
Finite Fields and Their Applications 8, 256–267 (2002)

doi:10.1006/ffta.2001.0339, available online at http://www.idealibrary.com on
Efficient Linear Feedback Shift Registerswith Maximal Period

Boaz Tsaban

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

E-mail: tsaban@macs.biu.ac.il

and

Uzi Vishne

Landau Research Center for Mathematical Analysis, Hebrew University of Jerusalem, Israel

E-mail: vishne@math.huji.ac.il

Communicated by Peter Jau-Shyong Shive

Received October 24, 2000; revised June 4, 2001

We introduce and analyze an efficient family of linear feedback shift registers

(LFSR’s) with maximal period. This family is word-oriented and is suitable for

implementation in software, thus provides a solution to a recent challenge [8]. The

classical theory of LFSR’s is extended to provide efficient algorithms for generation

of irreducible and primitive LFSR’s of this new type. # 2002 Elsevier Science (USA)

Key Words: linear feedback shift registers; linear transformation shift registers;

fast software encryption.
1. LINEAR FEEDBACK SHIFT REGISTERS

Linear feedback shift registers (LFSR’s) are fundamental primitives in the
theory and practice of pseudorandom number generation and coding theory
(see, e.g., [1–4,6,7], and references therein).

Figure 1 describes a typical LFSR over the two-element field F2 ¼ f0; 1g,
where each step consists of adding some of the state bits (we follow the
convention that the elements of F2 are called bits), and the result is inserted
to the register in a FIFO manner.

Such a construction is slow in the sense that it produces only one new bit
per step. Moreover, it is difficult to implement in software, since many bit
256
1071-5797/02 $35.00
2002 Elsevier Science (USA)

All rights reserved.

FIG. 1. A typical LFSR.

WORD-ORIENTED LFSR’S 257
manipulations are required. In certain cases (but not always [10]), it is
possible to use LFSR’s with only two feedback taps. This makes a slightly
faster LFSR. (See also Section 7.)

In the 1994 conference on fast software encryption, a challenge was set
forth to design LFSR’s which exploit the parallelism offered by the word
oriented operations of modern processors [8, Section 2.2]. In this paper, we
suggest a solution and study its properties.

2. LINEAR TRANSFORMATION SHIFT REGISTERS

Fix an arbitrary finite field F . A sequence s ¼ hsni1n¼0 of elements from F
is linear recurring with characteristic polynomial

f ðlÞ ¼ a0 þ a1lþ

 þ adl
d 2 F ½x

if ad ¼ 1, and

a0sn þ a1snþ1 þ

 þ adsnþd ¼ 0

for all n ¼ 0; 1; 2; . . . : The minimal polynomial of a linear recurring
sequence s is the characteristic polynomial of s of least degree. Let s be a
nonzero linear recurring sequence with an irreducible characteristic
polynomial f ðlÞ. It is well known (cf. [2]) that the period of s is equal to
the order of l in the multiplicative group of the field K ¼ F ½l
=hf ðlÞi. If l
generates the whole group, we say that f ðlÞ is primitive. (In this case s has
the maximal possible period jK j � 1 ¼ jF jd � 1, where d ¼ deg f ðlÞ.) Like-
wise, for any natural number d, if T is a linear transformation of Fd and
v 2 Fd is nonzero, then the sequence hTnðvÞi1n¼0 of vectors in F

d has period
jF jd � 1 if and only if the characteristic polynomial of the linear
transformation T is primitive over F ½l
. If this is the case we say that T is
primitive.

We now introduce the family of linear transformation shift registers

(TSR’s). For convenience of presentation, we pack m
 n-dimensional
vectors in an array ðv0; . . . ; vn�1Þ of n vectors in Fm (n and m will be fixed
throughout the paper). In the intended application, F ¼ F2 and m is the
number of bits in the processor’s word. Typical values of m are 8, 16, 24, 32,

TSABAN AND VISHNE258
and 64. This way, the array ðv0; . . . ; vn�1Þ is stored in n processor words.
Following this interpretation, elements of Fm will be called words.

