Boaz Tsaban,*Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel. (e-mail: tsaban@macs.biu.ac.il) # A TOPOLOGICAL INTERPRETATION OF t This paper is dedicated to Prof. Rabbi Haim Judah #### Abstract Hurewicz has found connections between some topological notions and the combinatorial cardinals $\mathfrak b$ and $\mathfrak d$. Reclaw gave topological meaning to the definition of the cardinal $\mathfrak p$. We extend the picture with a topological interpretation of the cardinal $\mathfrak t$. We compare our notion to the one related to $\mathfrak p$, and to some other classical notions. This sheds new light on the famous open problem whether $\mathfrak p=\mathfrak t$. ## 1 Introduction Cardinals associated with infinitary combinatorics play an important role in set theory. Some earlier works ([8], [13], [1], [12], and [11]) have pointed out a strong connection between these cardinals and classes of spaces having certain topological properties. In this paper, we continue this line of research in a way which enables us to give a topological meaning to an open problem from infinitary combinatorics. ## 1.1 Preliminaries Let $\omega = \{0, 1, 2, \dots\}$ and $2 = \{0, 1\}$ be the usual discrete spaces. ω^{ω} and 2^{ω} are equipped with the product topology. Identify 2^{ω} with $P(\omega)$ via characteristic functions. $[\omega]^{\omega}$ is the set of infinite elements of $P(\omega)$, with $O_n = \{a : n \in a\}$ and $O_{\neg n} = \{a : n \notin a\} = O_n^c$ $(n \in \omega)$ as a clopen subbase. For $a, b \subseteq \omega$, $a \subseteq^* b$ if $a \setminus b$ is finite. $X \subseteq [\omega]^{\omega}$ is centered if every finite $F \subseteq X$ has an infinite intersection. $a \in [\omega]^{\omega}$ is an almost-intersection (a.i.) of X if it is infinite, and for all $b \in X$, $a \subseteq^* b$. $X \subseteq [\omega]^{\omega}$ is a power if it is Key Words: \mathfrak{p} , \mathfrak{t} , γ -cover, small sets, λ -sets, infinitary combinatorics Mathematical Reviews subject classification: 03E50, 03E10, 04A15 ^{*}This paper is based on my M.Sc. thesis work supervised by Martin Goldstern. centered, but has no a.i.. \mathfrak{p} is the minimal size of a power. $X \subseteq [\omega]^{\omega}$ is a tower if it is linearly ordered by \subseteq^* , and has no a.i.. \mathfrak{t} is the minimal size of a tower \leq^* is the partial order defined on ω^ω by eventual dominance $(f \leq^* g)$ iff $\forall^\infty n \ (f(n) \leq g(n))$). $\mathfrak b$ is the minimal size of an unbounded family, and $\mathfrak d$ is the minimal size of a dominating family, with respect to \leq^* . ### The main problem Let \mathfrak{c} denote the size of the continuum. The following holds. Theorem 1.1 ([4, theorem 3.1.a]). $\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{d} \leq \mathfrak{c}$. For each pair except $\mathfrak p$ and $\mathfrak t$, it is well known that a strict inequality is consistent. **Problem 1.2.** Is $\mathfrak{p} < \mathfrak{t}$ consistent with ZFC ? This is one of the major and oldest problems of infinitary combinatorics. Allusions for this problem can be found in Rothberger's works (see, e.g., [15, lemma 7]). It is only known that $\mathfrak{p} = \omega_1 \to \mathfrak{t} = \omega_1$ [4, theorem 3.1.b], hence also $\mathfrak{t} \leq \omega_2 \to \mathfrak{p} = \mathfrak{t}$. ### 1.2 γ -spaces Throughout this paper, by *space* we mean a zero-dimensional, separable, metrizable topological space. As any such space is homeomorphic to a subset of the irrationals, our results can be thought of as dealing with sets of reals. The definition of a γ -space is due to Gerlits and Nagy [6]. Let X be a space. A collection of open sets \mathcal{G} is an ω -cover of X if for every finite $F \subseteq X$ there is a $G \in \mathcal{G}$ such that $F \subseteq G$. $\langle G_n : n < \omega \rangle$ is a γ -sequence for X if $\forall x \in X \forall^{\infty} n \ (x \in