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Trigonometric series

ag

o0
. + Y (an cos2mnx + by sin 2wnz), (1)

n=1

an, bn, n € w reals,bg = 0.

A. Denjoy and N. N. Luzin, Comptes Rendus des
I’Académie des Sciences de Paris, 1912, identi-
cal title

Sur l'absolue convergence

des séries trigonomeétriques

Theorem 1 (A. Denjoy—N. N. Luzin) If se-
ries (1) absolutely converges on a set of positive
Lebesgue measure, then

> (lan] + [bn]) < oo,

n=0
i.e. the series (1) absolutely converges every-
where.

Theorem 2 (N. N. Luzin) If series (1) abso-
lutely converges on a non-meager set, then

> (lan] + [bn]) < oo,

n=0
i.e. the series (1) absolutely converges every-
where.



A set ACT is an AC-set if every trigonometric
series (1) converging absolutely on A converges
absolutely everywhere.

An N-set = not an AC-set.
R. Salem: A is an N-set if and only if there
exists a sequence {an},;2 5 Of nonnegative reals
such that >°% jan = oo and Y02 5 an|nz| < oo
for every z € A
G is a locally compact topological group, G its
dual group. Elements of G are characters. Ba-
nach space C*(X) of continuous bounded real
functions on X C G with the norm

|£Il = sup{|f(z)|;z € X}.

A set X is a Dirichlet set if 1y belongs to the
closure of G|X.

X is a Dirichlet set if and only if there exists an
increasing sequence {ny}72, of positive integers
such that ||n.|| converges uniformly to O on X.
C*(X)* is the dual space of C*(X). Weak topol-
ogy:. the weakest topology in which every F &
C*(X)* is continuous. A locally compact set
X C G is a weak Dirichlet set if 1x belongs to
the closure of G|X in the weak topology.



Riesz Theorem: C*(X)* is the space of all Borel
measures on X. X is a weak Dirichlet set if
and only for every positive Borel measure p on
X there exists an increasing sequence {ng}7Z,
such that

k”—>moo /X |Ingx|| du(z) = 0.
Generally a set X C T is a weak Dirichlet set
(shortly wD-set) if there exists a universally
measurable set X C T such that for every pos-
itive Borel measure u on B there exists an in-
creasing sequence {ny}72, such that
lim /B |npz|| du(x) = 0.

k—o0

The families will be denoted D, N, and wD.

Dirichlet set — N-set — weak Dirichlet set.

A family F C P(T) is a family of thin sets iff
(a) {x} € F for every z € T,

(b) if BC A€ F then B € F;

(c) no interval belongs to F.

Theorem 3 N is a family of thin sets.



A set G C F is a basis of F if for every A € F
there exists a set B € G such that A C B.
{AeN;Ais a F, set} is a basis of V.
Arithmetical difference

A-—A={z€T,(Ix,ye€ A) z=x — y}.

Theorem 4 (H. Steinhaus) If A has positive
measure or possesses the Baire property and in
not meager then A— A contains an open interval.

Theorem 5 If a family of thin sets F with a
Borel basis is closed under arithmetical differ-
ence then every set from F is meager and has
Lebesgue measure zero.

A CT is permitted for F if for any B € F also
AUB € F. Perm(F) denotes the family of all
permitted sets for F.

Perm(F) C F is an ideal;

Perm(F) = F if and only if F is an ideal.



Theorem 6 (J. Arbault — P. Erdos) Every
countable subset of T is permitted for N .

A set ACT is called:

a pseudo Dirichlet set (shortly pD-set),

if there exists an increasing sequence {nj}72
of positive integers such that {||ngz|}7Z, con-
verges quasinormally to O on A;

an A-set ... pointwise ...;

an Ng-set if there is an increasing sequence
{nkti—o Of positive integers such that

> peg llngz|| < oo on A;

an Bg-set if there is a real ¢ > 0 and ...

> 2o llngz|| < con A;

a B-set if there is a sequence {an} 20 of nonne-
gative reals, %2 ja, = co and 1% 4 an|lnz|| < c.
The corresponding families: pD, A, No, Bo, B.
In all the definitions the function ||x|| can be re-
placed by |sinmx|.



Theorem 7

(i)Every family D, pD, Ng, Bog, N, B, A, wD is
a family of thin sets and the following inclusions
hold true:

A wD
pD No N
D Bo B

(ii) Every family D, pD, Ng, Bo, N, B, A, wD is
closed under arithmetical difference and there-
fore contains only meager sets of Lebesgue mea-
sure zero.

(iii) Every family D, pD, Ngo, Bg, N, B, A, wD
has a Borel basis.

(iv) Every family pD, Ngo, N, A, wD contains
each countable subset of T.

(v) Every finite subset of T is permitted for D,
Bo, B.

(vi) Every countable subset of T is permitted for
pD, No, N, A, wD.



f,g: T — (0,1) continuous, f(0) = g¢g(0) = 0.
Replacing the || || function in the above defini-
tions by a function f we obtain a f-Dirichlet
set (D/-set), pseudo f-Dirichlet set
(pD-set), As-set, Ng s-set, Bg s-set, N-set,
B (-set, and weak f-Dirichlet set (wD ;-set).
Similar inclusions as above hold true for those
families and every countable set is a pD ;-set,
i.e. the conclusions (i) and (iii) of the theo-
rem hold true. For the conclusion (ii) one needs
some additional condition.

The zero-set Z(f) ={x €T, f(x) = 0} of f.

Theorem 8 (Z. Bukovska) Ifn-Z(f) C Z(g)
for some positive integer n then Fr C Fyg for
F=7D, pD, A, B, N, wD.