Definition 2.1. Let T be a linear transformation of Fm, and let
S ¼ ha0; . . . ; an�1i 2 Fn. A TSR step hT ;Si of the array R ¼ ðv0; . . . ; vn�1Þ 2
Mm�nðFÞ is the linear transformation

hT ;SiðRÞ :¼ ðv1; v2; . . . ; vn�1;Tða0v0 þ a1v1 þ

 þ an�1vn�1ÞÞ:

The system hT ;S;Ri is called a TSR.

Figure 2 illustrates a typical example of a TSR. An obvious advantage
over the standard LFSR is that here a whole new word (rather than a single
bit) is produced per step.

Linear transformations on processor words can be performed very
efficiently, either using lookup tables, or by using specific linear
transformations which are efficient when working on processor words,
e.g., Galois-type shift registers. The latter example has the advantage that no
additional memory is required (see, e.g., [9, pp. 378–379]). Note further that
choosing each of the ai’s to be either 0 or 1 eliminates the complexity of the
multiplications aivi. One cannot, however, eliminate the complexity of the
transformation T as well by using the identity transformation T ¼ I : In this
FIG. 2. A typical TSR.

WORD-ORIENTED LFSR’S 259
case the period cannot be greater than jF jn � 1, whereas in principle,
memory of n words can yield period jF jmn � 1.

Simulations show that there exist choices for T and S such that the
resulted TSR step is primitive, and thus yields a sequence of vectors
with period 2mn � 1. In the following sections we provide necessary
conditions on T and S in order that the resulted TSR step is primitive.
Choosing T and S to satisfy these conditions increases the probability that
the resulted TSR is primitive with respect to random choice of these
parameters. Thus, we will get an efficient algorithm for generation of
primitive TSR’s.

3. THE CHARACTERISTIC POLYNOMIAL OF A TSR

Identify the linear transformation T operating on words with the matrix
T 2MmðFÞ such that T
 v ¼ TðvÞ; v 2 Fm.

Let I denote the m�m unit matrix. A TSR step hT ;S ¼ ha0; . . . ; an�1ii
of the array R ¼ ðv0; . . . ; vn�1Þ 2 ðFmÞn is equivalent to multiplication
of ðv0; . . . ; vn�1Þ

t from the left by the block matrix ½hT ;Si
 2MnmðFÞ,
where

½hT ;Si
 ¼

0 I 0

 0

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

.
0

0

 0 I

a0T a1T

 an�2T an�1T

0
BBBBBBBB@

1
CCCCCCCCA
:

Let fSðlÞ ¼ a0 þ a1lþ

 þ an�1l
n�1 (so that the characteristic polyno-

mial of ½hT ;Si
 in the case m ¼ 1 and T ¼ ð1Þ is ln � fSðlÞ), and let
fT ðlÞ ¼ jlI � T j denote the characteristic polynomial of T (note that the
degree of fT ðlÞ is m.)

Proposition 3.1. Let T be a linear transformation of Fm, and

S ¼ ha0; . . . ; an�1i 2 Fn. Then the characteristic polynomial of the TSR step

hT ;Si is

fhT ;SiðlÞ ¼ fSðlÞ
m
 fT

ln

fSðlÞ

� �
:

Proof. We multiply each row block by l, and add the result to the
next one. Then we use the �I blocks to cancel the terms in the first

TSABAN AND VISHNE260
column block.

jlI � hT ;Sij ¼

lI �I 0

 0

0 . .
. . .

. . .
.

0

..

. . .
. . .

. . .
.

0

0

 0 lI �I

�a0T �a1T

 �an�2T lI � an�1T

														

														

¼

lI �I 0

 0

l2I 0 . .
. . .

.
0

..

. ..
. . .

. . .
.

0

ln�1I 0

 0 �I

�a0T �a1T

 �an�2T lI � an�1T

															

															

¼

0 �I 0

 0

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

.
0

0

 0 �I

lnI � fSðlÞT �a1T

 �an�2T lI � an�1T

														

														

¼ ð�1Þmðn�1Þ

lnI � fSðlÞT �a1T

 �an�2T lI � an�1T

0 �I 0

 0

..