G_n)$. An open cover \mathcal{G} of X is a γ -cover of X if it contains a γ -sequence for X. Clearly every γ -cover is an ω -cover. X is a γ -space if every ω -cover of X is a γ -cover of X. For convenience, we may assume that the ω -covers \mathcal{G} of X are countable and clopen (replacing each element from \mathcal{G} by all finite unions of basic clopen sets contained in it), and that for all finite $F \subseteq X$, there are infinitely many $G \in \mathcal{G}$ with $F \subseteq G$ (using a partition of ω into ω many infinite sets, one can create a sequence consisting of ω copies of the original cover \mathcal{G} . The resulted sequence has the required property.) And so we will, from now on. ¹Note that, unlike the customary definition, we do not demand that a tower is well-ordered. However, by [4, theorem 3.7], this does not change the value of t. Let Γ denote the collection of all γ -spaces. The γ -property is very strict: Gerlits and Nagy [6, corollary 6] proved that all γ -spaces are C''. In particular, it is consistent that all γ -spaces are countable. Reclaw has given an elegant characterization of γ -spaces. Theorem 1.3 (Recław [13, theorem 3.2]). X is a γ -space iff no continuous image of X in $[\omega]^{\omega}$ is a power. (A continuous image of X is the image of a continuous function with domain X.) This gives an alternative proof to the following. For a family ${\mathcal F}$ of spaces, let $$non(\mathcal{F}) = min\{|X| : X \text{ is a space, } X \notin \mathcal{F}\}$$ Corollary 1.4 (Galvin, Miller, Taylor [5, p. 146]). $non(\Gamma) = \mathfrak{p}$. # 2 The tower of τ Let X be a topological space. An open cover $\mathcal G$ of X is T_1 if for all distinct $x,y\in X$ there is a $G\in \mathcal G$ such that $x\in G,y\not\in G$. Therefore, $\mathcal G$ is not T_1 iff there are distinct $x,y\in X$ such that for all $G\in \mathcal G$, $x\in G\to y\in G$. Strengthening the "not T_1 " property demanding that the above holds for all $x,y\in X$ would trivialise $\mathcal G$ to be $\{X\}$, or $\{X,\emptyset\}$. We therefore compensate by means of a "modulo finite" restriction. For $\mathcal{G} = \langle G_n : n < \omega \rangle$, we write $x \stackrel{\mathcal{G}}{\leadsto} y$ for $$\forall^{\infty} n \ (x \in G_n \to y \in G_n) \ .$$ \mathcal{G} is a τ -sequence for X if - 1. \mathcal{G} is a *large cover*, i.e. every element of X is covered by infinitely many elements of \mathcal{G} , and - 2. for all $x, y \in X$, either $x \stackrel{\mathcal{G}}{\leadsto} y$, or $y \stackrel{\mathcal{G}}{\leadsto} x$. An open cover \mathcal{J} of X is a τ -cover of X if it contains a τ -sequence for X. It is easy to see that every γ -cover is a τ -cover, and every τ -cover is an ω -cover. X is a τ -space if every clopen τ -cover of X is a γ -cover of X. Equivalently, if every countable clopen τ -cover of X is a γ -cover of X. Let $\mathcal T$ denote the collection of all τ -spaces. ²This requirement was added in order to avoid trivial cases. ## Corollary 2.1. $\Gamma \subseteq \mathcal{T}$. We wish to transfer our covering notions into $[\omega]^{\omega}$, in order to obtain their combinatorial versions. In Recław's proof of theorem 1.3, the following natural function $h = h_{\mathcal{G}}$ is considered: Given a countable large cover $\mathcal{G} = \{G_n : n \in \omega\}$ of X, define $h: X \to [\omega]^{\omega}$ by $$h(x) = \{n : x \in G_n\}.$$ Now, let us see what h does to our topological notions. Assume that $\mathcal{G} = \langle G_n : n < \omega \rangle$ is an ω -cover of X. Then for all finite $F \subseteq X$, F is a subset of infinitely many G_n 's. That is, $n \in \cap h[F]$ for infinitely many n's. This means that h[X] is centered. Next, assume that \mathcal{G} is a γ -sequence for X. Then $\forall x \forall^{\infty} n \ (x \in G_n)$. That is, $\forall x \forall^{\infty} n \ (n \in h(x))$, or: ω is an a.i. of h[X]. Therefore, \mathcal{G} is a γ -cover of X iff the associated h[X] has an a.i.. Finally, a large cover \mathcal{G} is a τ -sequence for X iff for all $x, y \in X$, either $x \stackrel{\mathcal{G}}{\leadsto} y$, or $y \stackrel{\mathcal{G}}{\leadsto} x$. Now, $a \stackrel{\mathcal{G}}{\leadsto} b$ iff $\forall^{\infty} n \ (n \in h(a) \to n \in h(b))$ iff $h(a) \subseteq^* h(b)$. Therefore, h[X] is linearly ordered by \subseteq^* . We have showed the following. **Lemma 2.2.