Borel basis is closed under arithmetical difference then every set from \mathcal{F} is meager and has Lebesgue measure zero.*

$A \subseteq \mathbb{T}$ is **permitted** for \mathcal{F} if for any $B \in \mathcal{F}$ also $A \cup B \in \mathcal{F}$. $\text{Perm}(\mathcal{F})$ denotes the family of all permitted sets for \mathcal{F} .

$\text{Perm}(\mathcal{F}) \subseteq \mathcal{F}$ is an ideal;

$\text{Perm}(\mathcal{F}) = \mathcal{F}$ if and only if \mathcal{F} is an ideal.

Theorem 6 (J. Arbault – P. Erdős) *Every countable subset of \mathbb{T} is permitted for \mathcal{N} .*

A set $A \subseteq \mathbb{T}$ is called:

a **pseudo Dirichlet set** (shortly **pD-set**),

if there exists an increasing sequence $\{n_k\}_{k=0}^{\infty}$ of positive integers such that $\{\|n_k x\|\}_{k=0}^{\infty}$ converges *quasinormally* to 0 on A ;

an **A-set** ... *pointwise* ...;

an **N₀**-set if there is an increasing sequence $\{n_k\}_{k=0}^{\infty}$ of positive integers such that

$\sum_{k=0}^{\infty} \|n_k x\| < \infty$ on A ;

an **B₀**-set if there is a real $c > 0$ and ...

$\sum_{k=0}^{\infty} \|n_k x\| < c$ on A ;

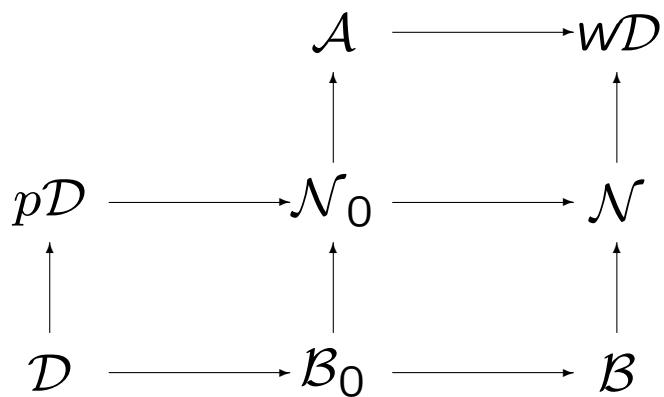
a **B-set** if there is a sequence $\{a_n\}_{n=0}^{\infty}$ of nonnegative reals, $\sum_{n=0}^{\infty} a_n = \infty$ and $\sum_{n=0}^{\infty} a_n \|n x\| < c$.

The corresponding families: $p\mathcal{D}$, \mathcal{A} , \mathcal{N}_0 , \mathcal{B}_0 , \mathcal{B} .

In all the definitions the function $\|x\|$ can be replaced by $|\sin \pi x|$.

Theorem 7

(i) Every family \mathcal{D} , $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{B}_0 , \mathcal{N} , \mathcal{B} , \mathcal{A} , $w\mathcal{D}$ is a family of thin sets and the following inclusions hold true:



(ii) Every family \mathcal{D} , $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{B}_0 , \mathcal{N} , \mathcal{B} , \mathcal{A} , $w\mathcal{D}$ is closed under arithmetical difference and therefore contains only meager sets of Lebesgue measure zero.

(iii) Every family \mathcal{D} , $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{B}_0 , \mathcal{N} , \mathcal{B} , \mathcal{A} , $w\mathcal{D}$ has a Borel basis.

(iv) Every family $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{N} , \mathcal{A} , $w\mathcal{D}$ contains each countable subset of \mathbb{T} .

(v) Every finite subset of \mathbb{T} is permitted for \mathcal{D} , \mathcal{B}_0 , \mathcal{B} .

(vi) Every countable subset of \mathbb{T} is permitted for $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{N} , \mathcal{A} , $w\mathcal{D}$.

