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Preface

This book covers the fundamental theorems concerning colorings of the natural numbers
and related structures. It grew out of lecture notes for a course delivered repeatedly, on student
reuqest, at the Weizmann Institute of Science and at Bar-Ilan University. I first delivered it
using Protasov’s elegant booklet Combinatorics of Numbers, and this influence is still visible. I
then included more advanced theorems, adapted from Hindman and Strauss’s thorough mono-
graph Algebra in the Stone–Čech Compactification. Finally, I added some results that do not
appear in earlier books. Historical comments are based on the above-mentioned books, and on
Alexander Soifer’s chapter Ramsey theory before Ramsey, prehistory and early history: an essay
in 13 parts, in the book Ramsey Theory: Yesterday, Today, and Tomorrow. Neil Hindman has
been of great help in detecting references for results I thought were new (oh, well).

This book is suitable both for self-study and as a textbook for a course. It can also serve
as a launching point for independent research in this beautiful field.

I made substantial efforts to simplify the proofs and notations used in other accounts, and
to make the material accessible to any good second year undergraduate student. The very few
places where some knowledge or notion from later undergraduate years is needed can either
be skipped or taken for granted. In few cases, a well-known notion is mentioned without its
definition, and if needed, the corresponding Wikipedia entry is sufficient to catch up.

It is highly recommended to solve or at least consider the exercises scattered through the
text. Proper understanding would be harder otherwise.

This book contains a number of excursions : sections that are not necessary for the remainder
of the book, but highlight interesting additional aspects of the studied material. These sections
may serve as refreshment breaks. Even a tulip gardener is glad to occasionally see additional
kinds of flowers.

Comments at the end of chapters are not meant to be self-contained, and may be skipped
by readers not familiar with the concepts mentioned there.

Most results presented here cannot be generalized in an obvious manner. Counter-examples
are often available in the monograph of Hindman and Strauss, that I recommended to any
reader beginning his research in this area.

I thank my students for their many useful comments and suggestions. This book is dedicated
to my children.

Boaz Tsaban
Bar-Ilan University
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CHAPTER 1

Three famous coloring theorems

Ramsey theory, named after Frank P. Ramsey (1903–1930), studies the following phenom-
enon: If we take a rich mathematical structure, and color (no matter how) each of its elements
in one out of finitely many prescribed colors, there will be a rich monochromatic substructure,
that is, a rich substructure with all elements of the same color. In this chapter, we provide
elementary proofs of several beautiful theorems exhibiting this phenomenon.

1. Ramsey’s Theorem

For a set A and a natural number d, let [A]d := {F ⊆ A : |F | = d }, the collection of all
d-element subsets of A.

A graph is a pair G = (V,E), consisting of a set of vertices V and a set E of edges among
vertices. Formally, E is a subset of [V ]2, and {a, b} ∈ E is interpreted as “there is an edge
between a and b”. The graph G is complete if E = [V ]2, that is, there is an edge between every
pair of vertices.

Theorem 1.1 (Ramsey). If we color each edge of an infinite complete graph with one out
of finitely many prescribed colors, then there is an infinite complete monochromatic subgraph.
That is, an infinite set of vertices with all edges among them of the same color.

Proof. The following proof is Ramsey’s original. Several alternative proofs were suggested
since, but, remarkably, Ramsey’s proof remains the most lucid one.

We prove the theorem in the case of two colors, and later see how to generalize it to an
arbitrary finite number of colors. Assume, thus, that the colors are red and green.

Every two vertices are joined by an edge, a red one or a green one. Let V1 := V . Choose
a vertex v1 ∈ V1. Either this vertex has infinitely many green edges, or it has infinitely many
red edges. We may assume that the case is the former. Let V2 be the (infinite) set of vertices
connected to v1 by green edges. There are two cases to consider.

The good case:

·
v1 ·

v2 ·
v3 ·

v4 · · ·

V1 = V
V2

V3

V4

Assume that there is a vertex v2 ∈ V2 with infinitely many green edges connecting it to other
vertices in V2. Let V3 ⊆ V2 be the set of these vertices. Continue by induction, as long as
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2 1. THREE FAMOUS COLORING THEOREMS

possible: For each n, assume that there is a vertex vn ∈ Vn with infinitely many green edges
connecting it to vertices in Vn, and let Vn+1 ⊆ Vn be the set of these vertices. If this is the case
for all n, then all edges of the complete graph with vertices v1, v2, . . . are green. Indeed, for
n < m, we have vm ∈ Vn+1, and thus the edge {vn, vm} is green.

The remaining, even better case:

·
v1 ·

v2 ·
v3 ·

v4 · · ·

V1 = V
V2

V3

V4

Assume that, for some n, the above procedure terminates: each v ∈ Vn has only finitely many
green edges. In this case, we restart the procedure, from an arbitrary vertex vn ∈ Vn, with red
edges. This time, the procedure cannot terminate since, form ≥ n, and each vertex vm ∈ Vm, all
but finitely many edges connecting vm to other elements of Vm are red! Thus, in the remaining
case, we obtain vertices vn, vn+1, . . . with all edges among them red. �

For brevity, we make some terminological conventions. Let A be a nonempty set. By
coloring of A we mean a coloring of the elements of A, each by one color out of a prescribed
set of colors. A finite coloring of A is a coloring in a finite number of colors. A k-coloring of A
is a coloring in k colors.

Whenever convenient, we will identify each color with a natural number. For example, a
coloring of a set A with colors red, green and blue is a function c : A → {red, green, blue}, and
we may consider instead a function c : A → {1, 2, 3}.

In accordance with our earlier uses of the word, a monochromatic set is a set with all
elements of the same color.

Exercise 1.2. We have proved Ramsey’s Theorem for 2-colorings. Prove it for arbitrary
finite colorings.
Hint : A color blindness argument.

In Ramsey’s Theorem 1.1, we may restrict attention to a countable subgraph of the given
graph, and enumerate its vertices by the natural numbers. Thus, we may assume that V = N.
The following theorem generalizes Theorem 1.1.

Theorem 1.3 (Ramsey). Let d be a natural number. For each finite coloring of [N]d, there
is an infinite set A ⊆ N such that [A]d is monochromatic.

Proof. By induction on d. The case d = 1 is immediate. For d > 1, given a coloring

c : [N]d → {1, . . . , k},

choose v1 ∈ N and consider the coloring cv1 : [N \ {v1}]
d−1 → {1, . . . , k}, defined by

cv1({v2, . . . , vd}) = c({v1, v2, . . . , vd}).
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By the inductive hypothesis, there is an infinite set V1 ⊆ N\{v1} such that [V1]
d−1 is monochro-

matic for the coloring cv1 .
Continue as in the proof of Theorem 1.1. �

Exercise 1.4. Complete the proof of Theorem 1.3.

Exercise 1.5. Let A be an infinite set of points in the plane, such that each line contains
at most a finite number of points from A. Using Ramsey’s Theorem, prove that there is an
infinite set B ⊆ A such that each line contains at most two points from B.

2. Compactness, the Four Color Theorem, and the Finite Ramsey Theorem

Each of the coloring theorems we prove has a variation where the colored set is finite. These
finite variations follow from the infinite ones, thanks to the following result.

Theorem 2.1 (Compactness). Let X = {x1, x2, . . . } be a countable set, and let A be a fam-
ily of finite subsets of X. Assume that for each k-coloring of X, there is in A a monochromatic
set. Then there is a natural number n such that for each k-coloring of the set {x1, . . . , xn},
there is in A a monochromatic subset of {x1, . . . , xn}.

Proof. Assume, towards a contradiction, that there is for each n a k-coloring cn of the set
{x1, . . . , xn} with no monochromatic set in A. Define a k-coloring of the set X = {x1, x2, . . . }
as follows:

(1) Choose a color i1 such that the set I1 = {n ∈ N : cn(x1) = i1 } is infinite.
(2) Choose a color i2 such that the set I2 = {n ∈ I1 : n ≥ 2, cn(x2) = i2 } is infinite.
(3) By induction, for each m > 1 choose a color im such that the set

Im = {n ∈ Im−1 : n ≥ m, cn(xm) = im }

= {n : n ≥ m, cn(x1) = i1, cn(x2) = i2, . . . , cn(xm) = im }

is infinite.

Define a k-coloring of X by

c(xm) := im

for all m. By the premise of the theorem, there is a set F ∈ A that is monochromatic for the
coloring c. Since the set F is finite, there is m such that F ⊆ {x1, . . . , xm}. Fix a natural
number n ∈ Im. Then the coloring cn is defined on the elements x1, . . . , xm, and agrees with
the coloring c there. It follows that the set F , which belongs to the family A, is monochromatic
for cn, a contradiction. �

To illustrate the compactness theorem, we provide an amusing application. Assume that
we have a (real, or imaginary) map of states, and we are interested in coloring each state region
in a way that no neighboring states (sharing a border that is more than a point) have the same
color. There are several formal restrictions on the map: That it is embedded in the plane, and
that the state regions are “continuous”, but the intuitive concept will suffice for our purposes.

What is the minimal number of colors necessary to color a map? The Google Chrome logo
forms a minimal example of a map that cannot be colored with fewer than four colors:
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On the other hand, even the state map of USA does not necessitate the use of more than four
colors:

A nineteenth century conjecture, asserting that four colors suffice to color any map, was only
proved in 1976 (by Kenneth Appel and Wolfgang Haken), by reducing the problem to fewer
than 2,000 special cases, and checking them all on a computer. There is still no proof that does
not necessitate the consideration of hundreds of cases, and we will of course not attempt at
providing such a proof here. However, we will show that the formally stronger, infinite version
of this theorem can be deduced from it.

Theorem 2.2. Every infinite state map can be colored with four colors, such that states
sharing a border have different colors.

Proof. We first observe that the number of states in every map is countable. Indeed, think
of the map as embedded in R2. Inside each state, choose a point (q1, q2) such that q1 and q2 are
both rational numbers. The number of states is equal to the number of chosen points, which is
not grater than the total number of points in Q2, which is countable.

Let X = {x1, x2, . . . } be the set of states on the map. Let A be the set of neighboring
pairs of states, that is, {xi, xj} ∈ A if and only if the states xi and xj share a border. Assume,
towards a contradiction, that for each 4-coloring of X , there are neighboring states of the same
color, that is, there is a monochromatic {xi, xj} ∈ A. By the Compactness Theorem, there is
n such that, for each 4-coloring of the finite map {x1, . . . , xn}, there is a monochromatic set
{xi, xj} ∈ A. But this contradicts the finite Four Color Theorem. �

We now establish a finite version of Ramsey’s Theorem. In the case d = 2, the theorem
asserts that every large enough k-colored complete graph has a large complete monochromatic
subgraph.

Theorem 2.3 (Finite Ramsey Theorem). Let k, m and d be natural numbers. There is n
such that, for each k-coloring of the set [{1, . . . , n}]d, there is a set A ⊆ {1, . . . , n} of cardinality
m such that the set [A]d is monochromatic.

Proof. Write [N]d = {x1, x2, . . . }. Let

A =
{
[A]d : A ⊆ N, |A| = m

}
.

Every element of A is a finite subset of {x1, x2, . . . }.
Ramsey’s Theorem asserts that for each k-coloring of {x1, x2, . . . }, there is an infinite set

B ⊆ N such that the set [B]d is monochromatic. In particular, if we fix a subset A ⊆ B of
cardinality m, the element [A]d of the family A is monochromatic.

By the Compactness Theorem, there is a natural number N such that, for each k-coloring
of {x1, . . . , xN}, there is in A a monochromatic subset of {x1, . . . , xN}. Let n be the largest
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element appearing in any xi, formally n = max(x1 ∪ · · · ∪ xN). Then

{x1, . . . , xN} ⊆ [{1, . . . , n}]d,

and thus, for each k-coloring of the set [{1, . . . , n}]d, there is a monochromatic element [A]d in
A. �

Ramsey’s Theorem has numerous applications in mathematics and theoretical computer
science. We will present here a beautiful application in number theory.

3. Fermat’s Last Theorem and Schur’s Theorem

In contrast to the Pythagorean Theorem, Fermat’s Last Theorem asserts that, for n > 2
the equation

xn + yn = zn

has no solution over the natural numbers. Fermat has stated this assertion without proof, and a
proof was discovered only many generations later. The story of this theorem and its immensely
complicated proof constitutes the topic of a best-selling book.

Long before Fermat’s Last Theorem was proved, Issai Schur considered the problem whether
Fermat’s Equation has solutions modulo a prime number. One might hope that solving this
problem for large enough prime numbers (and fixed n) may shed light on Fermat’s assertion.
Working with large primes also eliminates the following trivial obstacle.

Exercise 3.1. Prove that, for each prime number p, there is n such that the equation

xn + yn = zn (mod p)

has no nontrivial solution x, y, z 6= 0 (mod p).
Hint : Consider Fermat’s Little Theorem: For each a ∈ {0, 1, . . . , p − 1}, we have ap = a
(mod p).

Theorem 3.2 (Schur). For each large enough prime number p, the equation xn + yn = zn

(mod p) has a solution with x, y, z 6= 0 (mod p).

The proof of Schur’s Theorem uses the following interesting theorem.

Theorem 3.3 (Schur’s Coloring Theorem). For each finite coloring of N, there are natural
numbers x,y and z of the same color such that x+y = z. In other words, the equation x+y = z
has a monochromatic solution.

Proof. Let c be a k-coloring of N. Define a k-coloring χ of [N]2 by

χ({i, j}) = c(j − i)

for all i < j. By Ramsey’s Theorem, there is an infinite set A ⊆ N such that [A]2 is monochro-
matic for χ. Let i, j,m ∈ A be such that i < j < m. By the definition of χ, we have
c(j − i) = c(m− j) = c(m− i), and we obtain a monochromatic solution

m− j
︸ ︷︷ ︸

x

+ j − i
︸︷︷︸

y

= m− i
︸ ︷︷ ︸

z

. �

Exercise 3.4. Show, using the proof of Schur’s Coloring Theorem, that the equation x+y =
z has infinitely many monochromatic solutions.

Corollary 3.5. For every number of colors k, there is n such that, for each k-coloring of
{1, . . . , n}, the equation x+ y = z has a monochromatic solution.

Exercise 3.6. Prove Corollary 3.5, using the Compactness Theorem.
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Proof of Theorem 3.2. Consider the finite field Zp = {0, 1, . . . , p − 1}, with addition
and multiplication modulo p. A fundamental theorem asserts that for each finite field F, there
is an element g ∈ F such that every nonzero element of F is a power of g. Let 0 6= g ∈ Zp be
such that {g, g2, . . . , gp−1} = Zp \ {0}.

Define a coloring of the set {1, . . . , p− 1} as follows: For each element r ∈ {1, . . . , p − 1},
there is a unique number m ∈ {1, . . . , p− 1} such that gm = r. Set c(r) := m mod n.

If the prime number p is large enough, then by Schur’s Coloring Theorem there are numbers
x, y, z ∈ {1, . . . , p− 1}, of the same color, such that x+ y = z over N and, in particular, over
Zp. Continue the argument in Zp. Write

x = gnt1+i, y = gnt2+i, z = gnt3+i.

Then

gnt1+i + gnt2+i = gnt3+i.

Divide by gi, to obtain

( gt1
︸︷︷︸

x

)n + ( gt2
︸︷︷︸

y

)n = ( gt3
︸︷︷︸

z

)n.

We have thus found nonzero elements x, y, z ∈ Zp such that xn + yn = zn (mod p). �

Remark 3.7. The proof of Schur’s Theorem shows that for each n, in every large enough
finite field F, the equation xn + yn = zn has a nontrivial solution.

The following exercises can be solved by modifying the above arguments.

Exercise 3.8. Let n be a natural number. Prove that for each large enough prime number
p, the equation xn + yn + zn = wn (mod p) has a solution with x, y, z, w 6= 0 (mod p).

Exercise 3.9. Let G be a group with at least 6 elements. Prove that for each 2-coloring
of G, there are nonidentity elements a, b, c ∈ G of the same color, such that ab = c.

4. Comments for Chapter 1

Ramsey’s Theorem is proved in his paper On a problem of formal logic, Proceedings of the
London Mathematical Society 30 (1928), 264–286. Theorem 3.2 was first proved by Leonard E.
Dickson, On the Last Theorem of Fermat, Quarterly Journal of Pure and Applied Mathematics,
1908. The proof provided here, via Schur’s Coloring Theorem (Theorem 3.3), is due to Issai
Schur, Über die Kongruenz xm+ym = zm (mod p), Jahresbericht der Deutschen Mathematiker–
Vereinigung, 1916.

When a coloring theorem guarantees the existence of an infinite monochromatic set, it may
be strictly stronger than its finite version. It follows from Ramsey’s Theorem that, for all d, k,
and m:

There is n such that, for each k-coloring of [{m,m+ 1, . . . , n}]d there is a set
A ⊆ {m,m+ 1, . . . , n} such that |A| > minA and [A]d is monochromatic.

Exercise 4.1. Prove the last assertion.

The finite Ramsey Theorem is provable in Peano Arithmetic (the basic axiomatic system
for number theory). Paris and Harrington, that identified the above consequence of Ramsey’s
theorem, proved that it is unprovable in Peano Arithmetic. This was the first natural statement
in the language of Peano Arithmetic that is true but not provable. The mere existence of such
statements follows from Gödel’s celebrated Incompleteness Theorem. This topic is covered in
Section 6.3 of the Graham–Spencer–Rothschild classic book Ramsey Theory.



4. COMMENTS FOR CHAPTER 1 7

The finitary theorems may be thought of as shadows of their infinite counterpart. In general,
the question how large should the finite colored set be to guarantee a monochromatic set as
desired is wide open. For example, let rm be the minimal natural number n such that the
Finite Ramsey Theorem holds for k = 2 colors, dimension d = 2, and |A| = m. It follows from
the proof of Ramsey’s Theorem that r3 = 6. It is known that r4 = 18. But in general, despite
great efforts, only weak bounds are available for the remaining numbers rm. According to Joel
Spencer (Ten Lectures on the Probabilistic Method, SIAM, 1994),

Erdős asks us to imagine an alien force, vastly more powerful than us, landing
on Earth and demanding the value of r5 or they will destroy our planet.
In that case, he claims, we should marshal all our computers and all our
mathematicians and attempt to find the value. But suppose, instead, that
they ask for r6. In that case, he believes, we should attempt to destroy the
aliens.

The Wikipedia entry Ramsey’s theorem provides additional details on this direction of re-
search.





CHAPTER 2

Ultrafilters, topology and compactness

In the remainder of the book, we will prove coloring theorems that have no simple elementary
proofs. We will exploit the interplay between algebra and topology. This chapter provides the
foundations of this method. Readers familiar with these foundations may find it sufficient to
skim this chapter briefly, and proceed to the next chapter.

1. Filters and ultrafilters

For a set X , let P (X) = {B : B ⊆ X }, the family of all subsets of X . We will be interested
in filters on X , families of sets which contain, intuitively speaking, “very large” subsets of X .
This is the motivation behind the following definition.

Definition 1.1. A filter on a setX is a family F of subsets ofX such that, for all A,B ⊆ X :

(1) X ∈ F , but ∅ /∈ F .
(2) If B ⊇ A ∈ F , then B ∈ F .
(3) If A,B ∈ F , then A ∩ B ∈ F .

Inductively, for all A1, . . . , An in a filter F we have that A1 ∩ · · · ∩ An ∈ F . By the second
property, the first property may be restated as ∅ ( F ( P (X).

Definition 1.2. The principal filter at an element x ∈ X is the family

Fx = {A ⊆ X : x ∈ A } .

The principal filter is a “dictatorship”, in the sense that the decision whether a set is large
or not is determined by x only.

Exercise 1.3. Prove that a filter F is principal if and only if it contains a singleton (a
single-element set).

Example 1.4. Let X be an infinite set. A set A ⊆ X is cofinite (in X) if its complement,
A c := X \A, is finite. The cofinite sets filter is the family F of all cofinite subsets of X . Since
X is infinite, the cofinite sets filter is indeed a filter.

Lemma 1.5. Let A be a nonempty family of subsets of X, such that every intersection of
finitely many elements of A is nonempty. Then the closure of A under taking finite intersections
and supersets,

〈A〉 := {B ⊆ X : ∃A1, . . . , Ak ∈ A, A1 ∩ · · · ∩ Ak ⊆ B } ,

is a filter on X. This is the smallest filter containing A. We will call it the filter generated by
A.

Proof. It is easy to verify that the family 〈A〉 satisfies each property of a filter. Every
filter containing A must contain every intersection of finitely many members of A, and thus
also every set containing such an intersection. �

Definition 1.6. A filter F on a set X is an ultrafilter if for each A ⊆ X , we have that
A ∈ F or A c ∈ F .

9
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Example 1.7. For each x ∈ X , the principal filter Fx is an ultrafilter.

Exercise 1.8. Prove that if F is an ultrafilter on a (finite or infinite) set X , and F has
some finite member, then F is principal. Conclude that every ultrafilter on a finite set X is
principal.

We will only consider the case where X is infinite.

Example 1.9. The cofinite sets filter on an infinite set X is not an ultrafilter, since X can
be partitioned into two infinite, disjoint sets, and none of these sets is cofinite.

Exercise 1.10. Let F be an ultrafilter on X . Prove the following assertions:

(1) If A ∪ B ∈ F , then A ∈ F or B ∈ F .
(2) If A1 ∪ · · · ∪Ak ∈ F , then there is i ≤ k such that Ai ∈ F .

We obtain the following connection between ultrafilters and colorings.

Corollary 1.11. Let A be a member of an ultrafilter F . For each finite coloring of A,
there is in F a monochromatic subset of A.

Proof. Let c : A → {1, . . . , k} be a coloring. For each i ∈ {1, . . . , k}, let Ai = c−1(i), the
set of elements in A of color i. Then

A1 ∪ · · · ∪ Ak = A ∈ F .

By Exercise 1.9, there is i such that Ai ∈ F . �

We will use Zorn’s Lemma to establish the existence of nonprincipal ultrafilters. Zorn’s
Lemma provides a sufficient condition for the existence of maximal elements. Our interest in
maximal elements is explained by the following lemma.

Lemma 1.12. A filter F on a set X is an ultrafilter if and only if it is a maximal filter on
X, that is, there is no filter F ′ on X with F ( F ′.

Proof. (⇒) Assume that there is a filter F ′ properly extending F . Let A ∈ F ′ \F . As F
is an ultrafilter, we have that A c ∈ F . Thus, A and A c are both in F ′; a contradiction.

(⇐) Let A ⊆ X , and assume that A,A c /∈ F . If there was a set B ∈ F with B ⊆ A c,
then A c ∈ F ; a contradiction. Thus, every element B of F intersects A. It follows that every
intersection of finitely many elements of F∪{A} is nonempty, and the generated filter 〈F∪{A}〉
properly extends F (since A /∈ F). This contradicts the maximality of F . �

The following special form of Zorn’s Lemma suffices for our needs. Let A be a family of
sets. An element A ∈ A is maximal if there is no B ∈ A with A ( B. A chain in A is a family
{Aα : α ∈ I } of elements of A such that for all α, β ∈ I, we have that Aα ⊆ Aβ or Aβ ⊆ Aα.

Lemma 1.13 (Zorn’s Lemma). Let A be a nonempty family of sets, with the property that
for each chain {Aα : α ∈ I } in A, we have that

⋃

α∈I Aα ∈ A. Then there is a maximal element
in A.

Lemma 1.14 (Ultrafilter Theorem). Every filter F on a set X extends to an ultrafilter on
X.

Proof. Let A be the set of all filters F ′ on X with F ⊆ F ′. A is nonempty since F ∈ A.
For each chain of filters in F , their union is a filter and is in A. By Zorn’s Lemma, there is a
maximal element F ′ in P . By Lemma 1.11, F ′ is an ultrafilter. �

Exercise 1.15. Prove that the union of a chain of filters is a filter.
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For the proof of the following corollary, recall that, by Exercise 1.7, every nonprincipal
ultrafilter on a set X must contain all cofinite subsets of X .

Corollary 1.16. Let X be an infinite set.

(1) There is a nonprincipal ultrafilter on X.
(2) For each infinite set A ⊆ X, there is a nonprincipal ultrafilter F on X such that

A ∈ F .
(3) Let A be a family of subsets of X such that every intersection of finitely many members

of A is infinite. Then there is a nonprincipal ultrafilter F on X such that A ⊆ F .

Proof. (3) Let C be the filter of cofinite sets in X . Given finitely many elements of A∪C,
the intersection of those from C is cofinite, and the intersection of those from A is infinite.
Thus, the intersection of them all is infinite. Let 〈A∪C〉 be the filter on X generated by A∪C.
Extend this filter to an ultrafilter F on X . Then A ⊆ F .

For each finite set F ⊆ X , its complement F c is in C and thus in F . Thus, F /∈ C. In
particular, for each x ∈ X , we have that {x} /∈ F , and therefore F 6= Fx.

(2) Take A = {A} in (3).
(1) Take A = ∅ in (3). �

2. Excursion: An ultrafilter proof of Ramsey’s Theorem

The following proof is not necessarily simpler than Ramsey’s original, but it has a surprising
feature: Using an ultrafilter, we can predict the color of the final monochromatic graph before
actually searching for it.

