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Trigonometric series

a0

2
+

∞∑
n=1

(an cos 2πnx + bn sin 2πnx), (1)

an, bn, n ∈ ω reals,b0 = 0.

A. Denjoy and N. N. Luzin, Comptes Rendus des

l’Académie des Sciences de Paris, 1912, identi-

cal title

Sur l’absolue convergence

des séries trigonométriques

Theorem 1 (A. Denjoy – N. N. Luzin) If se-

ries (1) absolutely converges on a set of positive

Lebesgue measure, then

∞∑
n=0

(|an|+ |bn|) < ∞,

i.e. the series (1) absolutely converges every-

where.

Theorem 2 (N. N. Luzin) If series (1) abso-

lutely converges on a non-meager set, then

∞∑
n=0

(|an|+ |bn|) < ∞,

i.e. the series (1) absolutely converges every-

where.
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A set A ⊆ T is an AC-set if every trigonometric

series (1) converging absolutely on A converges

absolutely everywhere.

An N-set = not an AC-set.

R. Salem: A is an N-set if and only if there

exists a sequence {an}∞n=0 of nonnegative reals

such that
∑∞

n=0 an = ∞ and
∑∞

n=0 an‖nx‖ < ∞
for every x ∈ A

G is a locally compact topological group, Ĝ its

dual group. Elements of Ĝ are characters. Ba-

nach space C∗(X) of continuous bounded real

functions on X ⊆ G with the norm

‖f‖ = sup{|f(x)|;x ∈ X}.

A set X is a Dirichlet set if 1X belongs to the

closure of Ĝ|X.

X is a Dirichlet set if and only if there exists an

increasing sequence {nk}∞k=0 of positive integers

such that ‖nk‖ converges uniformly to 0 on X.

C∗(X)∗ is the dual space of C∗(X). Weak topol-

ogy: the weakest topology in which every F ∈
C∗(X)∗ is continuous. A locally compact set

X ⊆ G is a weak Dirichlet set if 1X belongs to

the closure of Ĝ|X in the weak topology.
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Riesz Theorem: C∗(X)∗ is the space of all Borel

measures on X. X is a weak Dirichlet set if

and only for every positive Borel measure µ on

X there exists an increasing sequence {nk}∞k=0
such that

lim
k→∞

∫
X
‖nkx‖ dµ(x) = 0.

Generally a set X ⊆ T is a weak Dirichlet set

(shortly wD-set) if there exists a universally

measurable set X ⊆ T such that for every pos-

itive Borel measure µ on B there exists an in-

creasing sequence {nk}∞k=0 such that

lim
k→∞

∫
B
‖nkx‖ dµ(x) = 0.

The families will be denoted D, N , and wD.

Dirichlet set → N-set → weak Dirichlet set.

A family F ⊆ P(T) is a family of thin sets iff

(a) {x} ∈ F for every x ∈ T;

(b) if B ⊆ A ∈ F then B ∈ F;

(c) no interval belongs to F.

Theorem 3 N is a family of thin sets.
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A set G ⊂ F is a basis of F if for every A ∈ F
there exists a set B ∈ G such that A ⊆ B.

{A ∈ N ;A is a Fσ set} is a basis of N .

Arithmetical difference

A−A = {z ∈ T; (∃x, y ∈ A) z = x− y}.

Theorem 4 (H. Steinhaus) If A has positive

measure or possesses the Baire property and in

not meager then A−A contains an open interval.

Theorem 5 If a family of thin sets F with a

Borel basis is closed under arithmetical differ-

ence then every set from F is meager and has

Lebesgue measure zero.

A ⊆ T is permitted for F if for any B ∈ F also

A ∪ B ∈ F. Perm(F) denotes the family of all

permitted sets for F.

Perm(F) ⊆ F is an ideal;

Perm(F) = F if and only if F is an ideal.
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Theorem 6 (J. Arbault – P. Erdös) Every

countable subset of T is permitted for N .

A set A ⊆ T is called:

a pseudo Dirichlet set (shortly pD-set),

if there exists an increasing sequence {nk}∞k=0
of positive integers such that {‖nkx‖}∞k=0 con-

verges quasinormally to 0 on A;

an A-set ... pointwise ...;

an N0-set if there is an increasing sequence

{nk}∞k=0 of positive integers such that∑∞
k=0 ‖nkx‖ < ∞ on A;

an B0-set if there is a real c > 0 and ...∑∞
k=0 ‖nkx‖ < c on A;

a B-set if there is a sequence {an}∞n=0 of nonne-

gative reals,
∑∞

n=0 an = ∞ and
∑∞

n=0 an‖nx‖ < c.