$f, g : \mathbb{T} \longrightarrow \langle 0, 1 \rangle$ continuous, $f(0) = g(0) = 0$. Replacing the $\| \cdot \|$ function in the above definitions by a function f we obtain a **f -Dirichlet set** (\mathbf{D}_f -set), **pseudo f -Dirichlet set** (\mathbf{pD}_f -set), **A_f -set**, **N_{0f} -set**, **B_{0f} -set**, **N_f -set**, **B_f -set**, and **weak f -Dirichlet set** (\mathbf{wD}_f -set). Similar inclusions as above hold true for those families and every countable set is a **pD_f -set**, i.e. the conclusions (i) and (iii) of the theorem hold true. For the conclusion (ii) one needs some additional condition.

The **zero**-set $\mathbf{Z}(f) = \{x \in \mathbb{T}; f(x) = 0\}$ of f .

Theorem 8 (Z. Bukovská) *If $n \cdot \mathbf{Z}(f) \subseteq \mathbf{Z}(g)$ for some positive integer n then $\mathcal{F}_f \subseteq \mathcal{F}_g$ for $\mathcal{F} = \mathcal{D}, p\mathcal{D}, \mathcal{A}, \mathcal{B}, \mathcal{N}, w\mathcal{D}$.*

Corollary 9 *If $\mathbf{Z}(f)$ is a finite set of rationals then $\mathcal{F} = \mathcal{F}_f$ for $\mathcal{F} = \mathcal{D}, p\mathcal{D}, \mathcal{B}, \mathcal{N}, \mathcal{A}, w\mathcal{D}$.*

Corollary 10 $\mathcal{D} \subseteq \mathcal{F}_f$ for any $\mathcal{F} = \mathcal{D}, p\mathcal{D}, \mathcal{N}_0, \mathcal{B}_0, \mathcal{B}, \mathcal{N}, \mathcal{A}, w\mathcal{D}$.

Theorem 11 (Z.B. – L.B.) Assume that

$$(\forall x, |x| < 1/2) f(x/m) \leq f(x)$$

for any positive integer m and $\mathbf{Z}(g)$ is a finite set of rationals. Then $\mathcal{N}_{0f} \subseteq \mathcal{N}_{0g}$ if and only if

$$(\forall \{x_k\}_{k=0}^{\infty}) \left(\sum_{k=0}^{\infty} f(x_k) < \infty \rightarrow \sum_{k=0}^{\infty} g(x_k) < \infty \right).$$

Problem: What is the smallest size of a basis of a family of thin sets?

Following an idea of J. Marcinkiewicz

Lemma 12 (L.B.) There exists a family \mathcal{M} of Dirichlet sets, $|\mathcal{M}| = \mathfrak{c}$ such that $A - B$ contains a non-trivial interval for any $A, B \in \mathcal{M}$, $A \neq B$.

Theorem 13 Let \mathcal{F} be a family of thin sets such that $\mathcal{D} \subseteq \mathcal{F}$ and there exists a family of thin sets \mathcal{H} closed under arithmetic difference and such that $\mathcal{F} \subseteq \mathcal{H}$. Then any basis of the family \mathcal{F} has cardinality at least \mathfrak{c} .

Corollary 14 Every basis of any trigonometric family of thin sets has cardinality at least \mathfrak{c} .

L. B. – N. Kholshcheknikova – M. Repický:

Theorem 15 *Every γ -set is permitted for any of the families $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{N} , \mathcal{A} , and $w\mathcal{D}$.*

Theorem 16 (Dirichlet – Minkowski)

If $\{n_i\}_{i=0}^\infty$ is an increasing sequence of natural numbers then for any reals $x_1, \dots, x_k \in \mathbb{T}$ and any $\varepsilon > 0$, there are $i, j \in \omega$ such that $0 \leq i < j \leq (2/\varepsilon)^k$ and

$$\|(n_j - n_i)x_l\| < \varepsilon \quad \text{for } l = 1, 2, \dots, k. \quad (2)$$

Actually theorem says that 0_B belongs to the closure of the set $\{\|(n_i - n_j)x\|; i \neq j\}$ in the topology of pointwise convergence.