Ultrafilter proof of Ramsey’s Theorem. Let F be a nonprincipal ultrafilter on the
set V of graph vertices. Let c : [V ]2 → {1, . . . , k} be a k-coloring of the complete graph. For
each v ∈ V and each i ∈ {1, . . . , k}, let Ai(v) be the set of all vertices connected to v by an
edge of color i. Then

V \ {v} = A1(v) ∪ · · · ∪ Ak(v).

As the ultrafilter F is nonprincipal, V \{v} ∈ F , and thus there is (a unique) i with Ai(v) ∈ F .
Define χ(v) := i. We obtain a k-coloring χ of V .

As F is an ultrafilter, there is a monochromatic set A ∈ F for χ. Let i be the color of this
set. We will show that there is an infinite, complete monochromatic subgraph of color i:

·
v1 ·

v2 ·
v3 ·

v4 · · ·

A
′′ ∩ Ai(v1)
′′ ∩ Ai(v2)
′′ ∩ Ai(v3)
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Take

v1 ∈ A,

v2 ∈ A ∩Ai(v1),

v3 ∈ A ∩Ai(v1) ∩ Ai(v2),
...

This can be done since, in each stage, we choose from the intersection of finitely many elements
of a filter. Being in the filter, such an intersection is never empty.

The complete graph with vertex set { vn : n ∈ N } is monochromatic, of color i: For all
n < m, we have that vm ∈ Ai(vn), and thus c(vn, vm) = i. �

The ultrafilter proof of Ramsey’s Theorem can be explained, intuitively, as follows. Fix an
ultrafilter on V . Say that a set of vertices forms a “vast majority” if it is in the ultrafilter.
Then each vertex has a preferred color such that its edges to the vast majority of its neighbors
have that color. Taking a color that is preferred by the vast majority of the vertices, it is easy
to construct an infinite, complete graph of that color.

What about the finite Ramsey Theorem? Ultrafilters are not of direct use for studying
finite objects, since ultrafilters containing finite sets are principal. But they do provide an
alternative proof of the Compactness Theorem, from which the finite Ramsey Theorem follows.
As a bonus, the proof gives a stronger result, where the colored “board” X is not assumed to
be countable. The proof of the countable case, which suffices for our needs, is provided first.
We then explain how it extends to the uncountable case. Readers not familiar with ordinal and
cardinal numbers may skip this part of the proof.

Theorem 2.1 (Full Compactness). Let X be an infinite set, and A be a family of finite
subsets of X. Assume that for each k-coloring of X there is a monochromatic set in A. Then
there is a finite set F ⊆ X such that for each k-coloring of F there is a monochromatic set in
A.

Proof. The countable case. Enumerate X = { xn : n ∈ N }, and assume that there is no
finite set as required in the theorem. Let F be a nonprincipal ultrafilter on N.

For each n, fix a coloring cn : {x1, . . . , xn} → {1, . . . , k} with no monochromatic set in A.
We define a k-coloring c of X by assigning, to each x ∈ X , the color assigned to x by the
majority—with respect to the ultrafilter F—of colorings cn: Fix a number m ∈ N. Since

{n : n ≥ m, cn(xm) = 1 } ∪ · · · ∪ {n : n ≥ m, cn(xm) = k } = {m,m+ 1, . . . } ∈ F ,

there is im ∈ {1, . . . , k} such that

{n : n ≥ m, cn(xm) = im } ∈ F .

Define c(xm) = im.
By the premise of the theorem, there is a set {xm1

, . . . , xmN
} ∈ A that is monochromatic

for the coloring c, say of color i. Then

{n : n ≥ m1, cn(xm1
) = i } ∩ · · · ∩ {n : n ≥ mN , cn(xmN

) = i }

is an intersection of finitely many elements of F , and is thus nonempty. Let n be an element
in this intersection. Then the set {xm1

, . . . , xmN
}, which is in A, is monochromatic for cn; a

contradiction.
The uncountable case. The treatment of this case is a straightforward modification of the

countable case. Assume that the theorem fails, and let X be a counterexample of minimal
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cardinality κ. Enumerate X = {xα : α < κ }. Since finite intersections of sets of the form

[α, κ) := { γ < κ : γ ≥ α } ,

for α < κ, are nonempty, there is an ultrafilter F on κ containing these sets.
For each α < κ, the cardinality of the set { xβ : β ≤ α } is smaller than κ. By the minimality

of κ, there is a coloring cα : { xβ : β ≤ α } → {1, . . . , k} with no monochromatic set in A (see
Exercise 2.2). Since

{ γ < κ : γ ≥ α, cγ(xα) = 1 } ∪ · · · ∪ { γ < κ : γ ≥ α, cγ(xα) = k } = [α, κ) ∈ F ,

there is iα ∈ {1, . . . , k} such that { γ < κ : γ ≥ α, cγ(xα) = iα } ∈ F . Define c(xα) = iα.
By the premise of the theorem, there is a set {xα1

, . . . , xαN
} ∈ A that is monochromatic for

the coloring c, say of color i. Then

{ γ < κ : γ ≥ α1, cγ(xα1
) = i } ∩ · · · ∩ { γ < κ : γ ≥ αN , cγ(xαN

) = i } ∈ F .

Let γ be an element in this intersection. Then the set {xα1
, . . . , xαN

}, which is in A, is
monochromatic for cγ ; a contradiction. �

Exercise 2.2. Prove the assertion in the proof of Theorem 2.1, that for each α < κ there
is a k-coloring of the set {xβ : β ≤ α } with no monochromatic set in A.

3. Topological spaces

Definition 3.1. A topology on a set X is a family τ of subsets of X with the following
properties:

(1) ∅, X ∈ τ .
(2) For all U, V ∈ τ , also U ∩ V ∈ τ .
(3) For each family {Uα : α ∈ I } ⊆ τ , also

⋃

α∈I Uα ∈ τ .
(4) The Hausdorff property : For all distinct x, y ∈ X there are disjoint sets U, V ∈ τ such

that x ∈ U, y ∈ V .

A topological space is a space equipped with a topology τ . The sets U is the topology τ of a
topological space are called open sets.

Remark 3.2. Topological spaces are often defined without requesting them to have the
Hausdorff property. In such cases, topological spaces satisfying the above four requirements
are called Hausdorff spaces or T2 spaces. In this book, all considered spaces are Hausdorff, and
thus we do not make this distinction.

Definition 3.3. A neighborhood U of a point x in a topological space X is an open set U
such that x ∈ U .

Definition 3.4. The closure A of a set A ⊆ X in a topological space X is the set of all
points x such that every neighborhood of x intersects A. A set A ⊆ X is closed if A = A.

Exercise 3.5. Prove that a set A in a topological space is closed if and only if its comple-
ment A c is open.

Definition 3.6. We say that F is a filter in X if F is a filter on some subset ofX . Similarly,
an ultrafilter in X is an ultrafilter on some subset of X .

The family of all neighborhoods of a point x is closed under finite intersections, and therefore
its closure under taking supersets is a filter, called the neighborhood filter at x and denoted
Nx. The neighborhood filter Nx is “concentrated” around the point x. The following definition
generalizes this property.
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Definition 3.7. Let F be a filter in a topological space X . A point x ∈ X is a limit point
of F if for each neighborhood U of x there is in F some subset of U .

Lemma 3.8. A filter in a topological space X can have at most one limit point

Proof. Assume that x and y are distinct limit points of a filter F in X . By the Hausdorff
property, there are disjoint neighborhoods U and V of x and y, respectively. Since x and y are
limit points of F , there are sets A,B ∈ F such that A ⊆ U and B ⊆ V . Then ∅ = A∩B ∈ F ;
a contradiction. �

Definition 3.9. Let F be a filter in a topological space X , and x be a point in X . The
filter F converges to x (in symbols: limF = x or F → x) if x is a limit point of X .

For example, for each x ∈ X we have that limNx = x.
Let x1, x2, · · · ∈ X be distinct points. The standard definition for limn→∞ xn = x is: For

each neighborhood U of x, we have that xn ∈ U for all but finitely many n. Equivalently, we
can say that the filter of cofinite subsets on {x1, x2, . . . } converges to x. The reason why the
ordinary definition is insufficient for our purposes is that, for the most important topological
space considered in this book, the following theorem fails if we replace “filter” by “sequence”.

Theorem 3.10. Let X be a topological space and A ⊆ X. A point x is in A if and only if
some filter F in A converges to x.

Proof. (⇒) Let Nx be the neighborhood filter at x. As every neighborhood of x intersects
A, the set F = {N ∩ A : N ∈ Nx } is a filter. Clearly, F → x.

(⇐) Every neighborhood of x contains an element of F , and this element of F is nonempty
and contained in A. �

Definition 3.11. Let X and Y be topological spaces, f : X → Y , and a ∈ X .

(1) f is continuous at a if for each neighborhood V of f(a) there is a neighborhood U of
a such that f(U) ⊆ V .

(2) f is continuous if f is continuous at all points of X .

Exercise 3.12. Prove that, for topological spaces X and Y , a function f : X → Y is
continuous if and only if for each open set V in Y , the set f−1(V ) is open in X .

For a function f : X → Y and sets A ⊆ X,B ⊆ Y :

f(A) := { f(a) : a ∈ A }

f−1(B) := { x ∈ X : f(x) ∈ B }

In particular, for a filter F in X , we have that

f(F) = { f(A) : A ∈ F } .

Lemma 3.13. Let f : X → Y .

(1) For each filter F in X, the family f(F) is a filter in Y .
(2) For each ultrafilter F in X, the family f(F) is an ultrafilter in Y .

Exercise 3.14. Prove Lemma 3.13.

Exercise 3.15. Prove that a function f : X → Y is continuous at a if and only if for each
filter F in X converging to a, we have that f(F) → f(a).
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4. Compact spaces

Definition 4.1. A cover of a set X is a family U = {Uα : α ∈ I } of subsets of X such
that X =

⋃

α∈I Uα. An open cover of a topological space X is a cover U of X such that all
elements of U are open in X .

A family V is a subcover of a cover U of X if V ⊆ U and V is a cover of X . A compact space
is a topological space X such that every open cover of X has a finite subcover.

Definition 4.2. Let X be a topological space with topology τX , and let Y ⊆ X . The
induced topology on Y is the family

τY = {U ∩ Y : U ∈ τX } .

A subspace of a topological space X is a subset Y of X , equipped with the induced topology.

Subsets of topological spaces will always be considered as the subspaces equipped with the
induced topology.

Exercise 4.3. Prove that a subset Y of a topological space X is a topological space.

Lemma 4.4. Every closed set in a compact space is compact.

Proof. LetX be a compact space. Let A ⊆ X be closed. Let {Uα ∩ A : α ∈ I } be an open
cover of A, with each Uα open in X . A c is open in X , and thus the family {Uα ∪A c : α ∈ I }
is an open cover of X . Let {Uα1

∪A c, . . . , Uαn
∪A c} be a finite subcover. Then {Uα1

, . . . , Uαn
}

is a finite cover of A. �

Exercise 4.5. Let X be a compact space, Y a topological space, and f : X → Y a contin-
uous function. Prove that the image f(X) of f , as a subspace of Y , is compact. In particular,
if f is surjective, then Y is compact.

Theorem 4.6. A topological space X is compact if and only if every ultrafilter in X is
convergent.

Proof. (⇒) Let F be an ultrafilter in X without a limit point: Each x ∈ X has a
neighborhood Ux containing no element of F . As X is compact, the open cover {Ux : x ∈ X }
has a finite subcover {Ux1

, . . . , Uxn
}. Fix a set A ∈ F . As A ⊆ X = Ux1

∪ · · · ∪ Uxn
, we have

that
(A ∩ Ux1

) ∪ (A ∩ Ux2
) ∪ · · · ∪ (A ∩ Uxn

) = A ∈ F ,

and thus there is i ∈ {1, . . . , n} such that the subset A ∩ Uxi
of Uxi

is in F ; a contradiction.
(⇐) Assume that X is not compact. Let {Uα : α ∈ I } be an open cover of X with no finite

subcover. Then every intersection of finitely many elements of the family A = {U c

α : α ∈ I } is
nonempty. Indeed, for all α1, . . . , αn ∈ I, since Uα1

∪ · · · ∪ Uαn
6= X , we have that

U c

α1
∩ · · · ∩ U c

αn
= (Uα1

∪ · · · ∪ Uαn
) c 6= ∅.

Extend the filter 〈A〉 generated by A to an ultrafilter F on X . Let x be the limit point of F .
Pick α ∈ I with x ∈ Uα. Take A ∈ F such that A ⊆ Uα. Then A is disjoint of U c

α , which is in
F . We therefore have two disjoint sets in the ultrafilter F ; a contradiction. �

It is often convenient to describe a topology on a space by specifying “basic” open sets only.

Definition 4.7. Let X be a topological space. A family B of open subsets of X is a basis
for the topology of X if every open subset of X is a union of elements of B, explicitly:

(1) Every U ∈ B is an open set.
(2) For each open set U , there is a family {Uα : α ∈ I } ⊆ B such that

⋃

α∈I Uα = U .

The elements of a basis B are called basic open sets.
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A basis can be used to define a topology on a set X , by declaring a set open if and only if
it is a union of members of B.

Lemma 4.8. Let X be a set, and let B = {Bα : α ∈ I } be a family of subsets of X with the
following properties:

(1) The union of all sets in B is X.
(2) For all U, V ∈ B, we have that U ∩ V ∈ B.
(3) For all distinct x, y ∈ X there are disjoint sets U, V ∈ B such that x ∈ U, y ∈ V .

Then the family τ :=
{⋃

α∈J Bα : J ⊆ I
}
of all unions of elements of B is a topology on X.

Exercise 4.9. Prove Lemma 4.8.

Definition 4.10. Let X and Y be topological spaces. The product topology on the set
X×Y is the one with basic open sets U ×V , for U open in X and V open in Y . In general, the
basis of a product X1 ×X2 × · · ·×Xn of n topological spaces consists of the sets U1 × · · ·×Un

with Ui open Xi for all i = 1, . . . , n.

Exercise 4.11. Prove that the product topology is indeed a topology, that is, that the
defined basis for this topology is indeed a basis for a topology.

In this book, product spaces are always considered as topological spaces with respect to the
product topology. When considering a topological space X and a subspace Y of X , the term
open cover of Y will be interpreted, for convenience only, as a cover of Y by sets open in X .

Theorem 4.12. Finite products of compact spaces are compact.

Proof. It suffices to prove that the product of two compact spaces is compact. Let X and
Y be compact spaces. It suffices to prove that every ultrafilter in X × Y converges (Theorem
4.6). Let F be an ultrafilter in X × Y . Consider the projection functions

π1 : X × Y → X

(x, y) 7→ x

and

π2 : X × Y → Y

(x, y) 7→ y

The projections π1(F) and π2(F) of the ultrafilter F in X and Y , respectively, are ultrafilters
there, and thus converge to points x ∈ X and y ∈ Y , respectively. We will show that F
converges to the point (x, y) ∈ X × Y .

Let U be an open set in X × Y with (x, y) ∈ U . Since U is a union of basic open sets, the
point (x, y) lies in some basic open set V ×W contained in U . As π1(x, y) = x ∈ V , there is
A ∈ F such that π1(A) ⊆ V . Similarly for y, there is B ∈ F such that π2(B) ⊆ W . Then the
set A ∩B is in F , and π1(A ∩B) ⊆ V, π2(A ∩ B) ⊆ W and thus A ∩ B ⊆ V ×W ⊆ U . �

5. Excursion: Tychonoff’s product theorem

Definition 5.1. Let {Xα : α ∈ I } be a family of topological spaces. The product of this
family is the set

∏

α∈I

Xα
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of all sequences (xα)α∈I with xα ∈ Xα for all α ∈ I. A basis for a topology on
∏

α∈I Xα consists
of the sets

[α1, . . . , αn ; Uα1
, . . . , Uαn

] :=
{

(xα)α∈I ∈
∏

α∈I

Xα : xαi
∈ Uαi

for all i = 1, . . . , n
}

,

for n ∈ N, α1, . . . , αn ∈ I, and Uαi
open in Xαi

for all i = 1, . . . , n.
The (Tychonoff) product topology is the topology on the product

∏

α∈I Xα defined by this
basis. The resulting topological space is called the product space.

An illustration of a basic open set in the product topology is provided in Figure 1. This is
like slalom skiing. The sequence has to pass through all of the (finitely many) prescribed open
sets. The sequence described by the green curve is in the open sets, since in each of the indices
a1, a2, a3, it passes through the requested open set (denoted by a blue interval). In contrast,
the sequence described by the red curve (a heavy skier) does not belong to the open set, since
it misses the open set at index a2.

Figure 1. A slalom defining the basic open set [a1, a2, a3 ; Ua1 , Ua2 , Ua3 ].

Exercise 5.2. Prove that, in the definition of the basic open sets of the product topology,
it suffices to take sets Uαi

which are basic open in Xαi
.

Exercise 5.3. Let X =
∏

α∈I Xα be a product space. Prove the following assertions,
establishing the product space is indeed a topological space:

(1) The set X is basic open.
(2) Every intersection of two basic open sets is basic open.
(3) The space X has the Hausdorff property.

Definition 5.4. Let β ∈ I. The projection function on coordinate β is the function

πβ :
∏

α∈I

Xα → Xβ

(xα)α∈I 7→ xβ

The product topology is the smallest topology for which all projections πβ (for β ∈ I) are
continuous.

Corollary 5.5. If a product space
∏

α∈I Xα is compact, then for each α ∈ I, the space Xα

is compact.

Proof. Fix α ∈ I. The space Xα a projection, and thus a continuous image, of the product
space. Recall that a continuous image of a compact space is compact. �

The converse of the last corollary is a central theorem in topology. Using ultrafilters, we
obtain a short proof of this result.
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Lemma 5.6. Let B be a basis for the topology of a topological space Y . A function f : X → Y
is continuous if and only if for each V ∈ B in Y , the preimage f−1(V ) is open in X.

Proof. Every open set in Y is a union of basic open sets in Y . �

Theorem 5.7 (Tychonoff). Every product of compact spaces is compact: If Xα is a compact
space for each α ∈ I, then the product space

∏

α∈I Xα is compact.

Proof. Remarkably, the proof given here is identical to that given in Theorem 4.12 for
finite products.

Let F be an ultrafilter in
∏

α∈I Xα. For each α ∈ I, the image πα(F) of F is an ultrafilter
in the compact space Xα. Let xα ∈ Xα be its limit point. We will show that F converges to
(xα)α∈I .

Let U be an neighborhood of (xα)α∈I . Let

[α1, . . . , αn ; Uα1
, . . . , Uαn

]

be a basic open set containing (xα)α∈I and contained in U . Let i ∈ {1, . . . , n}. As xαi
∈ Uαi

,
there is Aαi

∈ F with παi
(Aαi

) ⊆ Uαi
. Then

Aα1
∩ · · · ∩ Aαn

∈ F ,

and this is a subset of [α1, . . . , αn ; Uα1
, . . . , Uαn

], (and thus of U): For each element y = (yα)α∈I
in this set and every i = 1, . . . , n,

yαi
= παi

(y) ∈ παi
(Aαi

) ⊆ Uαi
. �

As an application of Tychonoff’s Theorem, we provide an alternative proof of the Full Com-
pactness Theorem 2.1. This proof demonstrates that the notions of topological compactness
and compactness for colorings are related in a natural manner.

We first observe that, for every set X , the family P (X) of all subsets of X is a topology on
X .

Definition 5.8. A topological space is discrete if every set in this space is open. In other
words, if its topology is P (X).

A simple basis for the discrete topology on a set X is the family { {x} : x ∈ X } of all single-
element subsets of X . Since all subsets in a discrete topology are open, discrete topological
spaces are not interesting in their own. But interesting topological spaces can be constructed
from them, as we will see in the following proof.

A Tychonoff product Proof of the Full Compactness Theorem. Take the dis-
crete topology on the set {1, . . . , k}. Being finite, this is a compact space. Consider the product
space Y =

∏

x∈X{1, . . . , k} = {1, . . . , k}X , in which all multiplied spaces are equal to the space
{1, . . . , k}. By Tychonoff’s Theorem, the space Y is compact.

The elements of Y are in one-to-one correspondence to the k-colorings c : X → {1, . . . , k}
of X . Indeed, every such coloring c corresponds to the sequence (c(x))x∈X .

Let c = (c(x))x∈X ∈ {1, . . . , k}X . The premise of the theorem asserts that there are F ∈ A
and i ∈ {1, . . . , k} such that c(x) = i for all x ∈ F . Writing F = {x1, . . . , xn}, we have that

c ∈ [x1, . . . , xn ; {i}, . . . , {i}]

We will denote this set by [F ; i]. Then the family

{ [F ; i] : F ∈ A, i = 1, . . . , k }

is an open cover of Y . As Y is compact, this family has a finite subcover {[F1 ; i1], . . . , [Fn ; in]}.
Take F = F1 ∪ · · · ∪ Fn. Let c be a k-coloring c of F . Extend it in an arbitrary manner to
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a k-coloring c̃ of the entire X . Then there is m ≤ n such that c̃ ∈ [Fm ; im], and thus Fm is
monochromatic for c̃. As c is define on F and agrees with c̃ there, the set Fm is monochromatic
for c. �

6. Comments for Chapter 2

In Lemma 4.8 we provide a sufficient condition for a family of subsets of a set X to be a
basis for a topology on X . To have a necessary and sufficient condition, one may replace item
(2) of that corollary with the following one:

For all U, V ∈ B and each x ∈ U ∩ V , there is W ∈ B with x ∈ W ⊆ U ∩ V .

Zorn’s Lemma (Lemma 1.12) is an important mathematical tool, used in many branches
of mathematics to establish the existence of maximal objects, including for example bases for
infinite-dimensional vector spaces and maximal ideals in rings. The proof of Zorn’s Lemma
uses, in a nontrivial manner, the Axiom of Choice: For each family {Xα : α ∈ I } of nonempty
sets, there is a choice function: a function f with domain I such that f(α) ∈ Xα for all α ∈ I.
The Axiom of Choice does not assert that a choice function can be explicitly constructed or
defined, but merely that it exists. This is what makes it a widely accepted axiom for the
foundations of mathematics.

In the absence of the Axiom of Choice, many equivalences between the various principles
used in our proofs can be proved (without appealing to results that necessitate the use of
the Axiom of Choice). For example, Zorn’s Lemma, the Axiom of Choice, and Tychonoff’s
Product Theorem 5.7 (for general, not necessarily Hausdorff, compact spaces) are equivalent.
The Ultrafilter Theorem (Lemma 1.13) is deductively weaker than the Axiom of Choice, but
each of the following assertions is equivalent to the Ultrafilter Theorem: Tychonoff’s Product
Theorem 5.7 (for compact Hausdorff spaces); Every power {1, . . . , k}X is compact (used in
the proof of the Full Compactness Theorem given in Section 5); Theorem 4.6 (characterizing
compactness by convergence of ultrafilters); and the Full Compactness Theorem. A thorough
treatment of results of this type is available in Horst Herrlich’s book, Axiom of Choice, Springer,
2006.





CHAPTER 3

The Stone–Čech compactification

1. The space of ultrafilters

For brevity, let us fix an infinite set X throughout this section.

Definition 1.1. βX is the set of all ultrafilters on X .

We would like to consider the set βX as a topological space, and its elements as points in
that space. Thus, it would be natural to henceforth denote points βX (which happen to be
ultrafilters on X) by lowercase letters such as p, q, etc.

Definition 1.2. For a set A ⊆ X , let [A] := { p ∈ βX : A ∈ p }.

Exercise 1.3. Prove that the function A 7→ [A], defined on P (X), has the following
properties:

(1) [∅] = ∅ and [X ] = βX .
(2) For all A,B ⊆ X :

(a) [A] ⊆ [B] if and only if A ⊆ B.
(b) [A] = [B] if and only if A = B.
(c) [A] ∪ [B] = [A ∪ B];
(d) [A] ∩ [B] = [A ∩ B];
(e) [A c] = [A] c.

Exercise 1.4. Consider the case X = N.
(1) Find sets A1, A2, . . . ⊆ N such that [

⋃∞
n=1An] 6=

⋃∞
n=1[An].

(2) Find sets A1, A2, . . . ⊆ N such that [
⋂∞

n=1An] 6=
⋂∞

n=1[An].

Hint : (1) implies (2). Consider one-element sets.

By Exercise 1.3, the family B = { [A] : A ⊆ X } satisfies the conditions of Lemma 4.8 for
being a basis for a topology on βX .

Definition 1.5. The topology of βX is the one with basic open sets [A] (for A ⊆ X).

Since [A] c = [A c] for all A ⊆ X , the sets [A] are clopen, that is, simultaneously closed and
open.

Theorem 1.6. The topological space βX is compact.