. . .
. . .

. . .
.

0

..

. . .
. . .

.
0

0

 0 �I

														

														

¼ ð�1Þmðn�1Þ
 jlnI � fSðlÞT j
 j � I jn�1

¼ fSðlÞ
m

ln

fSðlÞ
I � T

				
				 ¼ fSðlÞ

m
 fT
ln

fSðlÞ

� �
: &

A naive algorithm for generation of a TSR with maximal period would
be to choose the linear transformation T and the set S at random, calculate
the characteristic polynomial fhT ;SiðlÞ using Proposition 3.1, and then check

WORD-ORIENTED LFSR’S 261
whether it is primitive, repeating this process until a primitive polynomial is
found. In most of the cases, the polynomial will not be primitive for the
reason that it is not even irreducible. The following corollary shows that
much unnecessary work can be avoided.

Corollary 3.1. If fT ðlÞ is reducible over F , then so is fhT ;SiðlÞ.

Proof. Suppose fT ðlÞ ¼ q1ðlÞq2ðlÞ is a nontrivial factorization of fT ðlÞ
over F ; mi ¼ deg qiðlÞ. Then fSðlÞ

miqið ln
fSðlÞ

Þ are polynomials, and
fhT ;SiðlÞ ¼ ðfSðlÞ

m1q1ð ln
fSðlÞ

ÞÞ
 ðfSðlÞ
m2q1ð ln

fSðlÞ
ÞÞ is a nontrivial factorization. &

Remark 3.1. In general, the probability that a monic polynomial of
degree m chosen at random is irreducible is close to 1=m. Thus, by Corollary
3.1, the probability that fhT ;SiðlÞ is irreducible provided that fT ðlÞ is
irreducible should be about m times larger than the probability when fT ðlÞ
is arbitrary.

4. IRREDUCIBILITY THROUGH EXTENSION FIELDS

The algorithm stated in the previous section considered polynomials of a
special form as candidates to be primitive. In this section we study
polynomials of this form, with the aim of improving the algorithm.

Let F be a fixed finite field. Let qðlÞ ¼ q0 þ q1lþ

 þ qml
m 2 F ½l
. We

write pqðlÞðx; yÞ for the homogeneous polynomial

xm
 qðy=xÞ ¼ q0x
m þ q1xm�1yþ

 þ qmym:

We wish to find necessary conditions for polynomials of the form
pqðlÞðgðlÞ; f ðlÞÞ to be irreducible. Clearly, if gðlÞ; f ðlÞ 2 F ½l
 are not relatively
prime, then the polynomial pqðlÞðgðlÞ; f ðlÞÞ is reducible. Also, by Corollary
3.1, if qðlÞ is reducible, then so is pqðlÞðgðlÞ; f ðlÞÞ. We are thus interested in
the following type of polynomials.

Definition 4.1. We say that a polynomial

pqðlÞðgðlÞ; f ðlÞÞ :¼ gðlÞdeg qðlÞ
 q
f ðlÞ
gðlÞ

� �

is a candidate if:

1. gðlÞ; qðlÞ; f ðlÞ 2 F ½l
,
2. f ðlÞ and gðlÞ are relatively prime, and
3. qðlÞ is monic and irreducible.

Theorem 4.1. Assume that QðlÞ ¼ pqðlÞðgðlÞ; f ðlÞÞ is a candidate, and let

a be a root of qðlÞ in the splitting field L of qðlÞ. Then the number of distinct

TSABAN AND VISHNE262
irreducible factors of QðlÞ over F is equal to the number of distinct irreducible

factors of f ðlÞ � agðlÞ over L.