Metatheorem 1 *It is consistent with ZFC that there exists a permitted set for any of the families $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{N} , \mathcal{A} , and $w\mathcal{D}$ of size \mathfrak{c} .*

J. Arbault: "proof" of the existence of a perfect permitted set for \mathcal{N} .

N. K. Bary: a gap in the proof.

M. Repický: a set A has **perfect measure zero** if for every sequence of positive reals $\{\varepsilon_n\}_{n=1}^{\infty}$ there is an increasing sequence of natural numbers $\{n_k\}_{k=0}^{\infty}$ and a sequence of finite families of intervals $\{\mathcal{I}_n\}_{n=1}^{\infty}$ such that $|\mathcal{I}_n| \leq n$, $|I| < \varepsilon_n$ for every $I \in \mathcal{I}_n$, and $A \subseteq \bigcup_m \bigcap_{k>m} \bigcup \mathcal{I}_{n_k}$.

γ -set has perfect measure zero and set of perfect measure zero has strong measure zero.

Theorem 17 (M. Repický) *Let \mathcal{F} be any of the families \mathcal{N} , \mathcal{A} , \mathcal{N}_0 , and $p\mathcal{D}$. The unions of less than \mathfrak{c} sets having perfect measure zero are permitted for $p\mathcal{D}$, \mathcal{N}_0 , \mathcal{N} , and \mathcal{A} .*

Conjecture 18 (L.B.) *Every set permitted for \mathcal{A} or \mathcal{N} is perfectly meager.*

Theorem 19

(P. Erdős – K. Kunen – R. D. Mauldin)

If $P \subseteq \mathbb{T}$ is perfect set then there exists a perfect set Q of measure zero such that $P + Q = \mathbb{T}$.

Theorem 20 (P. Eliaš) *Let $P \subseteq \mathbb{T}$ be a perfect set. Then there exists a pseudo Dirichlet set Q such that the set $P \cap (x - Q)$ is dense in P for every $x \in \mathbb{T}$.*

Corollary 21 (P.E.) *Let $P \subseteq \mathbb{T}$ be a perfect set. Then there exists a pseudo Dirichlet set Q such that $P + Q = \mathbb{T}$.*

Theorem 22 (P.E.) *Let \mathcal{F} be a family of thin sets with a F_σ basis containing every pseudo Dirichlet set. If \mathcal{F} is closed under arithmetical difference then every \mathcal{F} –permitted set is perfectly meager.*

Proof: Assume that $A \subseteq \mathbb{T}$ is an \mathcal{F} –permitted set, $P \subseteq \mathbb{T}$ is perfect. By theorem 20 there exists a pseudo Dirichlet set Q such that $P \cap (x - Q)$ is dense in P for every $x \in \mathbb{T}$. By assumption about \mathcal{F} we have $Q \in \mathcal{F}$ and therefore $A \cup Q \in \mathcal{F}$. Thus, there exists an F_σ set $B \in \mathcal{F}$, $B \supseteq A \cup Q$. Since \mathcal{F} is closed under arithmetical difference we have $B - B \neq \mathbb{T}$. Then there exists an $x \in \mathbb{T}$ such that $B \cap (x - B) = \emptyset$.

Then also $B \cap (x - Q) = \emptyset$ and therefore $P \cap (x - Q)$ is a subset of G_δ set $P \setminus B$ dense in P . Hence $P \cap A$ is meager.

q.e.d.

Theorem 23 (P. Eliaš) *Every set permitted for any of the families $p\mathcal{D}$, \mathcal{N} , \mathcal{N}_0 , and \mathcal{A} is perfectly meager.*

Proof: For any of the families $p\mathcal{D}$, \mathcal{N}_0 and \mathcal{N} the assertion follows directly from theorem 22. For \mathcal{A} -sets we must modify the proof.