Proof. Assume otherwise, and consider an open cover of βX with no finite subcover.
We may assume that this cover is of the form { [Aα] : α ∈ I }, for some index set I. For all
α1, . . . , αn ∈ I, since

[Aα1
∪ · · · ∪Aαn

] = [Aα1
] ∪ · · · ∪ [Aαn

] 6= βX = [X ],

we have that Aα1
∪ · · · ∪ Aαn

6= X , or, equivalently, that A c

α1
∩ · · · ∩ A c

αn
6= ∅. It follows that

the family {A c

α : α ∈ I } extends to an ultrafilter p ∈ βX . Let α ∈ I be such that p ∈ [Aα].
Then Aα, A

c

α ∈ p; a contradiction. �

Definition 1.7. For x ∈ X , let px ∈ βX be the principal ultrafilter determined by x.

21
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The function from X to βX defined by x 7→ px is bijective. We identify each principal
ultrafilter px with the point x. Under this identification, we have that X ⊆ βX , and the set
X becomes a topological subspace of βX . We will see that the topology induced on X is the
simplest possible.

Recall that a topological space X is discrete if all subsets of X are open. A point x ∈ X
is isolated if the set {x} is open. In other words, if there is a neighborhood of x containing no
other point. A topological space is discrete if and only if all of its points are isolated.

A subset of a topological space is dense if its closure is the entire space. One may interpret
the following lemma as asserting that every dictatorship is isolated, but in every neighborhood
of any government one may find a dictatorship.

Lemma 1.8. Every point of X is isolated in βX, but the set X is dense in βX.
Formally: For each x ∈ X, the set {px} is open in βX, and the closure of the set { px : x ∈ X }

is βX.

Proof. Let x ∈ X . By definition, p ∈ [{x}] if and only if {x} ∈ p, and the latter property
is equivalent to p = px. Thus, {px} = [{x}], a basic open set.

Let q ∈ βX . For each basic neighborhood [A] of q, we have that A ∈ q and, therefore,
A 6= ∅. Fix x ∈ A. Then A ∈ px, that is, px ∈ [A]. �

Exercise 1.9. Prove the following generalization of Lemma 1.8: For each A ⊆ X , we have
that A = [A]. (Formally: { px : x ∈ A } = [A]).

We say that a topological space X is a subspace of another space Y if X ⊆ Y and the
induced topology on X coincides with the original one.

Definition 1.10. A compactification of a topological space X is a compact space K such
that X is a dense subspace of K.

If we think of a set X with no prescribed topology as a discrete topological space, then
Lemma 1.8 implies that the space βX is a compactification of X . The space βX is called the
Stone–Čech compactification of X .

2. Excursion: The origin of the open sets in βX

We will see here that the topology we have defined on βX is the natural one. Let I be a set,
and consider the set {0, 1} as a discrete topological space. By Tychonoff’s Product Theorem
(Theorem 5.7), the space {0, 1}I =

∏

α∈I{0, 1} is compact. The basic open sets in this space
are

[α1, . . . , αn ; {i1}, . . . , {in}] =
{
(xα)α∈I ∈ {0, 1}I : xα1

= i1, . . . , xαn
= in

}
,

where n is a natural number, α1, . . . , αn ∈ I, and i1, . . . , in ∈ {0, 1}. By reordering the elements,
we may assume that there is l ≤ n such that i1 = · · · = il = 0 and il+1 = · · · = in = 1. This
way, the basic open sets may be denoted as

[α1, . . . , αl ; β1, . . . , βm] :=
{
(xα)α∈I ∈ {0, 1}I : xα1

= · · · = xαl
= 0, xβ1

= · · · = xβm
= 1

}
.

We may identify the set {0, 1}I with the family P (I) of all subsets of I, by identifying each set
J ⊆ I with its characteristic sequence (xα)α∈I ∈ {0, 1}I , define by

xα =

{

1 α ∈ J

0 α /∈ J



3. THE EXTENSION THEOREM 23

for all α ∈ I. This identification transports the Tychonoff product topology on {0, 1}I into
P (I). The basic open sets in P (I) are those of the form

[α1, . . . , αl ; β1, . . . , βm] = { J ∈ P (I) : α1, . . . , αl /∈ J, β1, . . . , βm ∈ J } .

This is the product topology on P (I).
The set I could be any set. In particular, we can take I = P (X) for a prescribed set X .

Then the set βX of all ultrafilters of X is a subset of P (I). The following proposition asserts,
in effect, that the topology on βX is the one you get from the product topology.

Proposition 2.1. Let X be a set and I = P (X). Equip the set P (I) with the product
topology. Then the topology of βX coincides with the subspace topology induced by the space
P (I).

Proof. Consider the induced topology on βX . The basic open sets are the intersections
of basic open sets in P (I) with βX . By the above discussion, a basic open set in P (I) is
determined by elements A1, . . . , Al, B1, . . . , Bm ∈ I = P (X), and the basic open set is

[A1, . . . , Al ; B1, . . . , Bm] = { p ∈ βX : A1, . . . , Al /∈ p, B1, . . . , Bm ∈ p } .

Let p ∈ βX . As p is an ultrafilter, we have that the following assertions are equivalent:

(1) A1, . . . , Am /∈ p, B1, . . . , Br ∈ p;
(2) A c

1 , . . . , A
c

l , B1, . . . , Bm ∈ p;
(3) A c

1 ∩ · · · ∩A c

l ∩B1 ∩ · · · ∩ Bm ∈ p.

Thus, taking A := A c

1 ∩ · · · ∩ A c

l ∩ B1 ∩ · · · ∩ Bm, we see that the basic open set is

[A] := { p ∈ βX : A ∈ p } .

These are exactly the basic open sets in the original topology of βX . �

With this understanding, compactness of βX follows naturally.

Theorem 2.2. The space βX is compact.

Proof. Let I = P (X), and consider the space P (I) with the product topology. Since P (I)
is a compact space, it suffices to observe that βX is a closed subset of P (I).

Let q ∈ P (I) \ βX . We will show that q has a neighborhood disjoint of βX . Indeed, every
possible reason why q is not an ultrafilter defines such an open set. This is so since all reasons
are in terms of membership or non-membership of certain sets to q. For example:

(1) If X /∈ q then q ∈ [X ; ], which is disjoint of βX .
(2) If ∅ ∈ q then q ∈ [ ; ∅], which is disjoint of βX .
(3) If there is a set B ⊆ X such that B ⊇ A ∈ q and B /∈ q, then q ∈ [B ; A], which is

disjoint of βX . �

Exercise 2.3. Complete the consideration of all cases in the proof of Theorem 2.2.

3. The Extension Theorem

Lemma 3.1 (Regularity). Let K be a compact space and x ∈ K. For each neighborhood U
of x, there is a neighborhood V of x such that V ⊆ U .

Proof. As the space K is compact, its closed subset U c is compact, too. For each y ∈ U c,
chose disjoint open neighborhoods Vy and Uy of x and y, respectively. Then U c ⊆

⋃

y∈U c Uy.
As U c is compact, there are y1, . . . , yn ∈ U c such that U c ⊆ Uy1 ∪ · · · ∪ Uyn. Let

C = U c

y1
∩ · · · ∩ U c

yn
;

V = Vy1 ∩ · · · ∩ Vyn.
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Then V is a neighborhood of x and V ⊆ C. As the set C is closed, we have that V ⊆ C. �

Exercise 3.2. Let F be a filter in a topological space that converges to a point x. Prove
that for each A ∈ F we have that x ∈ A.

Theorem 3.3 (Extension). Let K be a compact space. Every function f : X → K extends,
in a unique manner, to a continuous function f̄ : βX → K.

βX
f̄

X

id

f
K

Proof. Uniqueness follows from the density of X in βX . We prove existence.
For each p ∈ βX , f(p) is an ultrafilter in the compact space K, and thus converges to a

unique point in K. Define
f̄(p) := lim f(p).

The function f̄ extends f : For each x ∈ X , we have that

f(px) = { f(A) : A ∈ px } ,

and the set {f(x)} is in the latter set. Thus, f̄(x) = lim f(px) = f(x).
The function f̄ is continuous: Let p ∈ βX . Let V be a neighborhood of f̄(p) in K. As

lim f(p) = f̄(p) ∈ V , there is f(A) ∈ f(p) (with A ∈ p) such that f(A) ⊆ V . The set [A] is a
neighborhood of p, and for q ∈ [A] we have that A ∈ q, and thus f(A) ∈ f(q). As V is closed,

we have that f̄(q) = lim f(q) ∈ f(A) ⊆ V . This is almost what we need.
By the Regularity Lemma, there is a neighborhood W of f̄(p) such that W ⊆ V . Carrying

out the preceding argument with W instead of V , we have that f̄(q) ∈ W ⊆ V for all q ∈
[A]. �

Exercise 3.4. Prove, using the Hausdorff property, the uniqueness of the extension f̄ in
the Extension Theorem.

A tip for the next exercise: By the characterization of ultrafilters as maximal filters, in
order to establish equality of an ultrafilter p to a set q, it suffices to prove that q is a filter and
p ⊆ q.

Exercise 3.5. Let f : X → X . As X ⊆ βX , we have in particular that f : X → βX . Let
f̄ : βX → βX be the unique continuous extension of f . Prove that, in this case,

f̄(p) = f(p)↑ := {B ⊆ X : ∃A ∈ p, f(A) ⊆ B }

for all p ∈ βX .

Exercise 3.6. Let f : X → βX , and let f̄ : βX → βX be its unique continuous extension.
Prove that, in this case,

f̄(p) = {B ⊆ X : ∃A ∈ p∀x ∈ A, B ∈ f(x) }

for all p ∈ βX .

4. Multiplication in βS

Definition 4.1. A semigroup is a nonempty set S equipped with an associative binary
operator ∗. Explicitly:

(1) To each pair of elements a, b ∈ S, a unique element a ∗ b ∈ S is assigned.
(2) For all a, b, c ∈ S, we have that (a ∗ b) ∗ c = a ∗ (b ∗ c).
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The multiplication symbols is usually omitted, writing ab instead of a ∗ b.

Let S be a semigroup. We extend the multiplication operator from S × S to βS × βS by
applying the Extension Theorem theorem twice: First, we extend it from S × S to S × βS by
fixing the left coordinate and using the extension theorem on the right coordinate, and then
we extend it from S × βS to βS × βS by fixing the right coordinate and using the extension
theorem on the left coordinate. The exact details are provided in the following definition.

Definition 4.2. Let S be a semigroup.

(1) Fix an element a ∈ S. Let La : S → S ⊆ βS be the function of left multiplication by
a, that is,

La(x) := ax

for all x ∈ X . By the Extension Theorem, the function La extends uniquely to a
continuous function L̄a : βS → βS.

βS
L̄a

S

id

La
βS

Define aq := L̄a(q) for all q ∈ βS. Keep in mind that this function is continuous in its
argument q.

(2) Fix an element q ∈ βS. Let Rq : S → βS be the function of right multiplication by q,
that is,

Rq(x) := xq

for all x ∈ X . By the Extension Theorem, the function Rq extends uniquely to a
continuous function R̄q : βS → βS.

βS
R̄q

S

id

Rq

βS

Define pq := R̄q(p) for all p ∈ βS. This function is continuous in its argument p.

Definition 4.2 defines the product pq for all p, q ∈ βS, in a way that the function

βS × βS → βS

(p, q) 7→ pq

is continuous in its first argument p, and its restriction

S × βS → βS

(a, q) 7→ aq

to S × βS is continuous in its second argument q.

Exercise 4.3. Prove that every composition of continuous functions is continuous.

Lemma 4.4. The set βS, with the binary operator (p, q) 7→ pq, is a semigroup.

Proof. Let p, q, r ∈ βS. We need to prove that (pq)r = p(qr).
1. For all x, y, z ∈ S, we have that

L̄xy(z) = Lxy(z) = (xy)z = x(yz) = Lx ◦ Ly(z) = L̄x ◦ L̄y(z),
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that is, the continuous functions L̄xy and L̄x ◦ L̄y coincide on S. As S is dense in βS, these two
functions coincide on all of βS. In particular, we have that

(xy)r = L̄xy(r) = L̄x ◦ L̄y(r) = x(yr).

2. By the last equation, we have that R̄r ◦ L̄x(y) = L̄x ◦ R̄r(y) for all y ∈ S, that is, the
continuous functions R̄r◦L̄x and L̄x◦R̄r coincide on S. As S is dense in βS, these two functions
coincide on all of βS. In particular, we have that

(xq)r = R̄r ◦ L̄x(q) = L̄x ◦ R̄r(q) = x(qr).

3. By the last equation, the continuous functions R̄r ◦ R̄q and R̄qr coincide on S, and thus
on βS. In particular, we have that (pq)r = p(qr). �

A right topological semigroup is a semigroup with a topology such that, for each constant
c ∈ S, multiplication by c on the right, x 7→ xc, is continuous. Following the tradition of
naming algebraic structures as groups, rings, bands, etc., we introduce the following name for
an algebraic structure.

Definition 4.5. A company is a compact right topological semigroup.

Corollary 4.6. For each semigroup S, the semigroup βS is a company. �

The following combinatorial characterization of multiplication in βS will help shortening
many later arguments. This characterization is due to Glazer. Intuitively, it asserts that A ∈ pq
if and only if there are p-many elements b for which there are q-many elements c with bc ∈ A.

Theorem 4.7 (Product Characterization). let S be a semigroup and p, q ∈ βS. Then:

(1) pq = {A ⊆ S : ∃B ∈ p∀b ∈ B∃C ∈ q, bC ⊆ A }. In other words, a set A is in pq if
and only if there is B ∈ p such that, for each b ∈ B, bC ⊆ A for some C ∈ q.

(2) For each A ∈ pq there are b ∈ S and C ∈ q such that bC ⊆ A.

Proof. (2) follows from (1). We prove (1). Note that [A]∩S = A (in particular, A ⊆ [A])
and A = [A] for all sets A ⊆ S.

(⇒) pq ∈ [A]. By continuity of right multiplication by q (R̄q), there is a neighborhood [B]
of p (B ∈ p) such that Bq ⊆ [B]q ⊆ [A].

Let b ∈ B. Then bq ∈ Bq ⊆ [A]. By continuity of left multiplication by an element of S (L̄b),
there is a neighborhood [C] of q (C ∈ q) such that bC ⊆ b[C] ⊆ [A]. Thus, bC ⊆ [A] ∩ S = A.

(⇐) For each b ∈ B, let C ∈ q be such that bC ⊆ A. By continuity of left multiplication by
b, we have that bC ⊆ bC ⊆ A. Since q ∈ [C] = C, we have that bq ∈ A. In summary, Bq ⊆ A.
By continuity of right multiplication by q, we have that Bq ⊆ Bq ⊆ A. Since p ∈ [B] = B,
pq ∈ A = [A], that is, A ∈ pq. �

A diagram containing some of the information in Theorem 4.7 may help remembering it:

A ∈ p · q

B

A ⊇ b · C

According to our identification of the elements of S with the principal ultrafilters in βS, we
have that S is a subsemigroup of βS.

Exercise 4.8. Let S be a semigroup. Prove, using the Product Characterization Theorem,
that for all a, b ∈ S we have that papb = pab.
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5. When is βS \ S a company?

As the set {s} is open in βS for all s ∈ S, the set S is open in βS. Thus, the set βS \ S is
topologically closed in βS. If, in addition, the set βS \ S is closed under multiplication, then
it is a company, and there is an idempotent in βS \ S. We describe this sufficient condition in
terms of the semigroup S.

Definition 5.1. A semigroup S is moving if S is infinite, and for all finite F ⊆ S and
infinite A ⊆ S, there are a1, . . . , ak ∈ A such that, for all but finitely many s ∈ S,

{a1s, . . . , aks} * F.

A group is a semigroup with an element e such that se = es = s for all s, and for each
s there is t such that st = ts = e. A semigroup S is left cancellative if, for all a, b, c ∈ S, if
ca = cb then a = b. Right cancellative semigroups are defined similarly. A function f : X → Y
is finite-to-one if for all y ∈ Y , the set of preimages f−1(y) = { x ∈ X : f(x) = y } of y is finite.

Exercise 5.2. Let S be a semigroup. If S is a group, then it is right cancellative and left
cancellative. If S is right cancellative or left cancellative, then it is moving. If left multiplication
in S is finite-to-one (i.e., the functions La : x 7→ ax are finite-to-one), then S is moving.

Theorem 5.3. Let S be a semigroup. The following assertions are equivalent:

(1) βS \ S is a subsemigroup of βS.
(2) S is moving.

Proof. (2) ⇒ (1): Let p, q ∈ βS \ S and assume that pq = s ∈ S. Then {s} ∈ pq. By the
Product Characterization Theorem, there is A ∈ p such that for each a ∈ A there is Ba ∈ q
such that aBa ⊆ {s}. Let a1, . . . , ak ∈ A. Then the set B := Ba1 ∩ · · · ∩ Bak is in q, and thus
infinite, and

{a1, . . . , ak}B ⊆ {s}.

Thus, S is not moving.
(1) ⇒ (2): Let F ⊆ S be finite and A ⊆ S be infinite, such that for all a1, . . . , ak ∈ A, the

set { s ∈ S : a1s, . . . , aks ∈ F } is infinite. For each a ∈ A, let

Ba = { s ∈ S : as ∈ F } .

Then, for all a1, . . . , ak ∈ A, the intersection Ba1 ∩ · · · ∩ Bak is infinite. Let q ∈ βS \ S be an
ultrafilter containing all sets Ba for a ∈ A. Since the set A is infinite, there is an ultrafilter
p ∈ βS \ S with A ∈ p. We will show that F ∈ pq, and therefore pq ∈ S. Indeed, A ∈ p and
for all a ∈ A, the set Ba is in q, and aBa ⊆ F . By the Product Characterization Theorem, we
have that F ∈ pq. �

6. Idempotents

Lemma 6.1 (Finite Intersection Property). Let K be a compact space, and let {Cα : α ∈ I }
be a family of closed sets in K such that every intersection of finitely many members of this
family is nonempty. Then the entire intersection,

⋂

α∈I Cα, is nonempty.

Proof. If
⋂

α∈I Cα = ∅, then the open cover
⋃

α∈I C
c

α = K has a finite subcover C c

α1
∪· · ·∪

C c

αn
= K. Then Cα1

∩ · · · ∩ Cαn
= ∅; a contradiction. �

Lemma 6.2. Let K be a compact space. A set C ⊆ K is closed if and only if C is compact.

Proof. We already know that closed subsets of compact spaces are compact. The proof
of the converse implication is similar to the proof of the Regularity Lemma (Lemma 3.1). �
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Exercise 6.3. Complete the proof of Lemma 6.2.

Thus, when working in compact spaces, we will freely switch among the terms “closed” and
“compact”.

Exercise 6.4. Prove that for each point x in a topological space X , the one-point set {x}
is closed.

An idempotent in a semigroup S is an element e ∈ S satisfying e2 := ee = e.

Theorem 6.5. Every company S has an idempotent element.

Proof. We will use the following variation of Zorn’s Lemma (Lemma 1.12): Let A be a
nonempty family of sets, with the property that for each chain {Aα : α ∈ I } in A, we have
that

⋂

α∈I Aα ∈ A. Then there is a minimal element A ∈ A. (I.e., such that there is no B ∈ A
with B ( A.)

A subcompany of S is a subset that is a company with respect to the (induced) multiplication
and topology of S. We will apply Zorn’s Lemma to find a minimal subcompany of S, and show
that this subcompany must be of the form {e}. (In particular, ee = e.)

The family of all subcompanies of S satisfies the conditions of Zorn’s Lemma: S is there,
and the intersection of a chain of subcompanies is a company, by the finite intersection property
of compact sets. By Zorn’s Lemma, there is a minimal subcompany T ⊆ S.

Fix an element e ∈ T . As right multiplication by e is continuous and the set T is compact,
the set Te = { te : t ∈ T } is also compact. As e ∈ T , we have that Te ⊆ T and Te is closed
under multiplication. Thus, the set Te is a company. By the minimality of T , we have that
Te = T , and therefore e ∈ Te. It follows that the stabilizer of e in T , defined as

stabT (e) := { t ∈ T : te = e } = R−1
e ({e}) ∩ T,

is nonempty. The stabilizer is a subsemigroup of T : For t1, t2 in the stabilizer, we have that
(t1t2)e = t1(t2e) = t1e = e. As the set {e} is closed and the function Re is continuous, the set
R−1

e [{e}] is closed, and therefore so is its intersection with T . Thus, the set stabT (e) is compact,
and is therefore a subcompany of T . By the minimality of T , we have that stabT (e) = T and, in
particular, that e ∈ stabT (e), that is, ee = e. This establishes the theorem, but it also follows
that {e} is a company contained in T , and therefore T = {e}. �

Corollary 6.6. Let S be a semigroup. In each closed subsemigroup of βS there is an
idempotent element. �

We will usually consider N as a semigroup with respect to its additive structure. Thus, an
idempotent element of βN is an element e ∈ N with e+ e = e.

Exercise 6.7. Prove that for every idempotent e ∈ βN and each n, we have that nN ∈ e.
Hint : Let ϕ : N → Zn be the canonical homomorphism ϕ(k) = k mod n. The finite semigroup
Zn, with the discrete topology, is compact. Thus, ϕ extends to a continuous homomorphism
(!) ϕ̄ : βN → Zn. Then ϕ̄(e) is an idempotent in Zn, and is therefore equal to 0. Apply the
continuity of ϕ̄.

Theorem 6.8 (Idempotent Characterization). Let S be a semigroup and let e ∈ βS be an
idempotent. For each A ∈ e, there is a ∈ A such that:

There is a set A′ ⊆ A in e such that aA′ ⊆ A.

Moreover:

(1) The set of elements a with the quoted property is in e.
(2) If e is nonprincipal, then we may request that a /∈ A′.
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(3) Item (1) above characterizes the property “e is an idempotent in βS”.

Proof. Let A ∈ e = e2. By the Product Characterization Theorem, there is B ∈ e such
that, for each a ∈ B, there is C ∈ e with aC ⊆ A. Fix a ∈ B ∩A, and take the corresponding
set C. Then the set A′ = C ∩ A is in e, and aA′ ⊆ aC ⊆ A. This establishes (1) and, in
particular, the quoted assertion.

(2) Since e is nonprincipal, the set {a} is not in e and {a} c ∈ e. Take A′ = C ∩A∩ {a} c =
C ∩ A \ {a}.

(3) By the Product Characterization Theorem and (1), we have that e ⊆ e2. As e and e2

are ultrafilters, equality holds. �

It follows directly from the definition that every subsemigroup of a moving semigroup is
moving.

Theorem 6.9. Let S be a semigroup. If S has a moving subsemigroup, then there is an
idempotent e ∈ βS \ S.

Proof. Let T be a moving subsemigroup of S. By Theorem 5.3, there is an idempotent
e ∈ βT \ T . Let

e↑ = {A ⊆ S : ∃B ∈ e, A ⊇ B } ,

the closure of e under taking supersets. Then e↑ ∈ βS. By the Idempotent Characterization
Theorem, e↑ is an idempotent in βS. As all elements of e↑ are infinite (given that e ∈ βT \ T ),
we have that e↑ ∈ βS \ S. �

Exercise 6.10. Prove that if there are no idempotents in a semigroup S, then S has a
subsemigroup isomorphic to N. In particular, in this case S has a moving subsemigroup.

7. Comments for Chapter 3

The Stone–Čech compactification occurs implicitly in Andrey N. Tychonoff’s paper Über die
topologische Erweiterung von Räumen, Mathematische Annalen, 1930. Explicit introductions
of this space were given by Marshall Stone, in his paper Applications of the theory of Boolean
rings to general topology, Transactions of the American Mathematical Society, 1937, and by
Eduard Čech, in his paper On bicompact spaces, Annals of Mathematics, 1937.

We have described the basic open sets in βX . This determines the open sets of βX as
unions of basic open sets. We provide here an explicit description of the open sets in βX .

Let U =
⋃

α∈I [Aα] be a union of basic open sets. Let p ∈ βX be such that p /∈ U . Then
Aα /∈ p, and thus Bα := A c

α ∈ p, for all α ∈ I. The sets Bα generate a filter F contained in p.
The converse implications also hold, and we have that p /∈ U if and only if F ⊆ p. Thus, the
open sets in βX are the sets of the form

[F ] = { p ∈ βX : F * p } ,

for F a filter on X . Equivalently, closed sets in βX are those of the form { p ∈ βX : F ⊆ p }.
Theorem 5.3 is due to Hindman, The ideal structure of the space of κ-uniform ultrafilters

on a discrete semigroup, Rocky Mountain Journal of Mathematics, 1986 (Theorem 2.5 with
κ = ω).

De Gruyter Expositions in Mathematics, Theorem 4.28. We did not include in Exercise 5.2
semigroups with finite-to-one right multiplication. The reason is that there are such semigroups
that are not moving (Benjamin Steinberg, Answer to Mathoverflow question 164050, 2014).
Fortunately, for our purposes this is not crucial: A semigroup S is periodic if every elements
of S generates a finite semigroup. A semigroup S is right (left) zero if ab = b (ab = a) for
all a, b ∈ S. Lev N. Shevrin (On the theory of periodic semigroups, Izvestija Vysših Učebnyh
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Zavedenĭı Matematika, 1974) proved that every infinite semigroup has a subsemigroup of one
of the following types:

(1) (N,+).
(2) An infinite periodic group.
(3) An infinite right zero or left zero semigroup.
(4) (N,∨), where m ∨ n := max{m,n}.
(5) (N,∧), where m ∧ n := min{m,n}.
(6) An infinite semigroup S with S2 finite.
(7) The fan semilattice (N,∧), with m ∧ n = 1 for distinct m,n (and n ∧ n = n for all n).