Proof. Denote by a1; . . . ; am 2 L the (distinct) roots of qðlÞ in L, so that
qðlÞ has the form

Qm
i¼1 ðl� aiÞ. We have that over L,

QðlÞ ¼ gðlÞm
 q
f ðlÞ
gðlÞ

� �
¼

Ym
i¼1

ðf ðlÞ � aigðlÞÞ: ð1Þ

We can extend the standard norm map L! F to a norm NL=F : L�
½l
 ! F ½l
 by NL=F ðhðlÞÞ ¼

Q
s2GalðL=FÞ sðhðlÞÞ, where sðlÞ ¼ l for all

s 2 GalðL=FÞ. Fix any a 2 fa1; . . . ; amg. Using this notation, Eq. (1) is

QðlÞ ¼ NL=F ðf ðlÞ � agðlÞÞ:

We will use the following lemma.

Lemma 4.1. Let the field L be an extension of F . Assume that rðlÞ 2 L½l

is irreducible. Then RðlÞ ¼ NL=F ðrðlÞÞ is equal to an irreducible polynomial

over F raised to the power ½L :L0
, where L0 � L is the subfield generated by

the coefficients of rðlÞ over F .

Proof. Since NL=F ¼ NL0=F8NL=L0
and NL=L0

ðrðlÞÞ ¼ rðlÞ½L : L0
, it is
enough to prove the claim in the case L0 ¼ L.

Let RðlÞ ¼ R1ðlÞ

RtðlÞ be an irreducible factorization of RðlÞ over F .
Obviously rðlÞ divides RðlÞ in L½l
, and since rðlÞ is irreducible we have that
rðlÞ divides one of the factors, say rðlÞ divides R1ðlÞ.

Let L1 be the splitting field of R1ðlÞ over F . Note that L � L1, since the
coefficients of rðlÞ (which divides R1ðlÞ) generate L. Let L2 be the splitting
field of rðlÞ over L, then L2 � L1 and degRðlÞ ¼ ½L : F

 deg rðlÞ ¼ ½L2 : F

divides ½L1 : F
 ¼ degR1ðlÞ. Thus RðlÞ ¼ R1ðlÞ and is irreducible. &

Let

f ðlÞ � agðlÞ ¼ u1ðlÞ
s1

 utðlÞ

st

be a factorization into irreducible polynomials over L.
Taking the norm from L½l
 to F ½l
, we get the factorization

QðlÞ ¼ U1ðlÞ
s1

UtðlÞ

st

over F , where UiðlÞ ¼ NL=F ðuiðlÞÞ. By Lemma 4.1, The polynomials UiðlÞ
are irreducible (the coefficient of ldeg gðlÞ in f ðlÞ � agðlÞ generates L). It thus
remains to show that the UiðlÞ are relatively prime. We will show that ui is
prime to sðujÞ for any s 2 GalðL=FÞ and j=i. Indeed, if s ¼ 1 then ui is
prime to uj by the assumption. Otherwise, ui divides f � ag and sðujÞ divides

WORD-ORIENTED LFSR’S 263
f � sðaÞg, but f � ag and f � sðaÞg are distinct and irreducible, thus
relatively prime. &

Corollary 4.1. Assume that QðlÞ ¼ pqðlÞðgðlÞ; f ðlÞÞ is a candidate, and

let L be the splitting field of qðlÞ. Let a be a root of qðlÞ in L. Then QðlÞ is

irreducible over F if, and only if, f ðlÞ � agðlÞ is irreducible over L.

According to [5, Chapter 4], checking irreducibility of a degree d
polynomial amounts to performing gauss elimination of a matrix of size
d � d. In a finite field F this requires roughly d3 operations of multiplication
and addition. Assume that QðlÞ ¼ pqðlÞðgðlÞ; f ðlÞÞ is a candidate, and set
n ¼ maxfdeg f ðlÞ; deg gðlÞg. Checking the reducibility of QðlÞ directly over
F requires roughly degQðlÞ3 ¼ m3n3 operations. Checking its reducibility
via Corollary 4.1 requires roughly n3 operations, but here multiplication is
more expensive: each multiplication in L requires roughly m2 multiplications
in F . Thus, the algorithm implied by Corollary 4.1 is roughly m times faster,
where m ¼ deg qðlÞ. See also Remark 6.2.