Let A, P, Q be as above. Since $A \cup Q$ is an \mathcal{A} -set there exists an increasing sequence $\{n_k\}_{k=0}^\infty$ such that $A \cup Q \subseteq \{x \in \mathbb{T}; \|n_k x\| \rightarrow 0\}$. Denote

$$B_i = \{x \in \mathbb{T}; (\forall k \geq i) \|n_k x\| \leq 1/8\}, \quad B = \bigcup_i B_i.$$

Then B is an F_σ set and $A \cup Q \subseteq B$. If $x \in B - B$ then there are i_1, i_2 and $x_1 \in B_{i_1}$, $x_2 \in B_{i_2}$ such that $x = x_1 - x_2$. If $i_0 = \max\{i_1, i_2\}$ then $x_1, x_2 \in B_{i_0}$ and therefore $x \in B_{i_0} - B_{i_0}$. Thus $B - B = \bigcup_i (B_i - B_i)$. On the other hand we have $B_i - B_i \subseteq B_{i+1} - B_{i+1}$ and

$$B_i - B_i \subseteq \{x \in \mathbb{T}; \|n_i x\| \leq 1/4\}.$$

One can easily see that

$$\lambda(\{x \in \mathbb{T}; \|nx\| \leq 1/4\}) = 1/2$$

and therefore $\lambda(B_n - B_n) \leq 1/2$ for any $n > 0$. Thus $\lambda(B - B) \leq 1/2$. Hence $B - B \neq \mathbb{T}$ and we can continue as in the proof of theorem 22.

q.e.d.

Metatheorem 2 ZFC + "every set permitted for any of the families $p\mathcal{D}$, \mathcal{N} , \mathcal{N}_0 , and \mathcal{A} has cardinality $\leq \aleph_1$ " is consistent.

Metatheorem 3 "*Every set of cardinality $< \mathfrak{c}$ is permitted for the families $p\mathcal{D}$, \mathcal{N} , \mathcal{N}_0 , and \mathcal{A}* " is undecidable in ZFC.

Metatheorem 4 "*There exists a permitted set for any of the families $p\mathcal{D}$, \mathcal{N} , \mathcal{N}_0 , and \mathcal{A} of cardinality \mathfrak{c}* " is undecidable in ZFC.

Bibliography

Arbault J., *Sur l'Ensemble de Convergence Absolue d'une Série Trigonométrique*, Bull. Soc. Math. France **80** (1952), 253–317.

Bary N. K., *Тригонометрические ряды*, Москва, 1961; English translation: *A Treatise on Trigonometric Series*, Macmillan, New York, 1964.

Bartoszyński T. and Scheepers M., *Remarks on Sets Related to Trigonometric Series*, Topology Appl. **64** (1995), 133–140.

Z. Bukovská, *Thin Sets Defined by a Sequence of Continuous Functions*, Math. Slovaca, **49** (1999), 323–344.

Bukovská Z. and Bukovský L., *Adding small sets to an N-set*, Proc. Amer. Math. Soc. **123** (1995), 3867–3873.

Bukovský L., *Thin Sets of Harmonic Analysis in a General Setting*, Tatra Mt. Math. Publ. **14** (1998), 241–260.

Bukovský L., Kholshchेवникова N. N. and Repický M., *Thin Sets of Harmonic Analysis and Infinite Combinatorics*, Real Anal. Exchange **20** (1994–95), 454–509.

Eliaš P., *Arbault permitted sets are perfectly meager*, Tatra Mt. Math. Publ. **30** (2005), 135–148.

Eliaš P., *Dirichlet sets and Erdős–Kunen–Maudin theorem*, to appear.

Erdős P., Kunen K. and Maudin R. D., *Some additive properties of sets of real numbers*, Fund. Math. **113** (1981), 187–199.

Denjoy A., *Sur l'absolue convergence des séries trigonométriques*, C. R. Acad. Sci. **155** (1912), 135–136.

Luzin N. N., *Sur l'absolue convergence des séries trigonométriques*, C. R. Acad. Sci. **155** (1912), 580–582.

Repický M., *A family of permitted trigonometric thin sets*, Proc. Amer. Math. Soc. **125** (1997), 137–144.

M. Repický, *Towers and permitted trigonometric thin sets*, Real Anal. Exchange **21** (1995–96), 648–655.