Assume that right multiplication in S is not finite-to-one. Then S does not have a subsemigroup
of the type (6) or (7). Thus, it must have a subsemigroup of one of the remaining types (1)–
(5), which are all moving (!). Thus, Theorem 6.9 applies to semigroups with finite-to-one right
multiplication as well.



CHAPTER 4

Monochromatic finite sums and products

1. Hindman’s Theorem

Definition 1.1. Let S be a semigroup, and let a1, a2, · · · ∈ S. FP(a1, a2, . . . ) is the set of
all finite products ai1ai2 · · · ain with i1 < i2 < · · · < in, for arbitrary n.

In particular, we have that a1, a2, · · · ∈ FP(a1, a2, . . . ). When considering the semigroup N
with respect to addition, we write FS(a1, a2, . . . ) instead of FP(a1, a2, . . . ), since this is a set of
finite sums.

Schur’s Coloring Theorem (Theorem 3.3) may be restated as follows: for each finite coloring
of N, there are natural numbers x and y such that the numbers x, y and x+ y have the same
color. The following theorem, due to Neil Hindman, is much stronger.

Theorem 1.2 (Hindman). For each finite coloring of N, there are distinct natural numbers
a1, a2, . . . such that the set FS(a1, a2, . . . ) is monochromatic.

Consider the semigroup (N,+). As its extension (βN,+) is a company, there is an idem-
potent e ∈ βN, that is, such that e + e = e. As there are no idempotents in (N,+), we have
that e ∈ βN \ N. Thus, Hindman’s Theorem follows from the following theorem. Moreover,
by Theorem 6.9, every semigroup that contains a moving subsemigroup satisfies the premise of
the following theorem.

Theorem 1.3 (Galvin–Glazer). Let S be an infinite semigroup. If there is an idempotent
e ∈ βS \ S, then for each finite coloring of S there are distinct elements a1, a2, · · · ∈ S such
that the set FP(a1, a2, . . . ) is monochromatic.

Proof. Fix an idempotent e ∈ βS \ S. Let a finite coloring of S be given. As e is an
ultrafilter on S, there is in e a monochromatic set A. We proceed as in the “good case” in the
proof of Ramsey’s Theorem:

a1 a2 a3 · · ·

A1 = A
A2

A3

A4

By the Idempotent Characterization Theorem (Theorem 6.8), there are an element a1 ∈ A and
a set A2 ⊆ A \ {a1} in e such that a1A2 ⊆ A.

31
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By the same theorem, there are an element a2 ∈ A2 and a set A3 ⊆ A2 \ {a2} in e such that
a2A3 ⊆ A2.

This way, setting A1 = A, we choose for each n an element an ∈ An and a set An+1 ⊆
An \ {an} in e such that anAn+1 ⊆ An, as illustrated in the following diagram.

Then FP(a1, a2, . . . ) ⊆ A: Consider a product ai1ai2 · · · ain with i1 < i2 < · · · < in. Each of
the following assertions implies the subsequent one.

ain ∈ Ain

ain−1
ain ∈ ain−1

Ain ⊆ Ain−1

ain−2
ain−1

ain ∈ ain−2
Ain−1

⊆ Ain−2

...

ai1ai2 · · ·ain ∈ ai1Ai2 ⊆ Ai1 ⊆ A.

Awesome, isn’t it? �

Had we not insisted that the elements a1, a2, . . . are distinct, the conclusion in the Galvin–
Glazer Theorem would trivialize in every semigroup with an idempotent e ∈ S. In this case,
taking an = e for all n, we have that FP(a1, a2, . . . ) = {e}, which is monochromatic but for a
trivial reason.

Exercise 1.4. Formulate and prove, using the Compactness Theorem, a finite version of
Hindman’s Theorem.

As the semigroup (N, ·) is cancellative, for each finite coloring of N there are also distinct
natural numbers a1, a2, . . . such that the finite products set FP(a1, a2, . . . ) is monochromatic.

Definition 1.5. Let S be a semigroup. A set A ⊆ S is an FP set if there are distinct
elements a1, a2, · · · ∈ S with FP(a1, a2, . . . ) ⊆ A. In cases where the operation of S is denoted
by +, we write FS instead of FP.

The proof of the Galvin–Glazer Theorem (Theorem 1.3) establishes the following.

Corollary 1.6. Every element of a nonprincipal idempotent of βS is an FP set. �

Theorem 1.7. For each finite coloring of N, there is a monochromatic set that is both an
FS set and an FP set.

Proof. Let
L = { p ∈ βN : each A ∈ p is an FS set } .

By Corollary 1.6, every idempotent of the semigroup (βN,+) is in L. In particular, the set L
is nonempty.

L is a (topologically) closed subset of βN: For p /∈ L, fix A ∈ p that is not an FS set. Then
p ∈ [A] and L ∩ [A] = ∅.

L is closed under multiplication: Let p, q ∈ L (in fact, it suffices that q ∈ L) and A ∈ pq.
By the Product Characterization Theorem, there are n ∈ B ∈ p and C ∈ q such that nC ⊆ A.
Pick distinct c1, c2, · · · ∈ N such that FS(c1, c2, . . . ) ⊆ C. By distributivity, we always have
that n(ci1 + · · ·+ cim) = nci1 + · · ·+ ncim , and thus

A ⊇ nFS(c1, c2, . . . ) = FS(nc1, nc2, . . . ).

This shows that pq ∈ L.
Thus, (L, ·) is a subcompany of (βN, ·). Let e = e2 be an idempotent in L. Let A ∈ e be

monochromatic for the given coloring. As L and N are disjoint, we have that e ∈ βN\N. Thus,
the set A is an FP set. Since e ∈ L, we have that A is an FS set. �
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Theorem 1.8. Let V be an infinite-dimensional vector space over the two-element field Z2.
For each finite coloring of V \ {~0}, there is an infinite-dimensional subspace U of V such that

the set U \ {~0} is monochromatic. In particular, V has a monochromatic, infinite-dimensional
affine subspace.

Proof. (V,+) is a group. By Theorem 5.3, there is an idempotent e ∈ βV \ V . By
the Galvin–Glazer Theorem, there are distinct elements v1, v2, · · · ∈ V such that the set
FS(v1, v2, . . . ) is monochromatic.

Since the space is over Z2, we have that span{v1, v2, . . . } = FS(v1, v2, . . . ) ∪ {~0}. As spaces
over Z2 spanned by finitely many vectors are finite, the space span{v1, v2, . . . } is infinite-
dimensional.

For an infinite-dimensional subspace U of V , let v1, v2, · · · ∈ U be linearly independent.
Then v1 + span{v2, v3, . . . } ⊆ U \ {~0} is an infinite-dimensional affine subspace of V . �

In Theorem 1.8 we cannot request that the whole subspace U is monochromatic.

Exercise 1.9. Show that for each vector space there is a 2-coloring such that the only
monochromatic subspace is the zero space.

Theorem 1.8 fails for fields other than Z2.

Exercise 1.10. Let V be the countably-infinite-dimensional vector space over a field F 6=
Z2. Find a 2-coloring of V with no monochromatic infinite-dimensional affine subspace.
Hint : Let v1, v2, . . . be linearly independent. For each v ∈ V , represent v = α1v1 + · · ·+ αkvk
with αk 6= 0. Color v green if αk = 1, and red otherwise.

2. Coloring FP sets

We have seen (Corollary 1.6) that every element of a nonprincipal idempotent of βS is an
FP set. The converse also holds.

Theorem 2.1. Let S be a moving semigroup. Every FP set in S belongs to some non-
principal idempotent of βS. Moreover, for all distinct a1, a2, · · · ∈ S, there is an idempotent
e ∈ βS \ S such that FP(an, an+1, . . . ) ∈ e for all n.

Proof. For each n, let Kn = [FP(an, an+1, . . . )] ⊆ βS. The set Kn is compact, and
therefore so is Kn \ S. As FP sets are infinite, the set Kn \ S is nonempty. Since

βS \ S ⊇ K1 \ S ⊇ K2 \ S ⊇ · · · ,

we have by the finite intersection property that the compact set

K :=
∞⋂

n=1

Kn \ S =
∞⋂

n=1

[FP(an, an+1, . . . )] \ S

is nonempty. The set K is closed under multiplication: Let p, q ∈ K. In particular, p, q /∈ S.
As S is moving, βS \ S is a subsemigroup of βS, and thus pq /∈ S.

Fix n. It remains to verify that pq ∈ [FP(an, an+1, . . . )], that is, FP(an, an+1, . . . ) ∈ pq. We
will do so using the Product Characterization Theorem. We know that FP(an, an+1, . . . ) ∈ p.
For all ai1 · · · aik ∈ FP(an, an+1, . . . ) (where n ≤ i1 < · · · < ik), the set FP(aik+1, aik+2, . . . ) is
in q, and

ai1 · · · aik · FP(aik+1, aik+2, . . . ) ⊆ FP(an, an+1, . . . ).

Thus, K is a company and there is an idempotent e ∈ K. Then e /∈ S and FP(an, an+1, . . . ) ∈ e
for all n. �
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Corollary 2.2. Let S be a moving semigroup, and A1, . . . , Ak ⊆ S. If A1 ∪ · · · ∪Ak is an
FP set, then there is i such that Ai is an FP set. In particular, for each finite coloring of an
FP set, there is a monochromatic FP subset.

Proof. Take an idempotent e ∈ βS \ S with A := A1 ∪ · · · ∪Ak ∈ e. As e is an ultrafilter,
some Ai is in e. As e ∈ βS \ S and e is an idempotent, this set Ai is an FP set. �

Given a finite coloring of an FP set FP(a1, a2, . . . ), is there necessarily a subsequence
ai1 , ai2 , . . . with FP(ai1 , ai2 , . . . ) monochromatic? The answer is negative: Consider the ad-
ditive semigroup N. Color the even numbers green, and the odd numbers red. Consider
FS(1, 3, 5, 7, 9, . . . ). For each subsequence of the odd numbers, every number is red, but every
sum of two is green. However, the subset FS(1 + 3, 5 + 7, 9 + 11, . . . ) of FS(1, 3, 5, 7, . . . ) is
monochromatic. This illustrates the following theorem.

For finite sets I, J ⊆ N, we write I < J if i < j for all i ∈ I and j ∈ J , that is, if
max I < min J .

Theorem 2.3. Let S be a moving semigroup. Let a1, a2, · · · ∈ S be distinct. For each finite
coloring of FP(a1, a2, . . . ), there are finite index sets F1, F2, . . . ⊆ N such that:

(1) F1 < F2 < F3 < · · · .
(2) The elements sn =

∏

i∈Fn
ai, where the indices in the multiplication are taken in in-

creasing order, are distinct.
(3) The set FP(s1, s2, . . . ) (which is contained in FP(a1, a2, . . . )) is monochromatic.

Proof. Take an idempotent e ∈ βS \ S such that FP(an, an+1, . . . ) ∈ e for all n. As
FP(a1, a2, . . . ) ∈ e, there is in e a monochromatic subset A1 of FP(a1, a2, . . . ). We repeat the
proof of the Galvin–Glazer Theorem, with small changes.

Take s1 =
∏

i∈F1
ai ∈ A1 and a set A2 ⊆ A1\{s1} in e such that s1A2 ⊆ A1. Let n1 = maxF1.

As A2 ∩ FP(an1+1, an1+2, . . . ) ∈ e, we may assume that A2 ⊆ FP(an1+1, an1+2, . . . ).
Take s2 =

∏

i∈F2
ai ∈ A2 and a set A2 ⊆ A2\{s2} in e such that s2A3 ⊆ A2. Let n2 = maxF2.

We may assume that A3 ⊆ FP(an2+1, an2+2, . . . ).
Continue in the same manner.
Then the set FP(s1, s2, . . . ) is a subset of A, and is therefore monochromatic. �

Exercise 2.4. Prove Theorem 2.3 under the more general assumption, that, for some
subsequence of the given sequence a1, a2, . . . , the subsemigroup generated by this subsequence
is moving.

Let [N]<∞ denote the set of all finite subsets of N. If, in the following theorem, we do not
insist that the sets Fn are disjoint, then its conclusion becomes trivial: In every increasing chain
of finite sets there is a monochromatic sub-chain, and chains are closed under finite unions.

Corollary 2.5. For each finite coloring of the set [N]<∞ there are finite sets F1, F2, . . . ⊆ N
such that F1 < F2 < . . . , and all sets

Fi1 ∪ Fi2 ∪ · · · ∪ Fim

(for i1 < i2 < · · · < im) are of the same color.

Proof. The semigroup ([N]<∞,∪) is moving, and [N]<∞ \ {∅} = FP({1}, {2}, . . . ), an FP
set. Apply Theorem 2.3. �

The semigroup ([N]<∞,∩) is not moving, and does not have any moving subsemigroup. An
example similar to that in Exercise 1.9 shows that, in the last corollary, one cannot replace ∪
by ∩.
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3. Application to systems of polynomial inequalities

A semigroup (S,+) is abelian if a + b = b + a for all a, b ∈ S. Usually, the operator of an
ablian semigroup is denoted “+”.

Definition 3.1. A ring is a structure (R,+, ·) such that (R,+) is an abelian group, (R, ·)
is a semigroup with an identity element (a monoid), and the distributive law holds:

a(b+ c) = ab+ ac

(b+ c)a = ba + ca

for all a, b, c ∈ R. A monomial (in x) over R is an expression of the form

a1x
d1a2x

d2 · · · amx
dmam+1,

where a1, . . . , am+1 ∈ R and d1, . . . , dm ∈ N. The degree of a monomial is the sum of powers
of x occurring in the monomial. A polynomial (in x) over R is a sum of monomials (in x, over
R). The degree of a polynomial is the maximum degree of a monomial in the polynomial. R[x]
is the family of all polynomials in x over R.

When the ring R is a field, multiplication is abelian, and every monomial is of the form axd.
Thus, in this case, the notion of polynomial coincides with the familiar one. An example of a
ring with nonabelian multiplication is the ring of all square n× n matrices over a fixed field.

The product of monomials is a monomial and the sum of polynomials is a polynomial. By
the distributive law, for a ring R, the product of polynomials is a polynomial, and thus R[x] is
also a ring.

Definition 3.2. A system of polynomial inequalities over a ring R is a system of inequalities

f1(x) 6= g1(x)

f2(x) 6= g2(x)
...

fm(x) 6= gm(x),

where f1(x), . . . , fm(x), g1(x), . . . , gm(x) ∈ R[x]. A solution to such a system is an element
a ∈ R satisfying all inequalities in the system, that is, such that fi(a) 6= gi(a) for all i = 1, . . . , m.

Every system of polynomial inequalities can be brought to the form

f1(x) 6= 0

f2(x) 6= 0
...

fm(x) 6= 0,

with f1(x), . . . , fm(x) ∈ R[x]. Indeed, replace each inequality fi(x) 6= gi(x) by the inequality
fi(x)− gi(x) 6= 0. Thus, we will restrict attention to inequalities of this simplified form.

In the infinite ring
ZN
2 = { (a1, a2, . . . ) : a1, a2, · · · ∈ Z2 } ,

with coordinate-wise addition and multiplication, there are polynomial inequalities with no
solution, e.g., x2 − x 6= 0. We will see, though, that if a system of polynomial inequalities has
a solution, then it has many solutions.

Lemma 3.3. Let f(x) ∈ R[x] be a polynomial of degree n. For each constant a ∈ R, there
is g(x) ∈ R[x], of degree smaller than n, such that f(a+ x) = f(x) + g(x).
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Proof. It suffices to prove the claim for monomials, and this follows by opening brackets.
�

Exercise 3.4. Prove Lemma 3.3.

Definition 3.5. For elements a1, . . . , an is a ring R, let FS(a1, a2, . . . , an) be the set of all
(finite) sums ai1 + · · ·+ aik , where 1 ≤ i1 < · · · < ik ≤ n, k ≤ n arbitrary.

Lemma 3.6. Let f(x) ∈ R[x] be a polynomial of degree n. If there are a1, . . . , an+1 ∈ R such
that f(a) = 0 for all a ∈ FS(a1, . . . , an+1), then f(0) = 0.

Proof. By induction on n, the degree of f(x).
n = 1: By Lemma 3.3, there is c = g(x) ∈ R[x] of degree smaller than 1, that is, a constant,

such that

f(a1 + x) = f(x) + g(x) = f(x) + c.

Substitute a2 for x, to obtain 0 = f(a1+a2) = f(a2)+c = c. Thus, f(a1+x) = f(x). Substitute
0 for x, to obtain 0 = f(a1) = f(0).

n > 1: By Lemma 3.3, there is g(x) ∈ R[x], of degree smaller than n, such that f(a1+x) =
f(x) + g(x). For each a ∈ FS(a2, . . . , an), we have that

0 = f(a1 + a) = f(a) + g(a) = 0 + g(a) = g(a).

By the inductive hypothesis, g(0) = 0, and thus 0 = f(a1) = f(a1 + 0) = f(0) + g(0) = f(0).
The proof is completed. �

Theorem 3.7. Let R be an infinite ring. If a system of polynomial inequalities over R
has a solution, then it has infinitely many solutions. Moreover, for each solution a0, the set of
solutions is of the form a0 + A, where A is an FS set.

Proof. Fix a polynomial system of inequalities. Let f1(x), . . . , fm(x) ∈ R[x] be the poly-
nomials in this system, and let A be its nonempty solution set. Fix a0 ∈ A, and consider the
new system

f1(a0 + x) 6= 0

f2(a0 + x) 6= 0
...

fm(a0 + x) 6= 0.

Let A′ be its solution set. Then 0 ∈ A′, and a0 + A′ = A. We may assume, thus, that this is
the situation in the original system, that is, that 0 ∈ A, and prove that A is an FS set.

For f(x) ∈ R[x], let f−1(0) = { a ∈ R : f(a) = 0 }. As A = f−1
1 (0) c ∩ · · · ∩ f−1

m (0) c (all
complements taken in R), we have that

f−1
1 (0) ∪ · · · ∪ f−1

m (0) = A c.

Since (R,+) is a group and R is an FS set, we have by Corollary 2.2 that either A or A c is an
FS set. Assume, towards a contradiction, that A c is an FS set. Then, by the same corollary,
there is i such that f−1

i (0) is an FS set. By Lemma 3.6, we have that 0 ∈ f−1
i (0), and thus

0 /∈ A; a contradiction. �

Exercise 3.8. Prove that, in general, we may not request that in the last theorem that
the solution set is an FS set.
Hint : Consider the inequality x2 6= x over the ring Z3 ×ZN

2 , with coordinate-wise addition and
multiplication.
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4. Comments for Chapter 4

Hindman’s Theorem is a landmark in combinatorial number theory and Ramsey theory.
The finite version of Hindman’s Theorem (Exercise 1.4) is due, independently, to Jon Folkman
(1965, unpublished), Jon H. Sanders (A Generalization of Schur’s Theorem, Doctoral Disserta-
tion, Yale University, 1968), Richard Rado (Some partition theorems, Colloquia Mathematica
Societatis Janos Bolyai, 1969), and Vladimir I. Arnautov (Nondiscrete topologizability of count-
able rings, Soviet Mathematics Doklady, 1970). Of course, this results was originally proved
without the help of the later Hindman’s Theorem. Sanders in his dissertation, and later Ron
L. Graham and Bruce L. Rothschild (Ramsey’s theorem for n-parameter sets, Transactions of
the American Mathematical Society, 1971), posed Hindman’s Theorem as a conjecture.

The celebrated mathematician David Hilbert has in fact proved an infinitary weak form
of Hindman’s Theorem, namely: For each finite coloring of N and each m, there are natural
numbers a1, a2, . . . , am and an infinite set B ⊆ N such that the set

{ a + b : a ∈ FS(a1, a2, . . . , am), b ∈ B }

is monochromatic. Naturally, here FS(a1, a2, . . . , am) is the set of all (necessarily, finite) sums of

distinct members of the set a1, a2, . . . , am (Über die Irreduzibilitat ganzer rationaler Funktionen
mit ganzzahlingen Koefzienten, Journal für die reine und angewandte Mathematik, 1892).

Hindman’s original proof (Finite sums from sequences within cells of a partition of N, Jour-
nal of Combinatorial Theory (A), 1974), while elementary, was very involved. Hindman himself
commented that he “does not understand it”. The natural proof provided here is due to Fred
Galvin and Steve Glazer. Galvin realized that all one needs is an ultrafilter as in Theorem 6.8,
and Glazer realized that idempotents in βN have this property.

FS sets were introduced by Hillel Furstenberg in his book Recurrence in ergodic theory and
combinatorial number theory (Princeton University Press, 1981). There, FS sets are requested
to be equal to sets of the form FS(a1, a2, . . . ), but we follow the terminological convention
of the Hindman–Strauss monograph. In Furstenberg’s book, and in many later sources, FS
sets are called IP sets. Thus, we have seen that elements of idempotents in βN are IP sets.
Amusingly, the initials “IP” do not stand for “idempotents”, but rather for “infinite-dimensional
parallelepiped”, since the finite sums of a set of three linearly independent vectors in space form
the vertices of an (three-dimensional) parallelepiped.

Theorem 1.7 asserts that there are distinct numbers k1, k2, . . . and distinct numbers n1, n2, . . .
such that the set FS(k1, k2, . . . )∪FP(n1, n2, . . . ) is monochromatic. But this theorem does not
assert that these sequences may be chosen to be identical. Indeed, Hindman has found a con-
crete finite coloring (in fact, a 7-coloring) of N such that there are no distinct k1, k2, . . . such
that the set FS(k1, k2, . . . ) ∪ FP(k1, k2, . . . ) is monochromatic, even if we consider only sums
and products of pairs of elements! Using this fact, he proved that there is no ultrafilter p on N
satisfying p+ p = p · p. Details are available in the Hindman–Strauss monograph.

As already observed, the Galvin–Glazer Theorem (Theorem 1.3) does not hold for all semi-
groups. However, if S has a subsemigroup T for which this coloring theorem holds, then the
theorem holds for S too, since any coloring of S is also a coloring of T . Thus, Shevrin’s clas-
sification of the necessary subsemigroups of infinite semigroups (See comments to Chapter 3)
is relevant. We obtain the following theorem, pointed out in a joint work with Gili Golan,
Hindman’s coloring theorem in arbitrary semigroups, Journal of Algebra, 2013.

Theorem 4.1. Let S be an arbitrary semigroup. For each finite coloring of S there are
distinct a1, a2, · · · ∈ S and a finite set F ⊆ S such that the (infinite) set FP(a1, a2, . . . ) \ F is
monochromatic. �

Exercise 4.2. Prove Theorem 4.1.
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Hint : By the above discussion, it suffices to consider cases (6) and (7) in Shevrin’s classification.

An infinite set is almost-monochromatic for a given coloring if all but finitely many mem-
bers of that set have the same color. In the above-cited joint work with Golan, the semigroups
possessing, for each finite coloring, an infinite almost-monochromatic subsemigroup are char-
acterized.

Lemma 3.3, Lemma 3.6 and Theorem 3.7, modulo the assertion that the solution set is a
translate of an FS set, are proved in Arnautov’s cited paper. The proof of Theorem 3.7 provided
here is due to Hromulyak, Protasov and Zelenyuk, Topologies on countable groups and rings,
Doklady Akademia Nauka Ukraine, 1991.

A ring topology on a ring R is a topology on R such that addition and multiplication are
continuous. By continuity of the ring operations, every solution set of a systems of polynomial
inequalities is open in any ring topology. Such solution sets are known as Zariski open or
unconditionally open. If 0 is a unique solution of a system of polynomial inequalities, then
every ring topology is discrete. The Zariski open sets may not be a basis for a topology, since
they often do not separate points, that is the Hausdorff property fails. Andrey A. Markov (On
unconditionally closed sets, Matematicheskii Sbornik, 1946) proved that if 0 is not a unique
solution of a system of polynomial inequalities in a countably infinite ring R, then there is a
nondiscrete, Hausdorff ring topology on R. It follows from Arnautov’s Theorem (Theorem 3.7)
that on every countably-infinite ring there is a nondiscrete ring topology.

For the present paragraph only, we do not request a topological space to be Hausdorff.
A ring topology on a ring R is a topology on R such that addition and multiplication are
continuous. By continuity of the ring operations, every solution set of a systems of polynomial
inequalities is open in any ring topology, and these sets form a basis for a topology, known
as the Zariski topology. If 0 is a unique solution of a system of polynomial inequalities, then
the Zariski topology is discrete. The Zariski topology is often non-Hausdorff, but Andrey A.
Markov (On unconditionally closed sets, Matematicheskii Sbornik, 1946) proved that if 0 is not
a unique solution of a system of polynomial inequalities in a countably infinite ring R, then there
is a nondiscrete, Hausdorff ring topology on R. It follows from Arnautov’s Theorem (Theorem
3.7) that on every infinite countable ring there is a nondiscrete Hausdorff ring topology. This
consequence was first proved, by direct means, by Arnautov in his above-cited paper.