5. PRIMITIVITY

Assume that QðlÞ ¼ pqðlÞðgðlÞ; f ðlÞÞ is a candidate, L is the splitting field
of qðlÞ, and a is a root of qðlÞ in L. By Corollary 4.1, QðlÞ is irreducible over
F if, and only if, f ðlÞ � agðlÞ is irreducible over L. The analogue result for
primitivity follows: QðlÞ is primitive if, and only if, it is irreducible and its
roots generate K * , where K is the splitting field of QðlÞ. Now, observe that
K is also the splitting field of f ðlÞ � agðlÞ, and that QðlÞ and f ðlÞ � agðlÞ
share the same roots in K . This result, however, does not yield an
improvement of the algorithm stated in the previous section.

In this section we show that if f ð0Þ ¼ 0 and the base field is F ¼ F2 (these
assumptions hold in the intended environment for the TSR), then a
candidate QðlÞ ¼ pqðlÞðgðlÞ; f ðlÞÞ is primitive only if qðlÞ is primitive. Thus,
the TSR-generation algorithm should begin with primitive transformations
T , yielding an additional speedup factor fðjL* jÞ=jL* j, which is roughly 2
when deg qðlÞ is a power of 2, cf. [5].

It will be convenient to use the following definition.

Definition 5.1. Let L be a finite field. The index of a nonzero element
a 2 L is the index jL* j=jhaij of the cyclic group generated by a as a subgroup
of L* .

An irreducible polynomial is primitive if, and only if, its roots have index
1 in its splitting field. Note further that for d dividing jL* j; a 2 L has index
d if, and only if, a ¼ gd for some generator g of the cyclic group L* .

TSABAN AND VISHNE264
Lemma 5.1. Let hðlÞ 2 L½l
 be an irreducible monic polynomial of degree n
over L, with splitting field K and a root m. Then mjK * j=jL * j ¼ ð�1Þnhð0Þ.

Proof. Let m0; . . . ; mn�1 denote the (distinct) roots of hðlÞ. Then
hðlÞ ¼ ðl� m0Þ

 ðl� mn�1Þ is the factorization over K, thus
hð0Þ ¼ ð�1Þnm0

mn�1. On the other hand, the Galois group of K=L is
generated by the Frobenius automorphism u/ujLj, thus the roots of hðlÞ are

m; mjLj; . . . ;mjLj
n�1

, and m0

mn�1 ¼ m1þjLjþ

þjLjn�1

¼ m
jLjn�1
jLj�1 . &

Theorem 5.1. Assume that F ¼ F2 and QðlÞ ¼ pqðlÞðgðlÞ; f ðlÞÞ is an

irreducible candidate with f ð0Þ ¼ 0. If qðlÞ is not primitive then QðlÞ is not

primitive.

Proof. Let K be the splitting field of QðlÞ over F , and L � K the splitting
field of qðlÞ. Let m 2 K be a root of QðlÞ, and a 2 L a root of qðlÞ.

Let dm denote the index of m in K, and da the index of a in L. We will show
that da ¼ ðjL* j; dmÞ. Thus, dm ¼ 1 implies da ¼ 1.

By Corollary 4.1, hðlÞ ¼ f ðlÞ � agðlÞ is irreducible over L. Since every
polynomial is monic over F2, we can apply Lemma 5.1 to get that
hð0Þ ¼ mjK * j=jL * j. But hð0Þ ¼ f ð0Þ � ð�1Þnagð0Þ ¼ agð0Þ. As f ðlÞ and gðlÞ are
relatively prime, gð0Þ=0, thus gð0Þ ¼ 1, and hð0Þ ¼ a.

Let g be a generator of K * such that m ¼ gdm .
Then a ¼ mjK * j=jL * j ¼ gdm jK * j=jL * j, and its order in K * is

jK * j=ðjK * j; dmjK * j=jL* jÞ ¼ jL* j=ðjL* j; dmÞ;

as asserted. &

6. THE FINAL GENERATION ALGORITHM

In light of the results obtained in the previous sections, we end up with the
following algorithm for TSR-generation over F ¼ F2:

Algorithm 1 (Primitive TSR generation).