The corresponding families: pD, A, N0, B0, B.

In all the definitions the function ‖x‖ can be re-

placed by | sinπx|.
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Theorem 7

(i)Every family D, pD, N0, B0, N , B, A, wD is

a family of thin sets and the following inclusions

hold true:

D B0 B

pD N0 N

A wD

- -

- -

-

6 6 6

6 6

(ii) Every family D, pD, N0, B0, N , B, A, wD is

closed under arithmetical difference and there-

fore contains only meager sets of Lebesgue mea-

sure zero.

(iii) Every family D, pD, N0, B0, N , B, A, wD
has a Borel basis.

(iv) Every family pD, N0, N , A, wD contains

each countable subset of T.

(v) Every finite subset of T is permitted for D,

B0, B.

(vi) Every countable subset of T is permitted for

pD, N0, N , A, wD.
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f, g : T −→ 〈0,1〉 continuous, f(0) = g(0) = 0.

Replacing the ‖ ‖ function in the above defini-

tions by a function f we obtain a f-Dirichlet

set (Df-set), pseudo f-Dirichlet set

(pDf-set), Af-set, N0 f-set, B0 f-set, Nf-set,

Bf-set, and weak f-Dirichlet set (wDf-set).

Similar inclusions as above hold true for those

families and every countable set is a pDf-set,

i.e. the conclusions (i) and (iii) of the theo-

rem hold true. For the conclusion (ii) one needs

some additional condition.

The zero-set Z(f) = {x ∈ T; f(x) = 0} of f .

Theorem 8 (Z. Bukovská) If n · Z(f) ⊆ Z(g)

for some positive integer n then Ff ⊆ Fg for

F = D, pD, A, B, N , wD.

Corollary 9 If Z(f) is a finite set of rationals

then F = Ff for F = D, pD, B, N , A, wD.

Corollary 10 D ⊆ Ff for any F = D, pD, N0,

B0, B, N , A, wD.
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Theorem 11 (Z.B. – L.B.) Assume that

(∀x, |x| < 1/2) f(x/m) ≤ f(x)

for any positive integer m and Z(g) is a finite

set of rationals. Then N0f ⊆ N0g if and only if

(∀{xk}∞k=0)

 ∞∑
k=0

f(xk) < ∞→
∞∑

k=0

g(xk) < ∞

 .

Problem: What is the smallest size of a basis

of a family of thin sets?

Following an idea of J. Marcinkiewicz

Lemma 12 (L.B.) There exists a family M of

Dirichlet sets, |M| = c such that A−B contains

a non-trivial interval for any A, B ∈M, A 6= B.

Theorem 13 Let F be a family of thin sets

such that D ⊆ F and there exists a family of

thin sets H closed under arithmetic difference

and such that F ⊆ H. Then any basis of the

family F has cardinality at least c.

Corollary 14 Every basis of any trigonometric

family of thin sets has cardinality at least c.
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L. B. – N.Kholshchevnikova – M. Repický:

Theorem 15 Every γ-set is permitted for any

of the families pD, N0, N , A, and wD.

Theorem 16 (Dirichlet – Minkowski)

If {ni}∞i=0 is an increasing sequence of natural

numbers then for any reals x1, . . . , xk ∈ T and

any ε > 0, there are i, j ∈ ω such that 0 ≤ i <

j ≤ (2/ε)k and

‖(nj − ni)xl‖ < ε for l = 1,2, . . . , k. (2)

Actually theorem says that 0B belongs to the

closure of the set {‖(ni − nj)x‖; i 6= j} in the

topology of pointwise convergence.

Metatheorem 1 It is consistent with ZFC that

there exists a permitted set for any of the fam-

ilies pD, N0, N , A, and wD of size c.
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J. Arbault: ”proof” of the existence of a perfect

permitted set for N .

N. K. Bary: a gap in the proof.

M. Repický: a set A has perfect measure zero

if for every sequence of positive reals {εn}∞n=1
there is an increasing sequence of natural num-

bers {nk}∞k−0 and a sequence of finite families of

intervals {In}∞n=1 such that |In| ≤ n, |I| < εn for

every I ∈ In, and A ⊆
⋃

m
⋂

k>m
⋃
Ink.