CHAPTER 5

Monochromatic arithmetic progressions

1. Ideals in semigroups

Definition 1.1. Let S be a semigroup. A left ideal (of S) is a nonempty set L ⊆ S such
that SL := { sa : s ∈ S, a ∈ L } ⊆ L, that is, sL := { sa : a ∈ L } ⊆ L for all s ∈ S. A left ideal
L is minimal if no left ideal of S is properly contained in S. Elements of minimal left ideals
are called minimal elements.

It follows that every left ideal of a semigroup S is a subsemigroup of S, and that, for each
a ∈ S, the set Sa is a left ideal of S.

Lemma 1.2. Let S be a semigroup.

(1) If a is a minimal element, then the element sa is minimal for each s ∈ S.
(2) For each minimal left ideal L and every a ∈ L, we have that Sa = L.
(3) For each minimal element a ∈ S, the set Sa is a minimal left ideal.
(4) If S is a company, then every minimal left ideal of S is compact.

Proof. (1) Let L be a minimal left ideal containing a. Then sa ∈ L.
(2) Sa ⊆ L is a left ideal. By minimality of L, Sa = L.
(3) By (2).
(4) By (2), the minimal left ideal is of the form Sa. As right multiplication by a is a

continuous function and S is compact, the left ideal Sa is compact. �

Lemma 1.3 (Fixing). Let S be a semigroup. Let a ∈ S. The following assertions are
equivalent:

(1) a is minimal.
(2) For each b ∈ S, there is c ∈ S such that cba = a.

Proof. (1) ⇒ (2): Let L be a minimal left ideal with a ∈ L. Then ba ∈ L, and therefore
L = Sba. As a ∈ L, there is c ∈ S such that a = cba.

(2) ⇒ (1): Let L be a left ideal with L ⊆ Sa. Take ba ∈ L. Then there is c such that
a = cba ∈ L. Thus, Sa ⊆ L, and therefore L = Sa. This shows that Sa is a minimal left ideal
and a ∈ L = Sa. �

An element a of a semigroup S is a minimal idempotent element if it is both a minimal
element and an idempotent.

Lemma 1.4. Let S be a company. Every left ideal of S contains a minimal idempotent
element.

Proof. We first show that every left ideal of S contains a minimal left ideal. Let L be a
left ideal. Fix an element a ∈ L. Then Sa ⊆ L, and Sa is a compact left ideal. Thus, the family
of all compact left ideals contained in L is nonempty. By the finite intersection property of
compact sets, this family satisfies the conditions of Zorn’s Lemma, and therefore has a minimal
element M . Let I ⊆ M be a left ideal. Then, for any b ∈ I, Sb is a compact left ideal contained
in I. By minimality of M , we have that Sb = I = M .
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Being a minimal left ideal in a company, the set M is compact and thus a company. Thus,
there is an idempotent in M . �

Minimal elements are minimal in every company where they belong.

Lemma 1.5. Let S be a company and a ∈ S a minimal element. For each subcompany T of
S such that a ∈ T , the element a is also minimal in T .

Proof. The set Ta is a left ideal of T . Take a minimal idempotent e ∈ Ta. Then there is
an element t ∈ T with e = ta. By the Fixing Lemma, there is s ∈ S such that se = a. Then
a = se = see = ae. As e is minimal in T and a ∈ T , the element a = ae is also minimal in
T . �

Definition 1.6. An ideal (of S) is a nonempty set I ⊆ S with IS, SI ⊆ I.

Lemma 1.7. Let I be an ideal of a semigroup S. For each minimal element a, we have that
a ∈ I.

Proof. Let b ∈ I. By the Fixing Lemma, there is c ∈ S such that a = cba ∈ I. �

Let S be a semigroup and m be a natural number. For visual clarity, we present elements
of Sm as columns. The set Sm is a semigroup with the coordinate-wise product:





a1
...
am



 ·





b1
...
bm



 :=





a1b1
...

ambm



 .

Elements of Sm will be denoted by boldface letters: a,b, c, . . . .

Lemma 1.8. Let S be a semigroup and a1, . . . , am ∈ S be minimal. Then the element

a :=





a1
...
am





is minimal in Sm.

Proof. By the Fixing Lemma, it suffices to prove that for each b ∈ Sm there is c ∈ Sm

such that cba = a. Let

ba =





b1
...
bm



 ·





a1
...
am



 =





b1a1
...

bmam



 .

By the Fixing Lemma, there is for each i = 1, . . . , m an element ci ∈ S such that cibiai = ai.
Let

c :=





c1
...
cm



 .

Then

cba =





c1
...
cm



 ·





b1a1
...

bmam



 =





c1b1a1
...

cmbmam



 =





a1
...
am



 = a. �

Recall that, for a company S, the product topology on Sm is the one with the basic open
sets

U1 × · · · × Um,

where U1, . . . , Um ⊆ S.
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Exercise 1.9. Let S be a company. The set Sm, with the product topology and coordinate-
wise multiplication, is a company.

2. van der Waerden’s Theorem

The following theorem, due to Bartel L. van der Waerden, proves a conjecture of Schur.

Theorem 2.1 (van der Waerden). For each finite coloring of N, there are arbitrarily long
monochromatic arithmetic progressions.

Towards the proof of van der Waerden’s Theorem, assume that N is finitely colored. Fix
a natural number m. We wish to find a monochromatic arithmetic progression of length m.
It suffices to find an ultrafilter p ∈ βN such that every element of p contains an arithmetic
progression of length m. Explicitly, fix A ∈ p. We need that there are a, d ∈ N such that
a, a+ d, . . . , a+ (m− 1)d ∈ A, that is,







a
a+ d
...

a+ (m− 1)d







∈ [A]m.

The set [A]m is a neighborhood of the element





p
...
p





in the product topology of (βN)m.
Consider the following two subsets of Nm. These sets are, in particular, subsets of (βN)m:

AP :=













a
a+ d
...

a+ (m− 1)d







: a, d ∈ N







;

AP0 := AP ∪











a
...
a



 : a ∈ N






.

Exercise 2.2. For each s ∈ Nm, The function on (βN)m, defined by q 7→ s+q, is continuous.

Lemma 2.3. AP0 is a subcompany of (βN)m.

Proof. As every sum of two arithmetic progressions is an arithmetic progression, the set
AP0 is a subsemigroup of Nm. The lemma follows by continuity: Let p,q ∈ AP0. We need to
show that p+ q ∈ AP0, that is, every neighborhood of p+ q intersects AP0.

Let U be a neighborhood of p+q. By right continuity, there is a neighborhood V of p such
that V + q ⊆ U . As p ∈ AP0, there is s ∈ V ∩AP0. In particular, s+ q ∈ U . By continuity of
left multiplication by an element of Nm, there is a neighborhood W of q such that s+W ⊆ U .
As q ∈ AP0, there is t ∈ W ∩ AP0 and, in particular s + t ∈ U . As s and t are in AP0, so is
their sum. Thus, s+ t ∈ U ∩ AP0 and the latter intersection is nonempty. �
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Lemma 2.4. Let p ∈ βN, and

p =





p
...
p



 .

Then:

(1) Every neighborhood of p contains one of the form [A]m, with A ∈ p.
(2) p ∈ AP0.

Proof. (1) Let [A1] × · · · × [Am] be a basic open neighborhood of p contained in the
given neighborhood. As A1, · · · , Am ∈ p, we have that A := A1 ∩ · · · ∩ Am ∈ p. Then
p ∈ [A]m ⊆ [A1]× · · · × [Am].

(2) It suffices to consider neighborhoods of the form (1). As A ∈ p, there is a ∈ A. Then




a
...
a



 ∈ [A]m ∩ AP0. �

Lemma 2.5. The set AP is an ideal of AP0.

Proof. The set AP is an ideal of AP0. The assertion follows, by continuity considerations
as in the proof of Lemma 2.3. �

Exercise 2.6. Prove Lemma 2.5.

Lemma 2.7. Let p ∈ βN be a minimal element. Then

p :=





p
...
p



 ∈ AP.

Proof. We collect the information gained thus far: By Lemma 1.8, The element p is
minimal in (βN)m. Since p ∈ AP0, it is also minimal in this subcompany. As AP is an ideal of
AP0, the minimal element p is in AP (Lemma 1.7). �

We can now conclude the proof of van der Waerden’s Theorem. Given a finite coloring of
N, take a minimal element p ∈ βN and a monochromatic set A ∈ p. By the last lemma, we
have that p ∈ AP, and thus its neighborhood [A]m intersects the set AP. Therefore, there is







a
a+ d
...

a + (m− 1)d







∈ [A]m

with a, d ∈ N. Then the elements a, a+ d, . . . , a+ (m− 1)d are in A, and are thus of the same
color.

Exercise 2.8. Find a 2-coloring of N with no infinite monochromatic arithmetic progres-
sion.

Exercise 2.9. Prove the following finite version of van der Waerden’s Theorem: Let k
and m be natural numbers. There is n such that, for each k-coloring of {1, . . . , n}, there is a
monochromatic arithmetic progression of length m in the colored set.
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The proof of van der Waerden’s Theorem shows that for each p ∈ βN minimal in (βN,+),
every element A ∈ p contains arbitrarily long arithmetic progressions. Similarly, if p is min-
imal in (βN, ·), then every element A ∈ p contains arbitrarily long geometric progressions
a, aq, . . . , aqm−1. The following theorem is stronger.

Theorem 2.10. For each finite coloring of N, there is a color with arbitrarily long arithmetic
and geometric progressions of that color.

Proof. The proof is similar to the proof of Theorem 1.7. Say that a set A ⊆ N is an AP
set if there are arbitrarily long arithmetic progressions in A. Let

L = { p ∈ βN : each A ∈ p is an AP set } .

We have seen that every minimal element p in (βN,+) is in L. It is easy to see that L is a left
ideal of the company (βN, ·). Let p ∈ L be a minimal element of (βN, ·).

Take a monochromatic set A ∈ p. By minimality of p, there are arbitrarily long geometric
progressions in A. As p ∈ L, there are arbitrarily long arithmetic progressions in A. �

Exercise 2.11. Complete the proof of Theorem 2.10, by showing that L is a left ideal of
the company (βN, ·).

Exercise 2.12. Prove that, in Theorem 2.10, we may request that there are, in addition,
FS and FP sets of the same color.
Hint : In the definition of L, request that every A is AP and FS. Prove that L is nonempty.
Prove that it is a left ideal of (βN, ·). Take a minimal idempotent in L.

3. Excursion: the game EquiDist

We introduce a two-player game based on a concrete realization of van der Waerden’s
Theorem. We describe here its simplest variation. Additional variations are easy to come up
with, search “EquiDist game” online for some examples.

By van der Waerden’s Theorem and the Compactness Theorem, we know that there is a nat-
ural number N such that for each 2-coloring of the numbers 1, 2, . . .N there is a monochromatic
arithmetic progression of length 3.

Proposition 3.1. For each coloring of the numbers 1,2,3,4,5,6,7,8 and 9 in red and green,
there is a monochromatic 3-element arithmetic progression.

Proof. Assume that we are given a coloring with no monochromatic 3-element arithmetic
progression. We may assume that the color of 5 is red.

Assume that 3 or 7 is red. Then, by symmetry, we may assume that 3 is red. Then 1, 4
and 7 green:

1 2 3 4 5 6 7 8 9 .

We obtain a green arithmetic progression:

1 2 3 4 5 6 7 8 9 ;

a contradiction.
Thus, we the coloring of 3, 5 and 7 must be of the following form:

1 2 3 4 5 6 7 8 9
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The numbers 1,5, and 9 cannot all be red. Thus, 1 or 9 is green. By symmetry, we may assume
that 1 is green. Then:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9;

a contradiction. �

Exercise 3.2. Find a 2-coloring of the numbers 1,2,3,4,5,6,7,8 with no monochromatic
3-element arithmetic progression.

We now describe the game. The game board looks as follows.

The players, that will be called Alice and Bob, have red and green pieces. Each player, in
turn, places a red or a green piece on an empty cell. The first player to place a piece such that
there are three equidistant pieces of the same color looses.

Following is an example of a play:

Alice:

Bob:

Alice:

Bob:

Alice:

Bob:

Alice:

Bob looses, since placing a piece of any color in any cell would result in three equidistant
pieces of the same color.

As in Tic-Tac-Toe, one may play the game without the board and pieces, by drawing the
board on a page and writing X and O in the cells instead of placing there pieces.

Exercise 3.3. Consider the variation of EquiDist where Alice is only allowed to use red
pieces, and Bob is only allowed to place green ones. Prove that Bob has a winning strategy.
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4. Comments for Chapter 5

van der Waerden’s Theorem (Theorem 2.1) was first conjectured by Issai Schur and later,
independently, by Pierre J. H. Baudet.

The proof idea of van der Waerden’s Theorem, spanned through the first and second sec-
tions, is due to Hillel Furstenberg and Yitzhak Katznelson (Idempotents in compact semigroups
and Ramsey Theory, Israel Journal of Mathematics, 1989). Furstenberg and Katznelson used
the language of topological dynamical systems and enveloping semigroups. Their proof was
converted to the one included here by Vitaly Bergelson and Neil Hindman (Nonmetrizable
topological dynamics and Ramsey Theory, Transactions of the American Mathematical Society,
1990). Furstenberg’s original proof was in the language of dynamical systems. According to
the Hindman–Strauss monograph, this proof shows

how much one can get for how little . . . It is enough to make someone raised
on the work ethic feel guilty.

Theorem 2.10 is due to Vitaly Bergelson and Neil Hindman, Nonmetrizable topological
dynamics and Ramsey Theory, Transactions of the American Mathematical Society, 1990. It
is easy to see that the set L in the proof of Theorem 2.10 is in fact an ideal. Not only of
(βN, ·), but also of (βN,+). The existence of this simultaneous ideal was first observed in the
Hindman–Strauss monograph (Theorem 14.5).

I have suggested this game to my family in 2011. My son, Avraham Tsaban, and my
nephew, Ariel Vishne, were, respectively, 12 and 18 years old then. They soon came up with
two results: Avraham came up with Exercise 3.3, and Ariel proved, by exhaustive computer
search, that Bob has a winning strategy in (9-cell) EquiDist. Ariel found out that whom has
a winning strategy depends on the number of cells. A proof of Vishne’s observation not using
computers is unknown to us.





CHAPTER 6

Monochromatic words with a wildcard character

1. Colorings of the free semigroup

Throughout this chapter, we use the following conventions.

Definition 1.1. F denotes a nonempty finite set. The elements of the set F will be called
letters, and the set F will be called the alphabet set. A word in the alphabet set F is a finite
sequence of letters from F .

The concatenation of words u = a1a2 . . . am and w = b1b2 . . . bk in the alphabet set F is the
word uw = a1a2 . . . amb1b2 . . . bk. Σ is the set of all words in the alphabet set F . The set Σ,
with the concatenation operation, is the free semigroup in the alphabet set F .

For a variable x, the set Σx is the free semigroup in the alphabet set F ∪ {x}.

At least one of the letters wi in a word w(x) = w1w2 . . . wk ∈ Σx \ Σ is the variable x.
We treat the variable x a wildcard character, that is, such that every letter from F may be
substituted for x to obtain a word in Σ. For example, if Σ = {1, 2, 3} and w(x) = 103x545xx43,
then

w(1) = 10315451143,

w(2) = 10325452243 and

w(3) = 10335453343

are all words in Σ.
The following proof is very similar to that of van der Waerden’s Theorem.

Theorem 1.2 (Hales–Jewett). Let F = {a1, . . . , am} be a finite nonempty alphabet set, and
let Σ be the free semigroup in the alphabet set F . For each finite coloring of Σ there is a word
w(x) ∈ Σx \ Σ such that all words w(a1), w(a2), . . . , w(am) have the same color.

Proof. Let p be a minimal element in βΣ. Let A ∈ p be a monochromatic set. We will
prove that there is a word w(x) ∈ Σx \ Σ such that

w(a1), w(a2), . . . , w(am) ∈ A.

Let

p :=





p
...
p



 ∈ (βΣ)m.

By Lemma 1.8 the element p is minimal in (βΣ)m. By Lemma 1.5, this element is minimal in
every subcompany of (βΣ)m where it belongs. The set

T =













w(a1)
w(a2)

...
w(am)







: w(x) ∈ Σx
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is a subsemigroup of Σm. By continuity considerations, the set T is a subsemigroup of (βΣ)m.
For each word w ∈ Σ, we have that

w :=





w
...
w



 ∈ T,

and thus p ∈ T . In summary, the vector p is minimal in T .
The set

I =













w(a1)
w(a2)

...
w(am)







: w(x) ∈ Σx \ Σ







is an ideal of T , and by continuity considerations, the set I is an ideal of T . Thus, p ∈ I
(Lemma 1.7). As A ∈ p, there is





w(a1)
...

w(am)



 ∈ [A]m ∩ I,

where w(x) ∈ Σx \ Σ. Then w(a1), w(a2), . . . , w(am) ∈ A. �

Exercise 1.3. Prove the following assertions, made in the proof of the Hales–Jewett The-
orem:

(1) T is a subsemigroup of (βΣ)m.
(2) I is an ideal of T .

The remainder of this chapter is dedicated to applications of the Hales–Jewett Theorem.

2. Monochromatic homothetic copies

van der Waerden’s follows easily from the Hales–Jewett Theorem: Let c be a finite coloring
of N and m be a natural number. Take the alphabet set F = {1, . . . , m}, and let Σ be the free
semigroup over F . Define a finite coloring χ of Σ by

χ(s1s2 . . . sk) := c(s1 + s2 + · · ·+ sk)

for all s1, s2, . . . , sk ∈ F . Put simply, the color of the word s1s2 . . . sk is the (original) color of
the number s1 + s2 + · · ·+ sk.

By the Hales–Jewett Theorem, there is a word w(x) = w1w2 . . . wk over {1, . . . , m, x} in
which the variable x appears, say, d ≥ 1 times, and such that the words w(1), . . . , w(m) are of
the same color. For each j = 1, . . . , m, the color of w(j) is the initial color of

k∑

i=1

wi 6=x

wi +
k∑

i=1
wi=x

j = a + jd,

where a is the sum of the constant (non-variable) letters in the word w(x). Thus, the arithmetic
progression a+ d, a+ 2d, . . . , a+md is monochromatic.

Exercise 2.1. Let d1, d2, . . . be a sequence of natural numbers. Prove that for each finite
coloring of N and each m, there are there is a monochromatic arithmetic progression a, a +
d, . . . , a+ (m− 1)d with d ∈ FS(d1, d2, . . . ).
Hint : As in the previous argument, define χ(s1s2 . . . sk) := c(d1s1 + d2s2 + · · ·+ dksk).
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A small variation of the same idea provides the following result of Gallai.

Definition 2.2. Let n be a natural number, and let F ⊆ Nn. A homothetic copy of F is a
set of the form a+ dF with a ∈ Nn ∪ {0} and d ∈ N.

In other words, a homothetic copy is a copy of the given set, up to blowing by multiplying
by a constant and shifting, without any distortion. The following theorem asserts that for each
finite coloring of the “discrete n-dimensional space” Nn, one can find in Nn a monochromatic
homothetic copy of any desired finite pattern. The case of coloring the discrete plane (n = 2)
is visually most appealing.

Theorem 2.3 (Gallai). Let n be a natural number, and let F ⊆ Nn be a finite set. For each
finite coloring of the set Nn, there are an element a ∈ Nn ∪ {0} and a natural number d such
that the set a+ dF is monochromatic.

Proof. Let Σ be the free semigroup over the given finite set F . Define a coloring of Σ as
follows: For all u1,u2, . . . ,uk ∈ F , the color of the word u1u2 · · ·uk is the given color of the
element

u1 + u2 + · · ·+ uk

of Nn. By the Hales–Jewett Theorem, there are elements w1,w2, . . . ,wk ∈ F ∪ {x} such that
wi = x for d ≥ 1 values of i, and such that for

w(x) := w1w2 · · ·wk,

the set {w(u) : u ∈ F } is monochromatic. For each u ∈ F , the color of the element w(u) is
the given color of

k∑

i=1

wi 6=x

wi +

k∑

i=1
wi=x

u = a+ du,

where a is the sum of the non-variable elements wi. If wi = x for all i, define a := 0. Then
the set a+ dF = {a+ du : u ∈ F } is monochromatic. �

Exercise 2.4. Prove that, in Gallai’s Theorem, we may request that d ∈ FS(d1, d2, . . . ),
for any prescribed elements d1, d2, · · · ∈ N (see Exercise 2.1).

One may view Gallai’s Theorem as a multi-dimensional version of van der Waerden’s The-
orem: for n = 1, the following corollary reproduces van der Waerden’s Theorem.

Corollary 2.5 (Gallai). Let n be a natural number. For each finite coloring of the set Nn

and each m, there are elements a1, a2, . . . , an ∈ N ∪ {0} and a natural number d such that, for
the arithmetic progressions

A1 = {a1 + d, a1 + 2d, . . . , a1 +md}

A2 = {a2 + d, a2 + 2d, . . . , a2 +md}
...

An = {an + d, an + 2d, . . . , an +md},

the set A1 × · · · ×An is monochromatic.

Proof. Take F = {1, . . . , m}n and apply Theorem 2.3. For

a =





a1
...
an



 ,

we have that A1 × · · · ×An = a+ d · {1, . . . , m}n. �
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Thus, Corollary 2.5 is an immediate consequence of Theorem 2.3. On the other hand, as
for each finite set F ⊆ Nn there is m with F ⊆ {1, . . . , m}n, we also have that Theorem 2.3 is
an immediate consequence of Corollary 2.5.

Exercise 2.6. Prove Gallai’s Theorem, with the stronger requirement that a ∈ Nn.
Hint : In the definition of the coloring, add a constant vector to the sum.

Exercise 2.7. Using the Compactness Theorem, formulate and prove a finite version of
Gallai’s Theorem. Formulate

3. Monochromatic affine subspaces

We have seen in Theorem 4.1.8 that, for each infinite-dimensional vector space V over
the two-element field Z2 and each finite coloring of V , there is a monochromatic infinite-
dimensional affine subspace of V . We have also seen in Exercise 4.1.10 that the same assertion
for vector spaces over other fields fails. Relaxing “infinite-dimensional” to arbitrarily large
finite dimension, we obtain the following theorem.

Theorem 3.1. Let V be an infinite-dimensional vector space over a finite field F. For each
finite coloring of V , there are monochromatic affine subspaces of V of arbitrarily large finite
dimensions.

Proof. We will find a 2-dimensional monochromatic affine subspace. The proof for larger
dimensions is similar. Fix linearly independent vectors v1, u1, v2, u2, · · · ∈ V . Let Σ be the free
semigroup over the alphabet set F2. Given a finite coloring of V , define a coloring of Σ as
follows: the color of the word

( α1

β1

)
· · ·

( αk

βk

)
is the given color of the vector

α1v1 + · · ·+ αkvk + β1u1 + · · ·+ βkvk.

By the Hales–Jewett Theorem, there is a word w(x) = w1 · · ·wk over F2 ∪ {x}, where the
variable x appears at least once, such that the words w(

(
α
β

)
), for α, β ∈ F, have the same color.

The color of the word w(
(
α
β

)
) is the given color of the vector

k∑

i=1

wi 6=x

αivi + βiui

︸ ︷︷ ︸

v0

+

k∑

i=1

wi=x

αvi + βui = v0 + α

k∑

i=1
wi=x

vi

︸ ︷︷ ︸

v

+β

k∑

i=1
wi=x

ui

︸ ︷︷ ︸

u

= v0 + αv + βu.

Thus, the affine subspace v0 + span{v, u} is monochromatic. Since the vectors v and u are
linearly independent, the dimension of this affine space is 2. �

4. High-dimensional tic-tac-toe

Definition 4.1. A line in the n-dimensional discrete cube {1, . . . , m}n is a set of the form
{w(1), . . . , w(m)}, where w(x) ∈ {1, . . . , m, x}n \ {1, . . . , m}n.

Figure 1 includes several examples of lines in the 2-dimensional cube (or, rather, square)
{1, 2, 3}2. The reader is encouraged to draw, mentally, the line xxx in the cube lines in {1, 2, 3}3.

Theorem 4.2. Let k and m be natural numbers. For all large enough n, for each k-coloring
of the set {1, . . . , m}n there is a monochromatic line.

Proof. Let Σ be the free semigroup over the alphabet set {1, . . . , m}. Let

A = { {w(1), . . . , w(m)} : w(x) ∈ Σx \ Σ } .
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3 • · ·
2 • · ·
1 • · ·

1 2 3

(a) w(x) = 1x

3 · · ·
2 • • •
1 · · ·

1 2 3

(b) w(x) = x2

3 · · •
2 · • ·
1 • · ·

1 2 3

(c) w(x) = xx

Figure 1. Lines in the discrete square {1, 2, 3}2

By the Hales–Jewett Theorem, for each k-coloring of Σ there is a monochromatic set in A. By
the Compactness Theorem, there is a finite set H ⊆ Σ such that for each k-coloring of H there
is a monochromatic set in A. Let n be an upper bound on the length of the words in H .