1. Choose at random a primitive transformation T on Fm2 .
2. Choose a random sequence S ¼ ha0; . . . ; an�1i 2 Fn2 such that a0=0.
3. Choose a root a of fT ðlÞ in its splitting field L.
4. Check that ln � afSðlÞ is irreducible over L (otherwise return to

step 1).
5. Check that QðlÞ ¼ pfT ðlÞðfSðlÞ; l

nÞ is primitive: Choose a root m of
QðlÞ in its splitting field K , and check for all prime p dividing jK * j
that mjK * j=p

=1 (in fact, as we show below, it is not needed to
consider the cases where p divides jL* j). If QðlÞ is not primitive,
return to step 1.

WORD-ORIENTED LFSR’S 265
Remark 6.1. Assuming that generally the probability that QðlÞ ¼ pfT ðlÞ
ðfSðlÞ; l

nÞ is primitive is roughly the same for every primitive transformation
T , it would be more efficient to repeat steps 2 to 5 of the algorithm several
times before starting again from step 1. Thus, the complexity of step 1 will
be negligible with respect to the total running time. Moreover, we argue
below that step 5 usually occurs only once.

Remark 6.2. In all of the mentioned algorithms, one can get a speedup
factor of *mm, where *mm is the size of the word in the processor where the
search for the TSR is made (note that this need not be the same processor
on which the TSR will be implemented, thus *mm need not be equal to m).
This is done by exploiting the processors word-oriented operations
to define parallel versions of the basic operations used in the
algorithms.

For a natural number n, we denote by Cn the (multiplicative) cyclic
group of order n. If g is a generator of Cn, then gx is a generator as
well if, and only if, ðx; nÞ ¼ 1. This is why the number of generators of Cn is
exactly fðnÞ, where f is Euler’s function, and the probability that a
uniformly chosen element generates Cn is fðnÞ=n. An irreducible
polynomial QðlÞ is primitive if a root m of QðlÞ generates the multiplicative
group of its splitting field K. There is a natural 1 to ½K : F
 correspondence
between irreducible monic polynomials of degree ½K : F
 and elements of K
which do not belong to a proper subfield of K. This correspondence implies
that the probability that an irreducible QðlÞ is primitive is close to
fðjK * jÞ=jK * j.

We now consider irreducible candidates. We wish to estimate the
probability that a candidate passing the test in step 4 of the algorithm will
also pass the final test of step 5. A candidate QðlÞ ¼ pfT ðlÞðfSðlÞ; l

nÞ is good if
T is primitive and QðlÞ is irreducible. We will find, heuristically, the
probability that a good candidate is primitive. Let L be the splitting
field of fT ðlÞ, and K be the splitting field of QðlÞ. Factor jK * j ¼ kL
 a,
where kL is the product of all the prime factors of jK * j which divide jL* j
(allowing powers of primes). Then the group K * is isomorphic to CkL � Ca,
where a prime p divides jL* j if, and only if, it divides kL. A root m of QðlÞ
generates K * if, and only if, its projections in CkL and Ca are both
generators.

In the proof of Theorem 5.1 we showed that da, the index of a root a of
fT ðlÞ in L, is equal to ðjL* j; dmÞ, where dm is the index of m in K . As T is
primitive (i.e., da ¼ 1), we have that dm is prime to jL* j. Thus, dm is prime to
kL, that is, kL divides the order of m in K * . Therefore, the projection of m
in CkL is a generator of that group. We assume, heuristically, that
the projection of m on Ca is (close to being) uniformly distributed.
Thus, the probability of its being a generator of Ca is close to fðaÞ=a.

TSABAN AND VISHNE266
In general,

fðnÞ
n

¼
Y
pjn

1�
1

p

� �
;

and as a prime p divides a if, and only if, p divides jK * j but not jL* j, we have
that

fðaÞ
a

¼
fðjK * jÞ=jK * j
fðjL* jÞ=jL* j

:

We thus have a heuristic justification for the following claim.