** Assume that G is a countable large cover of X. - 1. \mathcal{G} is an ω -cover of X iff $h_{\mathcal{G}}[X]$ is centered. - 2. \mathcal{G} is a γ -cover of X iff $h_{\mathcal{G}}[X]$ has an almost-intersection. - 3. \mathcal{G} is a τ -sequence for X iff $h_{\mathcal{G}}[X]$ is linearly ordered by \subseteq^* . Note that if \mathcal{G} is a *clopen* cover, then $h = h_{\mathcal{G}}$ is continuous, since for all n, $h^{-1}[O_n] = G_n$, and $h^{-1}[O_{\neg n}] = G_n^c$. Therefore, 2.2(1) and 2.2(2) yield Recław's theorem 1.3, and 2.2(2) and 2.2(3) yield the following. **Theorem 2.3.** X is a τ -space iff no continuous image of X in $[\omega]^{\omega}$ is a tower. *Proof.* (\Leftarrow) Assume that \mathcal{J} is a clopen τ -cover of X and let $\mathcal{G} \subseteq \mathcal{J}$ be a τ -sequence for X. Then by lemma 2.2(3), $h_{\mathcal{G}}[X]$ is linearly ordered by \subseteq^* . As $h_{\mathcal{G}}$ is continuous, $h_{\mathcal{G}}[X]$ cannot be a tower, and hence has an a.i.. Applying lemma 2.2(2), we get that \mathcal{G} is a γ -cover of X, and hence so is \mathcal{J} . (\Rightarrow) Assume that X is a τ -space, and $f: X \to [\omega]^{\omega}$ is continuous. Assume that f[X] is linearly ordered by \subseteq^* . Then $\langle O_n : n < \omega \rangle$ is a clopen τ -sequence for f[X], therefore $\mathcal{G} = \langle f^{-1}[O_n] : n \in \omega \rangle$ is a clopen τ -sequence for X, hence a γ -cover of X. By 2.2(2) $h_{\mathcal{G}}[X]$ has an a.i., hence is not a tower. But $h_{\mathcal{G}} = f$, as for all $x \in X$, $$n \in h_{\mathcal{G}}(x) \iff x \in f^{-1}[O_n] \iff f(x) \in O_n \iff n \in f(x).$$ Therefore, f[X] is not a tower. The reader might have noticed that in the last proof we have indirectly used the following lemma. **Lemma 2.4.** Every continuous image of a τ -space is a τ -space. *Proof.* A continuous preimage of a clopen τ -cover is a clopen τ -cover. We get a topological characterization of \mathfrak{t} . Corollary 2.5. $non(\mathcal{T}) = \mathfrak{t}$. For a family \mathcal{F} of spaces, let $$\operatorname{add}(\mathcal{F})=\min\{|\mathcal{A}|:\mathcal{A}\subseteq\mathcal{F}\ \&\ \bigcup\mathcal{A}\not\in\mathcal{F}\}.$$ Theorem 2.6. $add(\mathcal{T}) = \mathfrak{t}$. *Proof.* We need the following lemma. **Lemma 2.7.** Assume that $X \subseteq [\omega]^{\omega}$ is linearly ordered by \subseteq^* , and for some $\kappa < \mathfrak{t}$, $X = \bigcup_{i < \kappa} X_i$ where each X_i has an a.i.. Then X has an a.i.. *Proof.* If for each $i < \kappa X_i$ has an a.i. $x_i \in X$, then an a.i. of $\{x_i : i < \kappa\}$ is also an a.i. of X. Otherwise, there exsists $i < \kappa$ such that X_i has no a.i. $x \in X$. That is, for all $x \in X$ there exists a $y \in X_i$ such that $x \not\subseteq^* y$, thus $y \subseteq^* x$. Therefore, an a.i. of X_i is also an a.i. of X. Now we can use theorem 2.3. Assume that $X = \bigcup_{i < \kappa < \mathfrak{t}} X_i$, where each X_i is a τ -space. If $f: X \to [\omega]^{\omega}$ is continuous, and f[X] is linearly ordered by \subseteq^* , then each $f[X_i]$ has an a.i. and therefore by the lemma, f[X] has an a.i.. Therefore, X is a τ -space. Unlike in the case of γ -spaces, large τ -spaces exist in ZFC. In fact, we have the following. Theorem 2.8 (Shelah). 2^{ω} is a τ -space. *Proof.* Towards a contradiction, assume that $f: 2^{\omega} \to [\omega]^{\omega}$ is continuous such that $f[2^{\omega}]$ is a tower. Let $$T = \{ s \in 2^{<\omega} : f[[s]] \text{ has no a.i.