Consider the set {1, . . . , m}≤n of words of length up to n over {1, . . . , m}. Define a function

ϕ : {1, . . . , m}≤n → {1, . . . , m}n

s1 . . . sr 7→ s1 . . . sr 1 . . . 1︸ ︷︷ ︸

n−r

.

The function ϕ maps every element of H into a line in {1, . . . , m}n.
Let c be a k-coloring of the set {1, . . . , m}n. Then c◦ϕ is a k-coloring of the set {1, . . . , m}≤n.

In particular, this is a k-coloring of the set H . Let {w(1), . . . , w(m)} ∈ H be monochromatic
for this coloring. Then the line {ϕ(w(1)), . . . , ϕ(w(m))} in {1, . . . , m}n is monochromatic for
the coloring c. �

Children loose interest in the game tic-tac-toe after little practice, discovering that every
properly played play is a tie.

Let m and n be natural numbers. In the game n-dimensional tic-tac-toe on a board of side
m, the first player chooses a position on the “board” {1, . . . , m}n and marks it X. The second
player chooses an unoccupied position and marks it O, etc., until one of the players completes
a line. The first player to complete a line wins (see Figure 2).

Figure 2. A typical configuration in a 3-dimensional tic-tac-toe game

As in the ordinary, 2-dimensional tic-tac-toe game, it may well be that all positions are
occupied and there is no winner. By Theorem 4.2 for k = 2 colors, for each m there is n such
that, in boards of dimensions n or larger, one of the players necessarily wins.

Consider a 2-player generalization of tic-tac-toe, where the board is {1, . . . , m}n. By The-
orem 4.2, if m is fixed and n is large enough, then in each play there is a winner. We will see,
by a strategy-stealing argument, that this must be the first player.

Theorem 4.3 (Zorn). Consider a 2-player game where each player, in turn, puts a piece
on a finite, completely visible board. Then either the first player has a winning strategy, or else
the second player can force a tie or win.
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Proof. The theorem follows from De Morgan’s Laws. For each i, we denote the possible
legal moves in the ith step of the game by xi. Let N be the number of available positions on
the board, and assume, for convenience, that N is even. In the case where N is odd, one more
quantifier is needed below. We let the game continue for the entire N steps even if at some step
it is clear that some player wins. That is, a player wins a play whose steps are (x1, x2, . . . , xN) if
it is the winner of the play (x1, . . . , xn) for the first n where the play (x1, . . . , xn) has a winner.

Let the players be Alice and Bob, where Alice plays first. Having a winning strategy for
Alice means that

∃x1∀x2∃x3∀x4 · · · ∃xN−1∀xN , (x1, . . . , xN) is a win for Alice.

Thus, the nonexitence of a winning stratgy for Alice means that

∀x1∃x2∀x3∃x4 · · · ∀xN−1∃xN , (x1, . . . , xN) is a tie, or a win for Bob,

that is, Bob has a strategy forcing a win for Bob or a tie. �

Since for large enough n a tie is impossible in the n-dimensional tic-tac-toe, one of the
players must have a winning strategy.

Corollary 4.4. Let m be a natural number. For all large enough n, the first player has a
winning strategy in the n-dimensional tic-tac-toe game on a board of side m.

Proof. We have seen that either Alice or Bob has a winnig strategy. Assume, towards a
contradiction, that Bob has a winning strategy. Then Alice can use Bob’s strategy, as follows.
In the first step, Alice puts X in an arbitrary position. After each move of Bob, Alice erases her
arbitrarily-positioned X and applies Bob’s strategy to the resulting board configuration (after
interchanging the names of the Xs and the Os on the board). She thus obtains a position for
her next X. If this position is already occupied by her aribtrarily positioned X, she chooses an
arbitrary free position.

In each step, the board looks as after applying Bob’s strategy (with X and O interchanged)
and adding some extra X. Since the strategy is winning for Bob, at some stage there will be a
line of Xs, even without the arbitrarily positioned X. Thus, Alice also has a winning strategy;
a contradiction. �

5. Comments for Chapter 6

Theorem 1.2 is proved in Alfred W. Hales and Robert I. Jewett, Regularity and positional
games, Transactions of the American Mathematical Society, 1963.

Gallai’s Theorem (Theorem 2.3) is due to Tibor Gallai (born Grünwald). It was first
published in Richard Rado, Note on combinatorial analysis, Proceedings of the London Math-
ematical Society, 1943.

Theorems 4.2 and 4.2 are proved in Graham, Leeb and Rothschild, Ramsey’s Theroem for
a class of categories, Advances in Mathematics, 1972.

It is known that in every 2-coloring of the cube {1, 2, 3}3 there is a monochromatic line. It
follows that every tic-tac-toe play on this board is a win for one of the players and, by Zorn’s
Theorem, there is a winning strategy for Alice. Here is a simple winning strategy for Alice:
First, occupy the central cell. Once Bob occupies his cell, choose a plane through the central
cell that does not include Bob’s cell, and henceforth play in this plane. In this plane, the central
cell is marked X, all other cells are empty, and it is Alice’s turn. Occupying the top horisontal
line, for example, would force Bob to put his pieces on the bottom horisonal line. Alice will
complete her line before Bob does. Interestingly, it is known that if Bob occupies the central
cell in his first move, then Bob can force a win.
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Consider the variation of tic-tac-toe where the first to complete a line looses. This is often
refered to as the misére version of the game. In this case, Alice has a simple winning-or-tie
strategy, in every board of odd side-length: Occupy the central cell in the first move. (In light
of the previous paragraph, this is counter-intuitive. Be patient.) Then respond to each move of
Bob by occupying the cell symmetrically opposite, with respect to the central cell, to the one
occupied by Bob. If, at some point, a line is completed, but if this is done by Alice then there
was earlier a symmetrically-positioned line completed by Bob.





CHAPTER 7

Monochromatic solutions for a linear equation

1. Piecewise syndetic sets

We have seen that a set of natural numbers is in an idempotent of (βN,+) if and only if it
is an FS set. In the proof of van der Waerden’s Theorem, sets belonging to minimal elements of
(βN,+) were prominent. These sets can be defined combinatorially. For nonnegative integers
n and m ≥ n, define the interval [n,m] := {n, n + 1, n+ 2, . . . , m} of nonnegative integers.

Definition 1.1. An infinite set A ⊆ N is syndetic (from Greek: bound together) if the
distances among consecutive elements in A are bounded by some constant. A piecewise syndetic
set is an intersection of a syndetic set and a set containing arbitrarily long intervals of natural
numbers.

One may think of syndetic sets as the landing points of a kangaroo traveling over the natural
numbers. The distance among consecutive landing points is bounded by the maximum jumping
distance of that kangaroo.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...

For sets A,B ⊆ N and a nonnegative integer n, define

A− n := { a− n : a ∈ A } ∩ N

A− B := { a− b : a ∈ A, b ∈ B } ∩ N

Then:

(1) A set A ⊆ N is syndetic if and only if there is a natural number c such that A−[0, c] = N.
(2) A set A ⊆ N is piecewise syndetic if and only if there is a natural number c such that

the set A− [0, c] contains arbitrarily long intervals of natural numbers.

Theorem 1.2. Let A ⊆ N. The following assertions are equivalent:

(1) A is a member of a minimal element of (βN,+).
(2) A is piecewise syndetic.

Proof. (1) ⇒ (2): Assume that A belongs to a minimal ultrafilter p. Let q ∈ βN+ p. By
the Fixing Lemma, there is r ∈ βN with p = r + q. Then A ∈ r + q, and thus there are n and
C ∈ q with n+C ⊆ A. Thus, A− n ∈ q. It follows that βN+ p ⊆

⋃

n[A− n]. By compactness
of the left ideal βN+ p, there is a natural number c such that

βN+ p ⊆ [A] ∪ [A− 1] ∪ [A− 2] ∪ · · · ∪ [A− c] =
[
A− [0, c]

]
.

Let A′ = A − [0, c]. We will show that the set A′ contains arbitrarily long intervals. Let n be
a natural number. As n + p ∈ βN + p ⊆ [A′], we have that n + p ∈ [A′], that is, A′ ∈ n + p.

55
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Thus, there is Bn ∈ p with n + Bn ⊆ A′. For each n, we have that B1 ∩ · · · ∩ Bn ∈ p. Fix an
element b ∈ B1 ∩ · · · ∩ Bn. Then n + b ∈ n+Bn ⊆ A′, and therefore b+ 1, . . . , b+ n ∈ A′.

(2) ⇒ (1): Let c be a natural number such that the set A′ := A− [0, c] contains arbitrarily
long intervals. For each n, as the set A′ contains an interval of length greater than n, we have
that

A′ ∩ (A′ − 1) ∩ · · · ∩ (A′ − n) 6= ∅.

By the finite intersection property, the set L =
⋂

n≥0[A
′ − n] is nonempty. It is easy to verify

that L is a left ideal of βN.
Let p ∈ L be a minimal element. Then

A ∪ (A− 1) ∪ · · · ∪ (A− c) = A′ ∈ p,

and thus there is i ≤ c such that A− i ∈ p. Thus, A ∈ i+ p. As p is minimal, so is the element
i+ p. �

Exercise 1.3. Complete the proof of Theorem 1.2, by proving the following assertion: Let
A ⊆ N be such that A∩(A−1)∩· · ·∩(A−n) 6= ∅ for all n. Prove that the set L =

⋂

n≥0
[A−n]

is a left ideal of βN.

The following definition extends the earlier definitions to arbitrary semigroups.

Definition 1.4. Let (S, ·) be a semigroup and A ⊆ S.

(1) For an element b ∈ S, define b−1A := { s ∈ S : bs ∈ A }.
(2) For a set B ⊆ S, define B−1A :=

⋃

b∈B b−1A.
(3) The set A is syndetic if there is a finite set F ⊆ S such that F−1A = S.
(4) The set A is piecewise syndetic if there is a finite set F ⊆ S such that, for all n and

all s1, . . . , sn ∈ S, there is x ∈ S with

{s1, s2, . . . , sn} · x ⊆ F−1A.

Exercise 1.5. Show that the original and general definition of piecewise syndetic sets in
the semigroup (N,+) are equivalent.

By modifying the proof of Theorem 1.2 in accordance with the general definition, we have
the following theorem.

Theorem 1.6. Let S be a semigroup and A ⊆ S. The following assertions are equivalent:

(1) The set A is a member of a minimal element of βS.
(2) The set A is piecewise syndetic.

Exercise 1.7. Prove Theorem 1.6.

Exercise 1.8. Let (S,+) be an abelian semigroup and T be a subsemigroup of S. Let ϕ
be the continuous extension of the identity embedding id : T → βS defined by id(t) = t for all
t ∈ T . Prove the following assertions:

(1) The set T = [T ] is a subsemigroup of βS.
(2) The function ϕ : βT → [T ] is an isomorphism of topological semigroups (a continuous

bijective homomorphism).
(3) The function f(p) := {B : ∃A ∈ p, A ⊆ B } is a continuous extension of the identity

map on T , and thus ϕ(p) = f(p) for all p ∈ βT .
(4) An element p ∈ βT is minimal if and only if ϕ(p) is minimal in [T ].
(5) If T is a left ideal of S, then ϕ(p) is minimal in βS for all minimal p ∈ βT .

Exercise 1.9. Let (S,+) be an abelian semigroup. Using the previous exercise, show that
for each left ideal L of S:
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(1) A set A ⊆ L belongs to a minimal element in βL if and only if A belongs to a minimal
element in βS.

(2) A set A ⊆ S belongs to a minimal element in βS if and only if the set A ∩ L belongs
to a minimal element in βL.

2. The Piecewise Syndetic Sets Theorem

Definition 2.1. Let (S,+) be an abelian semigroup. If S has no neutral element 0, we fix
an element 0 /∈ S and define s+ 0 = 0 + s = s for all s ∈ S.

Let (s1, s2, . . . ) be a sequence in S. For a nonempty finite set F ⊆ N we define sF :=
∑

n∈F sn. For the empty set F = ∅, define s∅ := 0.

The notation sF generalizes in a natural manner the notation sn for the n-th element of a
sequence. Its basic properties include the following ones:

(1) sn = s{n}.
(2) FS(s1, s2, . . . ) = { sF : ∅ 6= F ∈ [N]<∞ }.
(3) If F1 < F2 (or just F1 ∩ F2 = ∅) then sF1

+ sF2
= sF1∪F2

.

Let (S, ·) be a semigroup. For elements a, d1, . . . , dm ∈ S, it is customary to define

a ·





d1
...
dm



 :=





ad1
...

adm



 .

The following definition follows this convention.

Definition 2.2. Let (S,+) be an additive semigroup. For elements a, d1, . . . , dm ∈ S,
define

a+





d1
...
dm



 :=





a+ d1
...

a + dm



 .

For an element a ∈ S and m fixed in the background, we define

~a :=





a
...
a



 ∈ Sm.

Thus, for an element a ∈ S and a vector v ∈ (S ∪ {0})m, we have that a+ v = ~a + v.

For a finite set F ⊆ N and a natural number n, we write n < F if all elements of F are
greater than n. We define F ≤ n and F < n in a similar manner.

Theorem 2.3 (Piecewise Syndetic Sets). Let (S,+) be an abelian semigroup, A ⊆ S be a
piecewise syndetic set and m be a natural number. For all v1,v2, · · · ∈ (S ∪ {0})m, there are a
finite nonempty set F ⊆ N and an element a ∈ A such that

a + vF = a+
∑

n∈F

vn ∈ Am.

Proof. This proof combines the proof that every FS set belongs to an idempotent with
the proof of van der Waerden’s Theorem (or the Hales–Jewett Theorem).

We work in the semigroup Sm. In accordance with our notation, v∅ := ~0. Notice that
a+ v ∈ Sm for all a ∈ S and v ∈ (S ∪ {0})m. For each n, let

Tn = { a + vF : a ∈ S, n < F ∈ [N]<∞ } .
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Let T =
⋂

n Tn ⊆ (βS)m. For each n, we have that {~a : a ∈ S } ⊆ Tn, and thus {~a : a ∈ S } ⊆
T . In particular, T 6= ∅.

The set T is a subcompany of (βS)m: Let x,y ∈ T . We need to show that x + y ∈ Tn for
all n. Fix a natural number n. Let U be a neighborhood of x+ y. By right continuity, there is
a neighborhood V of x such that V + y ⊆ U . As x ∈ Tn and V is a neighborhood of x, there
is an element a + vF ∈ V ∩ Tn. Since (a + vF ) + y ∈ U and the left element of the sum is in
Sm, there is a neighborhood W of y such that (a+vF ) +W ⊆ U . Fix a number n1 > F . Take
an element b+ vH ∈ W ∩ Tn1

. As n < F < H and the semigroup S is commutative,

a+ vF + b+ vH = a+ b+ vF∪H ∈ Tn ∩ U.

In particular, the intersection Tn ∩ U is nonempty.
For each n, let

In = { a + vF : a ∈ S, n < F ∈ [N]<∞, F 6= ∅ } .

Let I =
⋂

n In. Then I1 ⊇ I2 ⊇ · · · and In ⊇ In 6= ∅ for all n. By the finite intersection
property, the set I is nonempty.

Notice that, in the above proof that T is a semigroup, if either F or H is nonempty, then
the sum is in In ∩ U . Thus, I is an ideal of the company T .

Let p ∈ βS be a minimal element such that A ∈ p. As {~a : a ∈ S } ⊆ T and T is a closed
set, the vector

p =





p
...
p





is in T .
By Lemma 1.8, the vector p is minimal in T and is thus in I. As the set [A]m is a

neighborhood of p, it intersects the set I1 (for example), and thus there is an element a+vF ∈
Am.

To guarantee that a ∈ A, take the vectors

u1 :=

(
0
v1

)

,u2 :=

(
0
v2

)

, · · · ∈ (S ∪ {0})m+1.

We have proved that there are a nonempty finite set F ⊆ N and an element a ∈ S such that
a+ uF ∈ Am+1. Then

a+ uF = a +

(
0
vF

)

=

(
a

a+ vF

)

,

and we have that a ∈ A and a+ vF ∈ Am. �

Exercise 2.4. In the notation of the last proof, prove that the set I is indeed an ideal of
the company T .

Exercise 2.5. Let (S,+) be an infinite abelian semigroup with a neutral element 0. Prove
the following assertions:

(1) The set {0} is not piecewise syndetic in S.
(2) In the Piecewise Syndetic Sets Theorem for S, we may request that all coordinates of

the vector a+ vF are nonzero.

Hint : For (1), if t+ s+ x = 0 then s is an inverse of t+ x.
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The Piecewise Syndetic Sets Theorem easily implies van der Waerden’s Theorem: For ex-
ample, to find a monochromatic arithmetic progression of length 5, take

vn =









0
1
2
3
4









for all n. Given a finite coloring of N, let A ⊆ N be a monochromatic piecewise syndetic set.
Such a set exists since in every ultrafilter there is a monochromatic set. By the Piecewise
Syndetic Sets Theorem, there are a natural number a and a finite nonempty set F ⊆ N such
that

a+ vF =









a
a
a
a
a









+









0
1
2
3
4









+ · · ·+









0
1
2
3
4









=









a
a + d
a+ 2d
a+ 3d
a+ 4d









∈ A5,

where d = |F |. We have thus found a monochromatic arithmetic progression of length 5.
The following strong version of van der Waerden’s Theorem will be used below for finding

monochromatic solutions of equations.

Theorem 2.6. Let m, d1, d2, . . . be natural numbers. For each piecewise syndetic set A,
there are an element d ∈ FS(d1, d2, . . . ) and a natural number a such that a, a+d, . . . , a+(m−
1)d ∈ A.

Proof. The proof is similar to the derivation of van der Waerden’s Theorem from the
Piecewise Syndetic Sets Theorem. For each n, take

vn :=









0
dn
2dn
...

(m− 1)dn









.

Then

a+ vF = a+
∑

n∈F







0
dn
...

(m− 1)dn







= a +







0
∑

n∈F dn
...

(m− 1)
∑

n∈F dn







=







a
a+ d
...

a+ (m− 1)d







,

where d =
∑

n∈F dn. �

3. Rado’s Theorem

Schur’s Coloring Theorem asserts that the equation x+ y− z = 0 has a monochromatic so-
lution for each finite coloring of N. In this section, we identify all homogeneous linear equations
with this property.

Lemma 3.1. Let e be an idempotent element of the semigroup (βN,+). Then cN ∈ e for all
natural numbers c.
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Proof. This is Exercise 3.6.7. We recast that proof in a slightly different manner. Since

cN ∪ (cN+ 1) ∪ · · · ∪ (cN+ c− 1) = N ∈ e,

there is i ∈ {0, . . . , c− 1} such that cN+ i ∈ e. As e is an idempotent, the set cN+ i is an FS
set. In particular, there are cm+ i, cn + i ∈ cN+ i whose sum c(m+ n) + 2i is also in cN+ i.
Thus, i ∈ cN, and therefore i = 0. �

Exercise 3.2. Prove that, for each element p ∈ βN, the number p mod c is the unique k
such that cN+ k ∈ p.

To realize that the following theorem is a nontrivial upgrade of van der Waerden’s Theorem,
notice that, while the latter theorem is trivial for arithmetic progressions of length two, the
following theorem is not.

Recall that a minimal idempotent in a semigroup is a minimal element that is also an
idempotent. Minimal idempotents exist in every company, since minimal left ideals are sub-
companies.

Theorem 3.3. For each finite coloring of N and all natural numbers m and c there are
natural numbers a and d such that the terms in the arithmetic progression a, a+d, . . . , a+(m−
1)d and the product cd are all of the same color.

Proof. Let e be a minimal idempotent in βN. Take a monochromatic set A ∈ e. As e
is an idempotent, cN ∈ e and thus A ∩ cN ∈ e. Using again that e is an idempotent, the set
A ∩ cN is an FS set. Let cd1, cd2, · · · ∈ A ∩ cN be distinct elements such that

c · FS(d1, d2, . . . ) = FS(cd1, cd2, . . . ) ⊆ A ∩ cN.

By Theorem 2.6, since the set A is piecewise syndetic, there is an element d ∈ FS(d1, d2, . . . )
such that a, a+ d, . . . , a+ (m− 1)d ∈ A. By the above equation, we have that cd ∈ A. �

Theorem 3.4 (Rado). For a homogeneous linear equation

a1x1 + · · ·+ amxm = 0

with nonzero integer coefficients, the following properties are equivalent:

(1) Some of the coefficients a1, . . . , am sum to 0.
(2) For each finite coloring of N, the given equation has a monochromatic solution.

Proof. (1) ⇒ (2): If a1 + · · · + am = 0, then the vector (1, . . . , 1) is a monochromatic
solution. Thus, assume that a1 + · · · + am 6= 0. By reordering the equation, we may assume
that a1 + · · ·+ ak = 0 for some maximal k < m. Since the coefficients are nonzero, k is greater
than 1.

Consider first the simple case, where the equation is cx− cy + bz = 0, for nonzero integers
c and b. Multiplying the given equation by −1, if needed, we may assume that b > 0. By
exchanging the roles of x and y, if needed, we may also assume that c > 0. We request that

y − x =
b

c
z.

For the solution to be a natural number, we may take z = cd for a natural number d. Then
y = x+ bd, that is, (x, x+ bd, cd) is a solution for all d ∈ N. By Theorem 3.3 with m > b, there
is such a monochromatic triple.

We now show that the general case follows from the above simple case. Let c := a1+· · ·+ak−1

and b := ak+1 + · · ·+ am. Then c + ak = 0, and thus c = −ak 6= 0. Since a1 + · · ·+ ak + b 6= 0
and a1 + · · · + ak = 0, we have that β 6= 0. By the simple case treated above, the equation
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cx − cy + bz = 0 has a monochromatic solution (x, y, z) in N. Then (x, . . . , x, y, z, . . . , z) is a
monochromatic solution of the original equation:

a1x+ · · ·+ ak−1x+ aky + ak+1z + · · ·+ amz =

= (a1 + · · ·+ ak−1
︸ ︷︷ ︸

c

)x+ ak
︸︷︷︸

−c

y + (ak+1 + · · ·+ am
︸ ︷︷ ︸

b

)z = 0.

(2) ⇒ (1): Fix a very large prime number p (it suffices to have |a1|+ · · ·+ |am| < p.) Define
a coloring χ : N → {1, . . . , p− 1} by letting χ(n) be the maximal i such that n = pk(pt+ i), for
some natural number t, where pk is the maximal power of p dividing n. By the assumption,
there is a monochromatic solution x1 = pk1(pt1 + i), . . . , xm = pkm(ptm + i). By reordering the
coefficients of the equation, we may assume that, for some j ∈ {1, . . . , m},

k1 = · · · = kj < kj+1 ≤ · · · ≤ km.

Since

a1p
k1(pt1 + i) + a2p

k2(pt1 + i) + · · ·+ amp
km(ptm + i) = a1x1 + · · ·+ amxm = 0,

We may divide the equation by pk1 and reduce it modulo p, to obtain

(a1 + · · ·+ aj)i = a1i+ · · ·+ aji = 0 (mod p).

Thus, a1 + · · ·+ aj = 0 mod p. Since |a1 + · · ·+ aj| < p, we have that a1 + · · ·+ aj = 0. �

The given proof of Theorem 3.4 establishes the following result. Notice that a set A ⊆ N
is a piecewise syndetic FS set if and only if it is a union of a piecewise syndetic set and an FS
set. In particular, sets in minimal idempotents of (βN,+) are piecewise syndetic FS sets.

Theorem 3.5. Consider a homogeneous linear equation with nonzero integer coefficients,

a1x1 + · · ·+ amxm = 0,

with some of its coefficients summing up to 0. For each piecewise syndetic FS set A ⊆ N, there
is a solution (x1, . . . , xm) with all coordinates in A. �

Exercise 3.6. Prove that, for each finite coloring of N, there is a color such that for each
homogeneous linear equation with integer coefficients such that some of its coefficients sum to
0, there is a solution of that color.

4. Comments for Chapter 7

Theorem 2.3 is proved in Neil Hindman, Dibyendu De and Dona Strauss, A new and stronger
Central Sets Theorem, Fundamenta Mathematicae, 2008.

Theorem 3.3 is due to Hillel Furstenberg, Recurrence in Ergodic Theory and Combinatorial
Number Theory, Princeton University Press, 1981.

Richard Rado, a student of Schur, proved Theorem 3.4 in his paper Studien zur Kombi-
natorik, Mathematische Zeitschrift, 1933. In the proof of Rado’s Theorem, one may wish to
restrict to solutions where all variables take distinct values. This may be done, and will be
treated later.

Theorem 3.5 may be new, but this is what the present proof of Rado’s Theorem really gives.
In this theorem, we cannot request that the variables take distinct values.





CHAPTER 8

Monochromatic images and solutions

1. The Central Sets Theorem

Lemma 1.1. Let (S,+) be a semigroup, e be an idempotent of βS, A ∈ e, and m ∈ N. There
is a set B ⊆ A in e such that, for each v ∈ Bm, there is a set C ⊆ A in e with v + Cm ⊆ Am.