Corollary 9 If Z(f) is a finite set of rationals
then ¥ = F; for F =D, pD, B, N, A, wD.

Corollary 10 D C F; for any F = D, pD, Np,
Bo, B, N, A wD.



Theorem 11 (Z.B. — L.B.) Assume that

(Vz, |z| <1/2) f(z/m) < f(z)

for any positive integer m and Z(g) is a finite
set of rationals. Then Nor C N, if and only if

(H{zkti=0) (Z flag) <oo— 3 glay) < OO) -
k=0 k=0

Problem: What is the smallest size of a basis
of a family of thin sets?
Following an idea of J. Marcinkiewicz

Lemma 12 (L.B.) There exists a family M of
Dirichlet sets, |M| = ¢ such that A — B contains
a non-trivial interval for any A,Be M, A # B.

Theorem 13 Let F be a family of thin sets
such that D C F and there exists a family of
thin sets 'H closed under arithmetic difference
and such that ¥ C 'H. Then any basis of the
family F has cardinality at least c.

Corollary 14 Every basis of any trigonometric
family of thin sets has cardinality at least c.
8



L. B. — N.Kholshchevnikova — M. Repicky:

Theorem 15 Every ~-set is permitted for any
of the families pD, Ng, N, A, and wD.

Theorem 16 (Dirichlet — Minkowski)

If {n;}24 is an increasing sequence of natural
numbers then for any reals z1,...,x; € T and
any € > 0, there are 1,5 € w such that 0 <1 <
j < (2/e)* and

||(n]—nz):rzl|| <e€ fori=1,2,...,k. (2)

Actually theorem says that Op belongs to the
closure of the set {|[(n; — n;)z|[;i # j} in the
topology of pointwise convergence.

Metatheorem 1 It is consistent with ZFC that
there exists a permitted set for any of the fam-
ilies pD, No, N, A, and wD of size .



J. Arbault: " proof’ of the existence of a perfect
permitted set for N.

N. K. Bary: a gap in the proof.

M. Repicky: a set A has perfect measure zero
if for every sequence of positive reals {en}>2
there is an increasing sequence of natural num-
bers {n;}7° o and a sequence of finite families of
intervals {Zn}°2 ¢ such that |Zy| < n, |I| < ep for
every I € Ip, and A C Uy, Neg>m UZn,..

v-set has perfect measure zero and set of per-
fect measure zero has strong measure zero.

Theorem 17 (M. Repicky) Let F be any of
the families N', A, N, and pD. The unions of
less than t sets having perfect measure zero are
permitted for pD, No, N,and A.

Conjecture 18 (L.B.) Every set permitted for
A or N is perfectly meager.

Theorem 19

(P. Erdos — K. Kunen—R. D. Mauldin)

If P C T is perfect set then there exists a perfect
set () of measure zero such that P+ Q = T.
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Theorem 20 (P. EliaS) Let P C T be a per-
fect set. Then there exists a pseudo Dirichlet
set Q such that the set PN (xz — Q) is dense in P
for every z € T.

Corollary 21 (P.E.) Let P C T be a perfect
set. Then there exists a pseudo Dirichlet set
QQ such that P4+ Q =T.

Theorem 22 (P.E.) Let F be a family of thin
sets with a F4, basis containing every pseudo
Dirichlet set. If F is closed under arithmeti-
cal difference then every F—permitted set is per-
fectly meager.

Proof: Assume that A C T is an F—permitted
set, P C T is perfect. By theorem 20 there exists
a pseudo Dirichlet set @ such that PNn(z—Q) is
dense in P for every x € T. By assumption about
F we have Q € F and therefore AUQ € F. Thus,
there exists an Foset B F, B DO AUQ. Since F
is closed under arithmetical difference we have
B—B #= T. Then there exists an z € T such that
BnNn(x— B) =10.

11



Then also BN(z—Q) = () and therefore PN(xz—Q)
is a subset of Gy set P\ B dense in P. Hence
PN A is meager.

g.e.d.

Theorem 23 (P. EliaS) Every set permitted
for any of the families pD, N, Ny, and A is
perfectly meager.

Proof: For any of the families pD, Ng and N
the assertion follows directly from theorem 22.
For A-sets we must modify the proof.

Let A, P,(Q be as above. Since AU is an A-
set there exists an increasing sequence {ng}72,
such that AUQ C {z € T, ||niz| — 0}. Denote

By ={z € T; (Vk > i)zl <1/8}, B=[JB;:
i

Then B is an F5; set and AuQ@Q C B. If z €
B — B then there are i1,ip and z1 € B;,, ©o € B,
such that * = x1 — zo. If ig = max{i1,in} then
r1,x2 € B;j, and therefore z € B;, — B;,. Thus
B—B = J;(B;—B;). On the other hand we have

B; — B; C Bj+1 — Bj41 and

12



One can easily see that
A{z € T [Inz| < 1/4}) =1/2

and therefore A\(Bp — Bp) < 1/2 for any n > 0.

Thus A\(B—B) <1/2. Hence B— B # T and we

can continue as in the proof of theorem 22.
g.e.d.

Metatheorem 2 ZFC + " every set permitted
for any of the families pD, N, Np, and A has
cardinality < X¢" is consistent.

Metatheorem 3 " Every set of cardinality < ¢ is
permitted for the families pD, N', Ny, and A" is
undecidable in ZFC.

Metatheorem 4 " T here exists a permitted set
for any of the families pD, N, Ng, and A of
cardinality ¢” is undecidable in ZFC.
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