Claim 6.1. Assume that QðlÞ ¼ pfT ðlÞðfSðlÞ; l
nÞ is an irreducible

candidate over F2, where fT ðlÞ is primitive. Then the probability that QðlÞ
is primitive is close to

fðjK * jÞ=jK * j
fðjL* jÞ=jL* j

:

Example 6.1. The probability at Claim 6.1 is usually close to 1. We give
here a few examples:

1. When the word’s size is 8 bits and the number of words is 7, we have
that fð256 � 1Þ=ð256 � 1Þ � 0:465; fð28 � 1Þ=ð28 � 1Þ � 0:502, and the
division yields probability close to 0.927.

2. When the word’s size is 16 bits and the number of words is 4, we get
probability close to 0.998.

3. For values 24 and 3, respectively, we get 0.898.
4. For values 32 and 2 we get 0.998.

7. CONCLUDING REMARKS

We have presented the family of linear transformation shift registers
which is efficient in software implementations. The theory we developed
enabled us to get an efficient algorithm for generation of primitive
transformations of this type (i.e., which have maximal period), thus
answering a challenge raised in [8].

Variants of our construction can be found more appropriate for certain
applications. Arguments similar to those we have presented here may be
found useful in the study of these variants as well. A noteworthy variant of
the LFSR type that we have studied is the internal-xor, or Galois, shift
register (see, e.g., [9]). The number of new bits generated in one step of an
internal-xor shift register is equal on average to half of the number of taps in

WORD-ORIENTED LFSR’S 267
that LFSR. Our construction suggests an obvious analogue internal-xor
TSR. We get exactly the same results for this case, since the characteristic
polynomial of an internal-xor TSR is equal to that of the corresponding
external-xor TSR, which we have studied in this paper.

REFERENCES

1. K. Cattell and J. C. Muzio, An explicit similarity transform between cellular automata and

LFSR matrices, Finite Fields Appl. 4 (1998), 239–251.

2. S. W. Golomb, ‘‘Shift Register Sequences,’’ Holden-Day, San Francisco, 1967.

3. R. G .oottfert, H. Niederreiter, On the minimal polynomial of the product of linear recurring

sequences, Finite Fields Appl. 1 (1995), 204–218.

4. N. Kamiya, On multisequence shift register synthesis and generalized-minimum-distance

decoding of Reed-Solomon codes, Finite Fields Appl. 1 (1995), 440–457.

5. R. Lidl and H. Niederreiter, Finite fields, in ‘‘Encyclopedia of Mathematics and Its

Applications,’’ 20, Cambridge University Press, Cambridge, UK, 1983.

6. A. Munemasa, Orthogonal arrays, primitive trinomials, and shift-register sequences, Finite

Fields Appl. 4 (1998), 252–260.

7. G. H. Norton, On shortest linear recurrences, J. Symbolic Comput. 27 (1999), 325–349.

8. B. Preneel, Introduction, in ‘‘Proceedings of the Fast Software Encryption 1994 Workshop’’

(Bart Preneel, Ed.), Lecture Notes in Computer Science, Vol. 1008, pp. 1–5, 1995.

9. B. Schneier, ‘‘Applied Cryptography,’’ Wiley, New York, 1996.

10. U. Vishne, Factorization of trinomials over Galois fields of characteristic 2, Finite Fields

Appl. 3 (1997), 370–377.

	1. LINEAR FEEDBACK SHIFT REGISTERS
	FIGURE 1

	2. LINEAR TRANSFORMATION SHIFT REGISTERS
	FIGURE 2

	3. THE CHARACTERISTIC POLYNOMIAL OF A TSR
	4. IRREDUCIBILITY THROUGH EXTENSION FIELDS
	5. PRIMITIVITY
	6. THE FINAL GENERATION ALGORITHM
	7. CONCLUDING REMARKS
	REFERENCES