Proof. By the Idempotent Characterization Theorem, there is a set B ⊆ A in e such that,
for each b ∈ B, there is a set Cb ⊆ A in e with b+ Cb ⊆ A. For each vector

v =





b1
...
bm



 ∈ Cm,

we have that C := Cb1 ∩ · · · ∩ Cbm ∈ e. Then v + Cm ⊆ Am. �

The following notion is stronger than being piecewise syndetic and FS.

Definition 1.2. A set A ⊆ N is central if it is a member of a minimal idempotent of
(βN,+).

Theorem 1.3 (Central Sets). Let (S,+) be an abelian semigroup, A ⊆ S be a central set
and m be a natural number. For all v1,v2, · · · ∈ (S ∪ {0})m, there are nonempty finite sets of
natural numbers F1 < F2 < · · · and elements a1, a2, · · · ∈ A such that

FS(a1 + vF1
, a2 + vF2

, . . . ) ⊆ Am.

Proof. Let e be a minimal idempotent of βS with A ∈ e. We proceed as in the proof of
Hindman’s Theorem.

w1 w2 w3 · · ·

Am
1

Am
2

Am
3

Am
4

We use Lemma 1.1 repeatedly. Let A1 := A.
Choose an element B ∈ e as in the lemma, for A1. Let w1 ∈ Bm. By the lemma, there is a

set A2 ⊆ A1 in e such that w1 + Am
2 ⊆ Am

1 .
Choose an element B ∈ e as in the lemma, for A2. Let w2 ∈ Bm. By the lemma, there is a

set A3 ⊆ A2 in e such that w2 + Am
3 ⊆ Am

2 .
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Continue in the same manner. It follows, as in the proof of Hindman’s Theorem, that

FS(w1,w2, . . . ) ⊆ Am.

In each step n of the construction, the vector wn may be chosen to be any element in a
power of a central set. Thus, by the Piecewise Syndetic Sets Theorem, we may request that
the vector w1 is of the form a1 + vF1

, where a1 ∈ B. In particular, a1 ∈ A.
By the Piecewise Syndetic Sets Theorem with the vectors {vn : n > F1 }, we may request

that the vector w2 is of the form a2 + vF2
, where F1 < F2 and a2 ∈ B ⊆ A.

Continuing in this manner, we see that we may request that

wn = an + vFn
,

Fn < Fn+1 and an ∈ A for all n. �

Exercise 1.4. Prove that, in the Central Sets Theorem, we may request, in addition, that
FS(a1, a2, . . . ) ⊆ A.
Hint : Consult the proof of the Piecewise Syndetic Sets Theorem.

Corollary 1.5. Let (S,+) be an abelian semigroup and m be a natural number. For each
finite coloring of S and all v1,v2, · · · ∈ (S ∪ {0})m, there are a color, nonempty finite sets of
natural numbers F1 < F2 < . . . , and elements a1, a2, · · · ∈ S, such that the coordinates of the
vectors in the set FS(a1 + vF1

, a2 + vF2
, . . . ) are all of that color.

Proof. Let e be a minimal idempotent of βS. Take a monochromatic set A ∈ e and apply
the Central Sets Theorem. �

We will use below that the finite sums in the Central Sets Theorem are of the following
form: For all i1 < i2 < · · · < ik,

(ai1 + vFi1
) + · · ·+ (aik + vFik

) = ai1 + · · ·+ aik + vFi1
+ · · ·+ vFik

= a+ vF ,

where a = ai1 + · · ·+ aik and F = Fi1 ∪ · · · ∪Fik . For a finite set H ⊆ N, write FH :=
⋃

n∈H Fn.
Then ∑

n∈H

an + vFn
= aH + vFH

.

2. Monochromatic images

Definition 2.1. Let A be a matrix of nonnegative integers. An entry aij of the matrix A

is first if it is the first nonzero entry in its row. A matrix A has the first entries property if it
has no zero rows (so that each row as a first entry) and, in each column of A, the first entries
are equal.

In the definition of the first entries property, we do not request that there are first entries
in every column of the matrix.

In this section, we will prove the following theorem.

Theorem 2.2 (Monochromatic Image). Let A be an m× n matrix of nonnegative integers
with the first entries property. For each finite coloring of N, there is a vector v ∈ Nn such that
all coordinates of the vector Av are of the same color.

Moreover, for each central set A ⊆ N there is a vector v ∈ Nn such that Av ∈ Am.

As usual, to see that the second part of the theorem implies the first, fix a minimal idem-
potent e ∈ βN and recall that, given a finite coloring of N, there is in e a monochromatic set
A. The set A is central. This provides a stronger assertion that, for each finite coloring of N,
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there is a color such that all matrices with the first entries property have image vectors with
all entries of that color.

Before proving this theorem, we illustrate it by drawing from it several earlier theorems.
Notice that all matrices in the following three examples have the first entries property. Using
that





1 0
0 1
1 1





(
x
y

)

=





x
y

x+ y



 ,

we obtain Schur’s Coloring Theorem. Using that










1 0
1 1
1 2
...

...
1 m
0 c











(
x
y

)

=











x
x+ y
x+ 2y

...
x+my

cy











,

we obtain the upgraded van der Waerden Theorem (Theorem 7.3.3). We can also obtain the
finite version of Hindman’s Theorem (Exercise 4.1.4). For example, to have three natural
numbers and all their (finite) sums of the same color, we use that












1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1
















x
y
z



 =












x
y
z

x+ y
x+ z
y + z

x+ y + z












.

Exercise 2.3. Prove, using the Monochromatic Image Theorem, that for all natural num-
bers m, c1 and c2, for each finite coloring of N there are natural numbers a and d such that

(1) c1 divides a.
(2) The numbers a, a + d, . . . , a+md and c2d have the same color.

Every matrix of the form

(1)








~a1 ∗ · · · ∗

0 ~a2
. . .

...
...

. . .
. . . ∗

0 · · · 0 ~an








,

where: a1, . . . , an are natural numbers, the number of entries in each vector

~ai =





ai
...
ai





is unlimited, and the asterisk symbols “∗” may be replaced by arbitrary vectors nonnegative
integers, has the first entries property.

For the following reasons, it suffices to prove the Monochromatic Image Theorem for ma-
trices of the form (1):
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(1) If a certain column is the zero vector, then the corresponding entry in the vector v

has no effect on the image vector Av. Thus, we may assume that the matrix A has
no zero columns.

(2) If we permute the order of the rows of the matrix A, the entries of the image vector
Av are just permuted accordingly.

(3) By adding rows to the matrix while preserving the first entries property, the claim in
the theorem only becomes stronger: by the previous item, we may assume that the
rows are added at the bottom of the matrix, and then the old image vector is an initial
segment of the new one. Thus, we may assume that there are first entries in every
column of the given matrix.

To see more clearly the connection of the following proof to the Central Sets Theorem,
it is recommended to read it first under the assumption that ai = 1 for all i in the matrix
presentation (1).

Proof of the Monochromatic Image Theorem. We may assume that the matrix A

is of the form (1).
Let C be a central set. We will find a vector v ∈ Nn such that all entries of the image

vector Av are in C. The proof is by induction on n. In order to carry out the induction step
more easily, we will prove a stronger assertion: there are vectors v1,v2, · · · ∈ Nn such that, for
each finite nonempty set F ⊆ N, all entries of the vector AvF are in C.

n = 1: In this case, the matrix is a vector with all entries identical. As rows identical to
previous rows do not contribute a new entry to the image vector, we may assume that each
row appears exactly once. In our case, this means that the matrix is a scalar, a = a1, and we
need to find scalars v1,v2, · · · ∈ N such that, for each nonempty finite set F ⊆ N, avF ∈ C.
Since the sets C and aN belong to the same idempotent ultrafilter, the set C ∩aN is an FS set.
Thus, there are elements av1, av2, · · · ∈ C ∩ aN such that

aFS(v1,v2, . . . ) = FS(av1, av2, . . . ) ⊆ C ∩ aN ⊆ C.

n+ 1: Represent the matrix (1) in the block form
(
~a B

0 A

)

.

By duplicating rows, if needed, we may assume that the number of rows in the matrices A and
B is equal, and denote it m.

The matrix A is of the form (1), with n columns. By the inductive hypothesis, there are
vectors v1,v2, · · · ∈ Nn such that, for each nonempty finite set F ⊆ N, all entries of the vector
AvF are in C. For each b ∈ N and all nonempty finite sets F ⊆ N, we have that

(
~a B

0 A

)(
b
vF

)

=

(
ab+BvF

AvF

)

.

Consider the vectors u1 := Bv1,u2 = Bv2, . . . . For each nonempty finite set F ⊆ N, we have
that

uF =
∑

n∈F

un =
∑

n∈F

Bvn = B
∑

n∈F

vn = BvF .

By the Central Sets Theorem, there are nonempty finite sets of natural numbers F1 < F2 < . . .
and elements ab1, ab2, · · · ∈ C ∩ aN such that

{ abH + uFH
: H ∈ [N]<∞ } = FS(ab1 + uF1

, ab2 + uF2
, . . . ) ⊆ (C ∩ aN)m ⊆ Cm.
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Let

w1 :=

(
b1
vF1

)

,w2 :=

(
b2
vF2

)

, . . . .

For each nonempty finite set H ⊆ N,

wH =

(
bH
vFH

)

.

Thus,
(
~a B
~0 A

)

wH =

(
~a B

0 A

)(
bH
vFH

)

=

(
abH +BvFH

AvFH

)

=

=

(
abH + uFH

AvFH

)

∈ C2m.

Thus, the vectors w1,w2, · · · ∈ Nn+1 are as required in the inductive claim. �

There is an obstacle for generalizing the Monochromatic Image Theorem to matrices A with
arbitrary integer entries: If all entries of the matrix A are negative and v ∈ Nn, then all entries
of the image vector Av are negative. Since we are given a coloring of N, we must request that
all entries of Av are natural numbers. It turns out that this is the only obstacle.

Theorem 2.4. Let A be a rational m× n matrix with the first entries property, such that
all first entries of A are positive. For each finite coloring of N, there is a vector v ∈ Nn such
that all entries of the image vector Av have the same color.

Proof. Multiply the matrix A by a natural number a so that all entries of the matrix
Ã := aA are integer, and all first entries are greater than 1. Let N be a natural number
greater than all absolute values of elements of the matrix Ã. Let

B :=










1 N N2 · · · Nn−1

1 N
. . .

...
. . .

. . . N2

O 1 N
1










.

Consider the matrix ÃB. All elements of this matrix are in N ∪ {0}: For all i, j, let ai be the

first entry in row i of the matrix Ã. For appropriate d, we have that

(ÃB)ij = aiN
d + ∗ ·Nd−1 + · · ·+ ∗ · 1

(or 0). Since ai > 1 and the absolute value of each entry of Ã is smaller than N , we have that
∣
∣∗ ·Nd−1 + · · ·+ ∗ · 1

∣
∣ ≤ (N − 1)(Nd−1 +Nd−2 + · · ·+ 1) = Nd − 1 < aiN

d,

and thus the entry (ÃB)ij is a positive integer.

The matrix ÃB has the first entries property: The product of each row of the matrix Ã

with the matrix B is of the form

(0, . . . , 0
︸ ︷︷ ︸

k

, ai, ∗, . . . , ∗)










1 N N2 · · · Nn−1

1 N
. . .

...
. . .

. . . N2

O 1 N
1










= (0, . . . , 0
︸ ︷︷ ︸

k

, ai, ∗, . . . , ∗),
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and thus the first entries of the matrix ÃB are equal to the first entries of the matrix Ã, which
has the first entries property.

By the Monochromatic Image Theorem, for each finite coloring of N there is a vector v of
natural numbers such that the entries of the vector

ÃBv = aABv = A(aBv)

have the same color. Each entry of the vector Bv, a sum of products of natural numbers, is a
natural number. Since a is a natural number, all entries of the vector u := aBv are natural.
We have seen that the entries of the vector Au are of the same color. �

Theorem 2.5. Let A be a rational m× n matrix with the first entries property, such that
all first entries of A are positive. Assume, further, that the rows of A are distinct. For each
finite coloring of N, there is a vector v ∈ Nn such that the entries of the image vector Av are
distinct, and have the same color.

Proof. We may assume that every row i of A has a first entry ai. For distinct rows ri and
rj of A, we have that ri − rj 6= 0. Assume that the first entry of the latter vector is in position
k. Multiply this vector by a rational number qij such that its first entry becomes ak, and add

this new vector to the matrix A as a new row. We obtain a new rational matrix Ã with the
first entries property, with all first entries positive.

By Theorem 2.4, there is a vector v ∈ Nn such that the entries of the vector Ãv are natural
and monochromatic. In particular, the entries of Av are monochromatic, and for distinct rows
ri and rj of A, we have that qij(ri − rj)v ∈ N. Thus, riv 6= rjv for all i, j, that is, the entries
of Av are distinct. �

The following result follows immediately from the Monochromatic Image Theorem.

Corollary 2.6. For all natural numbers n, c and k, for each finite coloring of N, there
are natural numbers x1, . . . , xn such that all elements of all of the following sets are of the same
color (where [−k, k] := {−k,−k + 1, . . . , k − 1, k}):

cx1 + [−k, k]x2 + [−k, k]x3 + [−k, k]x4 + · · ·+ [−k, k]xn

cx2 + [−k, k]x3 + [−k, k]x4 + · · ·+ [−k, k]xn

cx3 + [−k, k]x4 + · · ·+ [−k, k]xn

. . .
...
cxn

.

(For example, in the first set there are (2k + 1)n−1 elements.) �

A straightforward modification of the proof of the Monochromatic Image Theorem gives
the following.

Theorem 2.7. Let V be an infinite vector space over a field F. Let A be an m× n matrix
over F with the first entries property. For each finite coloring of V \ {~0}, there are vectors

v1, . . . , vn ∈ V \ {~0} such that all vectors

ai1v1 + · · ·+ ainvn,

for i = 1, . . .m, have the same color. �

Exercise 2.8. Prove Theorem 2.7.
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3. Rado’s Theorem for systems of linear equations

Definition 3.1. A rational matrix A = (v1, . . . ,vn) has the columns property if there is a
partition {1, . . . , n} = F1 ∪ · · · ∪ Fk, k ≥ 1, such that:

(1) vF1
= 0.

(2) For each i = 2, . . . , k, the vector vFi
is a linear combination over Q of the vectors vj ,

for j ∈ F1 ∪ · · · ∪ Fi−1.

Following is a generalization of Rado’s Theorem 7.3.4 to systems of linear equations.

Theorem 3.2 (Rado). Let A be a rational matrix with the columns property. For each
finite coloring of N, the homogeneous system of linear equations

Ax = 0

has a monochromatic solution.

Proof. The assertion is not affected by changing the order of the columns of the matrix
A = (v1, . . . ,vn), since one may also change the order of the entries of the solution accordingly.
Thus, we may assume that

F1 = {1, . . . , n1}, F2 = {n1 + 1, . . . , n2}, . . . , Fk = {nk−1 + 1, . . . , n}.

By the columns property, there are rational coefficients that, when placed instead of the asterisks
below, make the equations hold:

v1 + · · ·+ vn1
= 0

vn1+1 + · · ·+ vn2
= ∗ · v1 + · · ·+ ∗ · vn1

...

vnk−1+1 + · · ·+ vn = ∗ · v1 + · · ·+ ∗ · vnk−1
.

Moving everything to the left hand side of the equations, this means that there are rational
coefficients such that the following equations hold:

(v1, . . . ,vn)
︸ ︷︷ ︸

A






















1 ∗ ∗
...

...
1 ∗

0 1
...

...
...

0 1 · · ·
0 ∗

...
... 1

...
0 0 1






















︸ ︷︷ ︸

B

= O

The first entries of the right hand matrix B are all 1.
By the Monochromatic Image Theorem, for each finite coloring of N there is a vector v of

natural numbers such that the entries of the vector u := Bv are monochromatic. As

Au = ABv = Ov = 0,

the vector u is a monochromatic solution of the system Ax = 0. �
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The proof shows that, for each central set, all system Ax = 0 for rational matrices A with
the columns property have solutions with all entries in the central set. It follows that, for each
finite coloring of N, all such systems have monochromatic solutions of the same color.

4. Comments for Chapter 8

The formulation and proof of the Piecewise Syndetic Sets Theorem (Theorem 7.2.3) should
be considered a part of the proof of the Central Sets Theorem (Theorem 1.3). The Central Sets
Theorem was first proved, using a different but equivalent notion of “central set” (Theorem
19.27 in Hindman–Strauss), in Hillel Furstenberg, Recurrence in Ergodic Theory and Combi-
natorial Number Theory, Princeton University Press, 1981. The method used in the present
proof of this theorem is from Hillel Furstenberg and Yitzhak Katznelson, Idempotents in com-
pact semigroups and Ramsey Theory, Israel Journal of Mathematics, 1989. Their proof was
converted to the one included here by Vitaly Bergelson and Neil Hindman (Nonmetrizable
topological dynamics and Ramsey Theory, Transactions of the American Mathematical Society,
1990).

Corollary 2.6 is due to Walter Deuber, Partitionen and lineare Gleichungssysteme, Math-
ematische Zeitschrift, 1973. Theorem 2.7 is due to Vitaly Bergelson, Walter Deuber and Neil
Hindman, Rado’s Theorem for finite fields, Colloquia Mathematica Societatis János Bolyai,
1992.

The converse of Theorem 3.2 also holds. The proof is similar in nature to the one presented
here in the case of a single linear equation. The interested reader is referred to the Hindman–
Strauss monograph for details.

The following theorem is proved in Neil Hindman and Imre Leader, Image partition reg-
ularity of matrices, Combinatorics, Probability and Computing, 1993. The condition in this
theorem is more general than the first entries property.

Theorem 4.1. Let A = (v1, . . . ,vn) be an m×n rational matrix. The following assertions
are equivalent:

(1) The matrix A has monochromatic images for every finite coloring of N.
(2) There are positive rational numbers a1, . . . , an such that the matrix

(a1v1, . . . , anvn,−e1, . . . ,−em)

has the columns property.

Exercise 4.2. Determine which of the following matrices has monochromatic images for
every finite coloring of N. 



2 0 0
4 1 −9
2 −2 3



 ;





1 −1
3 2
4 6



 .

In order to genearlize the full-fledged Hindman Theorem in this framework, one may consider
infinite matrices with finitely supported rows, that is, such that all but finitely many entries
in each row are zero. While much has been proved in this general setting, we are still far from
a complete characterization as in Theorem 4.1. The Hindman–Strauss monograph contains an
account of this question, that is still actively investigated.



CHAPTER 9

Qualitative versions of Ramsey’s Theroem

1. Superfilters

Most theorems of the earlier chapters assert that, for each finite coloring of N, there is
a monochromatic structure of a certain type: an FS set, long arithmetic progressions, image
vectors of matrices, or solutions of systems of equations. In many cases, we have seen that
even in finite colorings of sets smaller than N one may find the same type of monochromatic
structures. For example, for each finite coloring of an FS set there is a monochromatic FS
subset. The reason is that FS sets are characterized as members of idempotent ultrafilters. For
the same reason, the analogous assertion for piecewise syndetic sets holds. The finite version
of van der Waerden’s Theorem (Exercise 2.9) implies the same assertion for sets containing
arbitrarily long arithmetic progressions.

Exercise 1.1. Let A ⊆ N be a set containing arbitrarily long arithmetic progressions.
Prove that, for each finite coloring of A, there is a monochromatic subset of A containing
arbitrarily long arithmetic progressions.

This phenomenon motivates the following definition.

Definition 1.2. A nonempty family A of infinite subsets of N is a superfilter if, for each
set A ∈ A and each finite coloring of A, there is a monochromatic set B ⊆ A in A.

Thus, for example, the families of all infinite subsets of N, all FS sets, all sets containing
arbitrarily long arithmetic progressions, and all syndetic sets, are superfilters.

Notice that if S is a superfilter and A ∈ S, then every set B ⊇ A is also in S. Also, if a
union of two sets, A ∪B, is in S then A or B are in S.

Exercise 1.3. For a family B ⊆ [N]∞, let Mono(B) be the family of all sets A ⊆ N such
that, for each finite coloring of A, there is a monochromatic set B ⊆ A in B. Prove the following
assertions:

(1) The family Mono(B) is nonempty if and only if N ∈ Mono(B).
(2) If N ∈ Mono(B), then the family Mono(B) is a superfilter.

Every nonprincipal ultrafilter is a superfilter, and so is any union of ultrafilters. This is, in
fact, a characterization of superfilters.

Lemma 1.4. Let S be a superfilter, and let C = { pα : α ∈ I } be the set of all ultrafilters p
with p ⊆ S. Then C is a nonempty closed subset of βN \ N, and S =

⋃

α∈I pα.

Proof. Let F = {A ⊆ N : A c /∈ S }. Then F is a filter: The set N is in F since its
complement, ∅, is finite. If A,B ∈ F and A∩B /∈ F , then (A∩B) c ∈ S, that is, A c∪B c ∈ S.
It follows that A c or B c are in S, in contradiction to A,B ∈ F .

For each finite set F ⊆ N, since F ∪ F c ∈ S and F /∈ S, we have that F c ∈ S. Thus, there
are no finite sets in F .

Let A ∈ S. For each B ∈ F , the set B ∩ A is in S: Since A ⊆ B c ∪ (A ∩ B), the latter
set is in S. Since B c /∈ S, we have that A ∩ B ∈ S. In particular, the set B ∩ A is infinite.

71
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As F is a filter, the family {B ∩ A : B ∈ F } is closed under finite intersections. Thus, this
family extends to a nonprincipal ultrafilter p on N. Then A ∈ p, and it remains to show that
p ⊆ S. Let B ∈ p. If B /∈ S, then B c ∈ F , and then B c ∩ A ∈ p. It follows that B c ∈ p; a
contradiction. �

2. Eventually monochromatic sets

All theorems below can be proved for colorings of [N]d, where d is an arbitrary natrural number.
We present them for the most interesting, two-dimensional case. The proofs in this case contain all
ingredients needed for inducting on d.

Definition 2.1. Let c be a finite coloring of the complete graph [N]2. A complte subgraph
[A]2 of [N]2 is eventually monochromatic if there is a color i such that, for each a ∈ A, the color
of the edges {a, b} is i for all but finitely many b ∈ A. For families A and B of subsets of N,
the notation

A −→ ⌊B⌋2

denotes the statement that, for each A ∈ A and each finite coloring of A, there is a set B ⊆ A
in B that is eventually monochromatic.

The partition relation in Definition 2.1 is due to James E. Baumgartner and Alan D. Taylor,
Partition Theorems and Ultrafilters, Transactions of the American Mathematical Society, 1978.

The assertion A −→ ⌊B⌋2 becomes stronger if the family A is enlarged or the family B is
thinned out.

Proposition 2.2. Let A and B be families of subsets of N. If A −→ ⌊B⌋2 then, for each set
A ∈ A and each finite coloring of A, there is a monochromatic set B ⊆ A in B. In particular,
if A −→ ⌊A⌋2, then the family A is a superfilter.

Proof. Let A ∈ A, and let c be a finite coloring of A. Define a coloring χ of [A]2 by

χ({a, b}) := c(min{a, b}).

Assume that an infinite set B ⊆ A is eventually monochromatic, say of color i. For each b ∈ B,
taking a large enough element b′ ∈ B, we have that c(b) = χ({b, b′}) = i. �

Exercise 2.3. Show that a 2-coloring suffices in the proof of Proposition 2.2.
Hint : Color a pair {a, b} according to whether c(a) = c(b) or not.

Exercise 2.4. For a natural number k ≥ 2, write A −→ ⌊B⌋2k if, for each A ∈ A and each
k-coloring of A, there is a set B ⊆ A in B that is eventually monochromatic. Consider the case
where B = A. Prove that the statements A −→ ⌊A⌋2k, for k ≥ 2, are all equivalent.
Hint : A color blindness argument.

We will soon establish a simple sufficient condition for the relation A −→ ⌊B⌋2 to hold.
The proof will use the following lemma.

Lemma 2.5. Let p be a nonprincipal ultrafilter on N. For each finite coloring of the complete
graph [N]2, there are sets A1 ⊇ A2 ⊇ · · · in p such that all edges {i, j} with i ∈ A1 and j ∈ Ai

have the same color.

Proof. The proof is similar to the ultrafilter proof of Ramsey’s Theorem. For an element
v ∈ N and a color i, let Ci(v) be the set of all vertices connected to v by an edge of color i.
Then A \ {v} = C1(v) ∪ · · · ∪ Ck(v) ∈ p, and there is i with Ci(v) ∈ p. Defining χ(v) := i, we
obtain a finite coloring χ of A. Fix a set A1 ∈ p that is monochromatic for the coloring χ, say
of the color green. We henceforth write C(v) for Ci(v). Thus, for each v ∈ A1, we have that
C(v) ∈ p and all edges {v, u}, for u ∈ C(v), are green.
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For each n > 1, let

An =

{

An−1 ∩ C(n) n ∈ A1

An−1 otherwise.

This construction is illustrated by the following figure. In this figure, the left hand ellipses
denote the sets A1 ∩ {1}, A1 ∩ {1, 2}, A1 ∩ {1, 2, 3}, etc, that add up to cover all elements of
A1.