γ-set has perfect measure zero and set of per-

fect measure zero has strong measure zero.

Theorem 17 (M. Repický) Let F be any of

the families N , A, N0, and pD. The unions of

less than t sets having perfect measure zero are

permitted for pD, N0, N ,and A.

Conjecture 18 (L.B.) Every set permitted for

A or N is perfectly meager.

Theorem 19

(P. Erdös – K. Kunen – R. D. Mauldin)

If P ⊆ T is perfect set then there exists a perfect

set Q of measure zero such that P + Q = T.
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Theorem 20 (P. Eliaš) Let P ⊆ T be a per-

fect set. Then there exists a pseudo Dirichlet

set Q such that the set P ∩ (x−Q) is dense in P

for every x ∈ T.

Corollary 21 (P.E.) Let P ⊆ T be a perfect

set. Then there exists a pseudo Dirichlet set

Q such that P + Q = T.

Theorem 22 (P.E.) Let F be a family of thin

sets with a Fσ basis containing every pseudo

Dirichlet set. If F is closed under arithmeti-

cal difference then every F–permitted set is per-

fectly meager.

Proof: Assume that A ⊆ T is an F–permitted

set, P ⊆ T is perfect. By theorem 20 there exists

a pseudo Dirichlet set Q such that P ∩ (x−Q) is

dense in P for every x ∈ T. By assumption about

F we have Q ∈ F and therefore A∪Q ∈ F. Thus,

there exists an Fσ set B ∈ F, B ⊇ A∪Q. Since F
is closed under arithmetical difference we have

B−B 6= T. Then there exists an x ∈ T such that

B ∩ (x−B) = ∅.
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Then also B∩(x−Q) = ∅ and therefore P∩(x−Q)

is a subset of Gδ set P \ B dense in P . Hence

P ∩A is meager.

q.e.d.

Theorem 23 (P. Eliaš) Every set permitted

for any of the families pD, N , N0, and A is

perfectly meager.

Proof: For any of the families pD, N0 and N
the assertion follows directly from theorem 22.

For A-sets we must modify the proof.

Let A, P, Q be as above. Since A ∪ Q is an A-

set there exists an increasing sequence {nk}∞k=0
such that A ∪Q ⊆ {x ∈ T; ‖nkx‖ → 0}. Denote

Bi = {x ∈ T; (∀k ≥ i)‖nkx‖ ≤ 1/8}, B =
⋃
i

Bi.

Then B is an Fσ set and A ∪ Q ⊆ B. If x ∈
B−B then there are i1, i2 and x1 ∈ Bi1, x2 ∈ Bi2
such that x = x1 − x2. If i0 = max{i1, i2} then

x1, x2 ∈ Bi0 and therefore x ∈ Bi0 − Bi0. Thus

B−B =
⋃

i(Bi−Bi). On the other hand we have

Bi −Bi ⊆ Bi+1 −Bi+1 and

Bi −Bi ⊆ {x ∈ T; ‖nix‖ ≤ 1/4}.
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One can easily see that

λ({x ∈ T; ‖nx‖ ≤ 1/4}) = 1/2

and therefore λ(Bn − Bn) ≤ 1/2 for any n > 0.

Thus λ(B −B) ≤ 1/2. Hence B −B 6= T and we

can continue as in the proof of theorem 22.

q.e.d.

Metatheorem 2 ZFC+ ”every set permitted

for any of the families pD, N , N0, and A has

cardinality ≤ ℵ1” is consistent.

Metatheorem 3 ”Every set of cardinality < c is

permitted for the families pD, N , N0, and A” is

undecidable in ZFC.

Metatheorem 4 ”There exists a permitted set

for any of the families pD, N , N0, and A of

cardinality c” is undecidable in ZFC.

13



Bibliography

Arbault J., Sur l’Ensemble de Convergence Ab-

solue d’une Série Trigonométrique, Bull. Soc.

Math. France 80 (1952), 253–317.

Bary N. K., Trigonometriqeskie r�dy, Moskva,
1961; English translation: A Treatise on Trigo-

nometric Series, Macmillan, New York, 1964.
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trigonométriques, C. R. Acad. Sci. 155 (1912),

580–582.
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