· · ·

A1

A2

A3

A4

It is clear from the diagram that the requested assertion follows. �

Lemma 2.5 is proved in Vitaly Bergelson and Neil Hindman, Ultrafilters and multidimensional

Ramsey theorems, Combinatorica, 1989.

Definition 2.6. Let A and B be a families of subsets of N. Sfin(A,B) is the assertion that,
for each sequence A1, A2, · · · ∈ A, we can select finite sets F1 ⊆ A1, F2 ⊆ A2, . . . such that the
set

⋃

n Fn is in B.

For example, let [N]∞ be the family of all infinite subsets of N. Then Sfin([N]∞, [N]∞) holds.
More interestingly, let AP be the family of all subsets of N with arbitrarily long arithmetic
progressions. Say that a set A ⊆ N is Rado if it contains a solution for all rational homogeneous
systems of linear equations with the columns property. Let C be the family of central sets, and
R be the family of Rado sets. Then Sfin(C,R) holds. There are examples where Sfin(A,A)
holds but not for a trivial reason. These will be mentioned later.

Theorem 2.7. Let A be a superfilter and B be a family of subsets of N such that Sfin(A,B)
holds. Then A −→ ⌊B⌋2.

Proof. Let A ∈ A. By Lemma 1.4, there is a nonprincipal ultrafilter p on N with A ∈ p ⊆
A. Let A1 ⊇ A2 ⊇ · · · be as in Lemma 2.5. Intersecting each of these sets with A, we may
assume that A1 ⊆ A. By Sfin(A,B), there are finite sets F1 ⊆ A1, F2 ⊆ A2, . . . such that the
set B :=

⋃

n Fn is in B. Then the set B is eventually monochromatic. �

Definition 2.8. Let c be a finite coloring of the graph [N]2. A complete subgraph [A]2

of [N]2 is monochromatic modulo finite if there is a partition of A into finite sets such that
all edges among distinct pieces of the partition have the same color. For families A and B of
subsets of N, the notation

A −→ [B]2

denotes the statement that, for each A ∈ A and each finite coloring of A, there is a set B ⊆ A
in B that is monochromatic modulo finite.
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If B is monochromatic modulo finite for a coloring of N, then it is in particular eventually
monochromatic. The converse implication need not hold. To see that, color an edge {i, j} ∈ [N]2

red if j ≤ 2i and green otherwise. Then the graph is eventually green, but there is a red path
between every pair of vertices.

For natural numbers m < n, let [m,n) = {m,m + 1, · · · , n − 1}. The following lemma is
more than needed for the subsequent theorem, but it will be used again later.

Lemma 2.9. Let B be a family of infinite subsets of N with the property that, for each B ∈ B
and each increasing sequence m1 = 1 < m2 < · · · , there is a subsequence l1 = 1 < l2 < · · ·
such that

⋃

nB ∩ [l2n−1, l2n) ∈ B or
⋃

n B ∩ [l2n, l2n+1) ∈ B. Assume that, for a given coloring
of [N]2, the complete subgraph [B]2 is eventually monochromatic. Then there is a subset C ⊆ B
in B such that the complete graph [C]2 is monochromatic modulo finite.

Proof. Assume that the eventual color of the graph [B]2 is green. Define an increasing
function f : N → N by induction on n, such that f(n) > n for all n and, for each n ∈ B, the
edge {n,m} is green for all m ≥ f(n).

Set m1 = 1, and for each n > 1, let mn = f(mn−1). By thinning out the sequence, we may
assume that all sets B ∩ [mn, mn+1) are nonempty. Let l1 = 1 < l2 < · · · be a subsequence
as in the premise of the lemma. Since this is a subsequence of m1, m2, . . . , it remains the case
that f(ln) ≤ ln+1 for all n.

Assume, for example, that
⋃

n B ∩ [l2n, l2n+1) ∈ B. Then all edges among distinct sets
B ∩ [l2n, l2n+1) are green. Indeed, let a ∈ B ∩ [l2n, l2n+1) and b ∈ B ∩ [l2m, l2m+1), for n < m.
Then f(a) ≤ f(l2n+1) ≤ l2n+2 ≤ l2m. Thus, the edge {a, b} is green. �

Theorem 2.10. Let A and B be superfilters such that Sfin(A,B) holds. Then A −→ [B]2.

Proof. Given a finite coloring of a set A ∈ A, there is by Theorem 2.7 a subset B ⊆ A
in B such that the subgraph [B]2 is eventually monochromatic. Since B is a superfilter, the
assumption of Lemma 2.9 is satisfied for all subsequences. It follows that there is a set C ⊆ B
in B such that the graph [B]2 is monochromatic modulo finite. �

Corollary 2.11. Let AP be the family of all subsets of N containing arbitrarily long
arithmetic progressions. Then AP −→ [AP]2.

Proof. The family AP is a superfilter, and Sfin(AP,AP) holds. Apply Theorem 2.10. �

Corollary 2.11 can be reformulated as follows.

Corollary 2.12. Let A ⊆ N be a set containing arbitrarily long arithmetic progressions.
For each finite coloring of [A]2, there are for each n a monochromatic arithmetic of length n,
such that the edges among elements of distinct arithmetic progressions are all of the same color.

Proof. Given a set B ⊆ A that is monochromatic modulo finite and a partition B =
⋃

n Fn

witnessing that, we can move to a coarser partition by choosing, for each n, a number mn so
large such that the set Hn := Fmn−1

∪ · · ·Fmn
contains an arithmetic progression of length n.

Edges among distinct sets Hn are of the same color, being edges among distinct pieces of the
original partition. �

The case A = B of Theorem 2.10, is proved in Nadav Samet and Boaz Tsaban, Superfilters,
Ramsey theory, and van der Waerden’s Theorem, Topology and its Applications, 2009. Corollary
2.11 was first proved in the same paper, by a direct method. The proof given here is slightly simpler.
A weaker form of this corollary, where only finite colorings of the entire set N are considered, is
proved in Vitaly Bergelson and Neil Hindman, Ultrafilters and multidimensional Ramsey theorems,
Combinatorica, 1989.
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3. Trying

Since U ∪ V := {U ∪ V : V ∈ V } ∈ Ω for V ∈ Ω, the ultras contained in {V ⊆ U : V ∈ Ω }
is a left ideal in β(FU(U),∪). Let e be a minimal idempotent there.

Let green be the e-prefered color of the graph edges, and A ∈ e with all preferring green.
e ip, so there is A′ ⊆ A in e that “can be continued”: Each a ∈ A′ has B ∈ e with a+B ⊆ A′.
Game proof:

(1) Fix A1 ∈ e of points preferring green.
(2) Select a1 ∈ A⋆

1 := { a ∈ A1 : ∃B ∈ e, a +B ⊆ A1 }.
(3) A2 ⊆ A1 green neighbors of a1 with a1 + A2 ⊆ A1.
(4) Select a2 ∈ A⋆

2.
(5) A3 ⊆ A2 in e, green neighbors of all FS(a1, a2). (Possible since FS(a1, a2) ⊆ A1!).

Request also E(a2, A3) green.
(6) etc.

{a1, . . . } ∈ Ω.
By Sfin, there is B ⊆∗ An in Ω. Color {b, c} green if b + c ∈ A. Since eventually green and

S1(Ω,Ω) gives partition relation, there is a subgraph in Ω that is all green.
Will consider the finite sums of
***

4. Todo

S1 implies game using idea of abstract uf ramsey and partitioning. Requires just the extra
step of Q-point/partitioning to intervals. DOES NOT NEED THAT A is a superfilter. Also
the interval partition on B needs only the technical property.

Exemplify above with Fn’s etc., as below.
Add addition and get ip based theorems as below.
(If Ω won’t be ideal, then consider other ideals.) Can get MT-like from Sfin(Ω,Ω): Quali-

tative MT: 1. Using games: e idempotent (e.g. for Ω), e prefers green edges, A ∈ e preferring
green. B1 - those having sum in A with a large A1 ⊆ A. Game: Take F1 ⊆ A, A1 good for all
F1. Continue. Get ω-cover. Apply Q-point.

Game free: Let A ∈ e. There is A′ ⊆ A in e s.t. for each a ∈ A′ there is B ⊆ A′ in e with
a + B ⊆ A. Given A, move to A′ and choose for each a ∈ A′ the B′ instead of B. Then do as
in ufRamsey proof, for A′, A′

1,.... Apply Sfin. All elements of A′ were continued. Apply Q-pt to
B ∩ (An+1 \ An). All FS are in A′ so were considered and can do interval partitioning so that
next mn is good for FS(B ∩ [1, mn−1)).

...
Sfin(e,Ω) to get eventually mono graph in Ω.
Paritioning trick, step n: Look at B ∩ [1, mn).
for increasing sets of finite sums of finite sets s.t. remain in Ω and edges among FS(B ∩

[m5, m6)) and FS(A ∩ [m7, m8)) green.

5. Finite sums of arithmetic progressions, images, and solutions

Following is an abstract version of the Central Sets Theorem.
The following can be generalized to colorings of [N]d. This is stronger as d increases, since

can color by minimal element. (Think what happens for d > 2.) And this would generalize also
Milliken–Taylor.

Essentially this is the Combinatorica result.
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Better leave as now, then hybrid-of-hybrids (since doesn’t extend the second abs2, which doesn’t
need an ip). Or do hybhyb now but add the abs2 anyway.

To do: Is there infinite-dim version of the abs thm? (As there is for ramsey).

Theorem 5.1. Let (S,+) be a semigroup. Let F1,F2, . . . be families of nonempty finite
subsets of S. Assume that there is an idempotent e ∈ βS such that every element of e has a
subset in each Fn. Then, for each A ∈ e, there are sets F1 ∈ F1, F2 ∈ F2, . . . such that every
finite sum of elements of the set

⋃

n Fn, with at most one element from each Fn, is in A. In
other words, such that

Fi1 + · · ·+ Fik ⊆ A

for all k and all i1 < · · · < ik.

Proof. The proof is the essence of the proof of the Central Sets Theorem.

F1 F2 F3 · · ·

A1

A2

A3

A4

Let A1 := A.
For n = 1, 2, . . . , do the following: Take from the family Fn a subset Fn of An. Since e is

an idempotent and An ∈ e, for each a ∈ Fn there is in e a set Ba such that a + Ba ⊆ An. Let
An+1 :=

⋂

a∈F Ba. Then An ∈ e, and Fn + An+1 ⊆ An.
The proof that all requested finite sums are in A is as in the proof of Hindman’s Theorem.

�

Corollary 5.2. Let (S,+) be a semigroup. Let F1,F2, . . . be families of nonempty finite
subsets of S. Assume that there is an idempotent e ∈ βS such that, for each set A ∈ e and each
n, there is in Fn a subset of A. For each finite coloring of N there are sets F1 ∈ F1, F2 ∈ F2, . . .
such that all finite sums of elements of the set

⋃

n Fn, with at most one element from each Fn,
have the same color. �

Consider the trivial case where, for each n, Fn is the family of all singletons (one element
subsets of N). In this case, the premise of the theorem holds for any idempotent ultrafilter e,
and we obtain Hindman’s Theorem.

For a vector

v =





a1
...
am



 ∈ (S ∪ {0})m,

let
Set(v) := {a1, . . . , am},

the set of entries of the vector v. Let (S,+) be an abelian semigroup, v1,v2, · · · ∈ (S ∪ {0})m,
and C ⊆ S be a central set. For each n, let

Fn = { Set(a+ vF ) : a ∈ A, F > n } .
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Let e ∈ βS be a minimal idempotent with C ∈ e. By the Piecewise Syndetic Sets Theorem,
for each A ∈ e there is in Fn a subset of A. By Theorem 5.1, there are sets

Set(a1 + vF1
) ∈ F1, Set(a2 + vF2

) ∈ F2, . . .

such that every finite sum of elements of the set
⋃

n Set(an + vFn
), with at most one element

from each set Set(an + vFn
), is in C. It follows that

FS(a1 + vF1
, a2 + vF2

, . . . ) ⊆ Cm.

By moving to a subsequence of the given sets, we may assume that F1 < F2 < · · · . We obtain
the Central Sets Theorem.

The following theorem is a simultaneous generalization of van der Waerden’s Theorem and
Hindman’s Theorem.

Theorem 5.3. For each finite coloring of N, there are for each n an arithmetic progression
of length n such that all finite sums of elements of these progressions, with at most one element
from each progression, have the same color.

Proof. For each n, let Fn be the family of all arithmetic progressions of length n. Fix a
minimal idempotent e ∈ βN. For each A ∈ e, the set A is piecewise syndetic and thus has a
subset in every Fn. The assertion then follows, by Theorem 5.1. �

Following is a more general form of Theorem 5.3. To state it succinctly, say that a subset
I of N is an image set of an m× n matrix A with the first entries property if there is a vector
v ∈ Nn such that I is the set of entries of the vector Av. An representative example of an
image set is provided in Theorem 2.6.

Theorem 5.4. For each finite coloring of N, there are for each matrix A with the first
entries property an image set such that all finite sums of elements of these image sets, choosing
at most one element from each image set, have the same color.

Proof. Let A1,A2, . . . enumerate all matrices with the first entries property. For each n,
let Fn be the family of all image sets of the matrix An. By the Monochromatic Image Theorem,
Theorem 5.1 applies. �

A simultaneous generalization of Schur’s Coloring Theorem and Hindman’s Theorem is,
simply, Hindman’s Theorem. But we also have a simultaneous generalization of Rado’s Theorem
and Hindman’s Theorem.

Theorem 5.5. For each finite coloring of N, there are for each system of linear equations
over N with the columns property a solution such that all finite sums of entries of these solutions,
choosing at most one entry from each solution, have the same color.

Proof. Theorems 8.3.2 and 5.1. �

We can combine any finite number of theorems whose proofs via Theorem 5.1 requires the
same type of ultrafilter (in the above cases, a minimal idempotent). For example, let

(A1,B1), (A2,B2), . . .

enumerate all pairs of matrices such that the first matrix has the first entries property and the
second matrix has the columns condition. For each n, put F ∈ Fn if and only if F contains
an image set of the matrix An and the set of entries of a solution of the system Bnx = 0.
Then Theorem 5.1 applies with any minimal idempotent e, and we obtain the following result:
Let a finite coloring of N be given. There are, for each pair (A,B) of a matrix with the first
entries condition and a matrix with the colums condition, a set containing an image of A and
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the entries of a solution of Bx = 0 such that all finite sums choosing at most one element from
each of these sets have the same color.

Exercise 5.6. Show that Theorem 5.1 holds for arbitrary families Fn of sets for which
there is an idempotent e ∈ βS such that, for each set A ∈ e and each n, there is in Fn a subset
of A that is not in e.

6. Ramsey’s Theorem with anything else: Milliken–Taylor and beyond

In Section 2.2, we described an ultrafilter proof of Ramsey’s Theorem. A nice feature of
this proof was that it did not assume anything about the chosen ultrafilter. This makes it
possible to use the method of the previous section in a broader setting, and obtain simulta-
neous generalizations of various theorems and Ramsey’s Theorem. We begin with an abstract
theorem.

Theorem 6.1. Let V be set and d be a natural number. Let F1,F2, . . . be families of
nonempty finite subsets of V . Assume that there is a nonprincipal ultrafilter p ∈ βV such that
each element of p has a subset in each Fn. Let A ∈ p. Then, for each finite coloring of an [A]d,
there are sets F1 ∈ F1, F2 ∈ F2, . . . such that all sets in

[⋃

n Fn

]
d with at most one element

from each Fn have the same color.

Proof. We treat the case d = 2, which is the most appealing visually. In this case, a finite
coloring of the complete graph [A]2 is given, and we find disjoint sets F1 ∈ F1, F2 ∈ F2, . . .
such that all edges among distinct sets Fn have the same color. The generalization to larger d
follows, in a similar manner, by induction on d.

For each v ∈ A and each color i, let Ai(v) be the set of all vertices connected to v by an
edge of color i. Then A \ {v} = A1(v) ∪ · · · ∪ Ak(v) ∈ p, and thus there is i with Ai(v) ∈ p.
Defining χ(v) := i, we obtain a finite coloring χ of A. Fix a set A1 ∈ p that is monochromatic
for the coloring χ, say of color i. We proceed as follows:

F1 F2 F3 F4 · · ·

A1

A2

A3

A4

Take F1 ∈ F1 such that F1 ⊆ A1. Let A2 := A1∩ (
⋂

v∈F1
Ai(v)). Then A2 ∈ p, and F1∩A2 = ∅.

Take F2 ∈ F2 such that F2 ⊆ A2. Let A3 := A2 ∩ (
⋂

v∈F2
Ai(v)). Then A3 ∈ p, and

F2 ∩A3 = ∅.
Continue in the same manner. �

An AP set is a subset of N containing arbitrarily long arithmetic progressions.

Theorem 6.2. Let A ⊆ N be a set containing arbitrarily long arithmetic progressions. For
each finite coloring of [A]d, there are for each n an arithmetic progression of length n such that
all d-element sets, consisting of elements of distinct progressions, have the same color.
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Theorem 6.2 follows from Theorem 6.1 and the following lemma.

Definition 6.3. A family of sets F is partition-regular if for each A ∈ F and every finite
coloring of A, there is a monochromatic subset of A in F .

There are AP sets which are not syndetic.
By the finite version of van der Waerden’s Theorem, the family of all AP subsets of N is

partition regular.

Lemma 6.4. Let X be a set, and F ⊆ P (X) be a partition-regular family. For each A ∈ F ,
there is an ultrafilter p on X such that A ∈ p ⊆ F .

Proof. *** �

*** Elements of minimal elements of βN containt arithmentic progressions of all finite
lengths. (In particular, minimal ultrafilters are nonprincipal.)

Exercise 6.5. Formulate theorems analogous to ones of the previous section, using Theo-
rem 6.1.

The following theorem generalizes Theorem 5.1. Modulo its stronger hypothesis, this theo-
rem also generalizes Theorem 6.1.

Theorem 6.6. Let (S,+) be a semigroup and d be a natural number. Let F1,F2, . . . be
families of nonempty finite subsets of S. Assume that there is an idempotent e ∈ βS such
that each element of e has a subset in each Fn. Let A ∈ e. Then, for each finite coloring
of an [A]d, there are sets F1 ∈ F1, F2 ∈ F2, . . . such that, for all finite nonempty index sets
I1 < I2 < · · · < Id and all elements

a1 ∈
∑

i∈I1

Fi, a2 ∈
∑

i∈I2

Fi, . . . , ad ∈
∑

i∈Id

Fi,

the sets {a1, . . . , ad} have the same color.

Proof. A straightforward combination of the proof of Theorem 5.1 and Theorem 6.1. �

Theorem 6.7 (Milliken–Taylor). Let (S,+) be a semigroup and d be a natural number.
Then, for each finite coloring of [S]d, there are a1, a2, · · · ∈ S such that, for all finite nonempty
index sets I1 < I2 < · · · < Id, the sets {aI1, . . . , aId} have the same color.

Proof. In Theorem 6.6, take all Fn to be the family of all singletons, and let e be an
arbitrary idempotent of βS. �

In HS, they talk about sum-subsystem in MT. They also mention their theorem is not general
enouch to get the product version directly. Check whether our approach does.

***
Application: Bergelson–Hindman Combinatorica.
We have as corollary the case of those ”partition regulars defined by finite sets”. Using they

contain an uf. First time in ST. Maybe better since inner, no mention of uf.
Add the result when we only color an AP set. For this, we need that every partition-regular

family, each set in the family is in an uf.
Milliken–Taylor (Hindman and Ramsey). Uses the game approach: (a1, A2),...,(FS(a1, .., an), An+1),

such that FS(a1, .., an) + An+1 ⊆ An and FS(a1, .., an) ∼ An+1 is green.
Section on SPM.
Ramsey’s Theorem begins this book and ends it. We have closed a circle.
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7. Comments for Chapter 9

Theorem 5.4, which generalizes Theorem 5.3, is proved in Walter Deuber and Neil Hindman,
Partitions and sums of (m, p, c)-sets, Journal of Combinatorial Theory A, 1987.

8. Things for future use

??? Not clear! We cannot intersect infinitely many sets in the uf!
S1(S,S) + Split(S,S) ⇒ S → (S)22 !. Uses the exercise idea with the Fn /∈ p.
In fact this gives more: That there are disjoint elements A1, A2 · · · ∈ S such that all edges

among them are of the same color. In the presence of S1 this clearly implies the partition
relation.

???
What about the converse direction? If true then better than suf result, since gives complete

characterization.
Same for Sfin.
Since Split(AP,AP ), we obtain the known theorem. (It can also be obtained using ONE6↑

Gfin(AP,AP ), indeed TWO↑ (AP,AP ).)
A superfilter, Split(A,B), S1(B,C) ⇒ A → (C)22.
A > B > C, so we have Split(A,C) and S1(A,C) but not S1(C,C) so unclear if latter can

be deduced from a simpler assertion.
Example: S1(O,O) + Split(Ω, O) ⇒ Ω → (O)22. Easy: S1(O,O) ⇒ Split(Ω, O). We obtain

a simpler proof than that in Open covers and partition relations (game free), and probably we
do not need to make assumptions on the space.

Seems that Sfin(Om,Om) implies Split(Om,Om) via games. NO: u¡d is consistent.
(Split(S,S) = CDR(S,S).)



CHAPTER 10

Selection principles

Let (S,∨) be a join semilattice. For elements a, b ∈ S, a ≤ b if a ∨ b = b.

Definition 0.1. Let S be a semilattice. A set A ⊆ S has no finite subcover if, for each
finite set F ⊆ A, there is an element a ∈ A with a �

∨
F .

Let A be a family of countable subsets of S. A# is the family of all sets A ∈ A with no
finite subcover. The family A is Menger if:

(1) If a countable set B ⊆ S has a refinement in A, then B ∈ A.
(2) For each sequence A1, A2, · · · ∈ A#, there are finite sets F1 ⊆ A1, F2 ⊆ A2, . . . with

⋃

n Fn ∈ A.

Example 0.2. A topological space X is a Menger space if and only if the family of all
countable open covers of X is a Menger family.

We restrict to countable covers, to obtain more general results.
For a set T ⊆ S, let 〈T 〉 be the subsemilattice of S generated by T . The following observation

is Lemma 3(3) in [Sch06].

Lemma 0.3. Let A be a Menger family in a semilattice. Then
{
〈A〉 : A ∈ A#

}
⊆ Mono(A) ⊆

A.

Proof. Assume that 〈A〉 = A1 ∪ · · · ∪ Ak, and the set A does not refine any set Ai. For
each i, pick ai ∈ A with ai � a for all a ∈ Ai. Then a := a1 ∨ · · · ∨ ak ∈ 〈A〉, and a /∈ Ai for all
i; a contradiction. �

If A is a Menger family and A ∈ A, then every cofinite subset of A is in A.

***
A union subsystem of a sequence U1, U2, . . . of sets is a sequence

Theorem 0.4. Let (X, τ) be a Menger space, and let {U1, U2, . . . } be a large open cover
of X with no finite subcover. For each finite coloring of [τ ]2, there are nonempty finite sets
F1 < F2 < · · · such that:

(1) Nice to have: The elements UF are distinct for distinct F . At least, UFn
are distinct.

(2) {UF1
, UF2

, . . . } is a large cover of X.
(3) For all finite sets H1 < H2, the edges {UFH1

, UFH1
} have the same color.

Proof. Let (S,∪) be the subsemigroup of (P (X),∪) generated by the family {U1, U2, . . . }.
Let S be the superfilter consisting of all finite-open covers of X contained in FS(U1, U2, . . . ).
Let L = { p ∈ βS : p ⊆ S }. Then L is a closed subset of βS.

Since the family {U1, U2, . . . } is a large cover of X , we have that FS(Un, Un+1, . . . ) ∈ S for
all n. Thus, [FS(Un, Un+1, . . . )]∩L 6= ∅ for all n. Since these are compact sets, the intersection

T :=
⋂

n

[FS(Un, Un+1, . . . )] ∩ L

is nonempty.
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It is known, and easy to see, that the set
⋂

n[FS(Un, Un+1, . . . )] is a subsemigroup of βS.
The set L is also a subsemigroup of βS. Indeed, it is a left ideal of βS: Let s ∈ S and p ∈ L.
Let A ∈ s+ p. Fix B ∈ p such that s+B ⊆ A. Since B is a finite-open cover of X , so is s+B
and therefore so is A. It follows that S + L ⊆ L. Since L is a closed subset of βS, we have by
right continuity that βS + L ⊆ L. Thus, the set T is a closed subsemigroup of βS. Let e ∈ T
be an idempotent element.

Fix a set G ∈ e such that, for each a ∈ G, the set

N(a) := { b ∈ S \ {a} : {a, b} is green }

is in e. Let A1 := G. For each n = 1, 2, . . . :

(1) Let A∗
n = { a ∈ An : ∃B ∈ e, a+B ⊆ An }.

(2) Let A′
n = A∗

n ∩ FS(Umn
, Umn+1, . . . ).

(3) Let

Wish Bob to pick just one element. For this, need G1(Increasing,Λ) = Gfin(Omega,Λ).
Should be easy: Modify Bob’s moves to their union. Using Gfin(Omega,Λ) = Gfin(Omega,O)
this is easy. �

Corollary 0.5. One-dim case.