} \}.$$ T is a perfect tree: Assume that for some $s \in T$, there are no incomparable extensions s_0, s_1 such that both $f[\ [s_0]\]$ and $f[\ [s_1]\]$ have no a.i.. Then for all \tilde{s} extending s, at least one of $f[\ [\tilde{s}^{\hat{\ }}\langle 0\rangle]\]$ and $f[\ [\tilde{s}^{\hat{\ }}\langle 1\rangle]\]$ has an a.i.. Let $\sigma \in 2^{\omega}$ extend s such that for all $n \geq |s|$, $f[\ [(\sigma \upharpoonright n)^{\hat{\ }}\langle 1 - \sigma(n)\rangle]\]$ has an a.i.. $f[[s]] = \bigcup_{n < \omega} f[[(\sigma \upharpoonright n)^{\hat{}}(1 - \sigma(n))]] \cup \{f(\sigma)\}$ is a union of ω many sets having an a.i., contradicting lemma 2.7. We now show that $f[2^{\omega}]$ cannot be linearly ordered by \subseteq^* . Define two branches β and ξ in T as follows. Start with incomparable $b_0, c_0 \in T$. Pick $x_0 \in [b_0]$. As $f[[c_0]]$ has no a.i., we can find a $y_0 \in [c_0]$ such that $f(x_0) \not\subseteq^*$ $f(y_0)$. Choose an $n_0 \in f(x_0) \setminus f(y_0)$. Since f is continuous, we can find b_1 , an initial segment of x_0 , such that $f[[b_1]] \subseteq O_{n_0}$. Similarly, find c_1 , an initial segment of y_0 , such that $f[[c_1]] \subseteq O_{n_0}$. Now we reverse the roles, and find $x_1 \in [b_1]$, $y_1 \in [c_1]$, $n_1 > n_0$ such that $n_1 \in f(y_1) \setminus f(x_1)$. Then we take b_2 and c_2 , initial segments of y_1 and x_1 respectively, such that $f[[b_2]] \subseteq O_{\neg n_1}$ and $f[[c_2]] \subseteq O_{n_1}$. We continue by induction. Finally, let $\beta = \bigcup_i b_i = \lim_i x_i$, and $\xi = \bigcup_i c_i = \lim_i y_i$. Since f is continuous, the sets $\{n_{2k}: k \in \omega\}$ and $\{n_{2k+1}: k \in \omega\}$ witness that neither $f(\beta) \subseteq^* f(\xi)$ nor $f(\xi) \subseteq^* f(\beta)$. This theorem implies that the inclusion in corollary 2.1 is proper. We will modify it to get a large class of τ -spaces which are not γ -spaces. **Theorem 2.9.** ω^{ω} is a τ -space. *Proof.* Identify ω^{ω} with $2^{\omega} \setminus F$ (where F are the eventually zero sequences), and work in $2^{\omega} \setminus F$ instead of 2^{ω} : - 1. In the proof that T is perfect, we need not care whether $\sigma \in 2^{\omega} \setminus F$ or not. - 2. When choosing the initial segment b_{i+1} of x_i , use the fact that $x_i \notin F$ to make sure that b_{i+1} ends with a "1" (a similar treatment for c_{i+1}). This will make β and ξ belong to $2^{\omega} \setminus F$. Corollary 2.10. Every analytic set of reals is a τ -space. *Proof.* Every analytic set of reals is a continuous image of ω^{ω} . Remark 2.11. 1. One cannot prove in ZFC that all projective sets of reals are τ -spaces: Since the reals have a projective well-ordering in the constructible universe L, a straightforward inductive construction will yield a projective tower. 2. Due to a theorem of Suslin (see, e.g., [10, corollary 2C.3]), every uncountable analytic set contains a perfect set, and hence is not a γ -space (it is not even strongly null). As in the case of γ -spaces [5, p. 147], the property of being a τ -space need not be hereditary for subspaces of the same size. We will work in $P(\omega)$. **Theorem 2.12.** $\mathfrak{t} = \mathfrak{c} \to there is a space <math>X \subseteq [\omega]^{\omega} s.t.$: - 1. |X| = c, - 2. $X \cup [\omega]^{<\omega}$ is a τ -space, and - 3. X is not a τ -space. *Proof.* First, note that (1) follows from (2) and (3), using corollary 2.5. We will use a modification of the Galvin-Miller construction (see [5, theorem 1]). For $y \in [\omega]^{\omega}$, define $y^* = \{x : x \subseteq^* y\}$. We need the following lemma. **Lemma 2.13 (Galvin, Miller [5, lemma 1.2]).** Assume that \mathcal{G} is an open ω -cover of $[\omega]^{<\omega}$. Then for all $x \in [\omega]^{\omega}$ there exists a $y \in [x]^{\omega}$ such that \mathcal{G} γ -covers y^* . Let $\langle \mathcal{G}_i : i < \mathfrak{c} \rangle$ enumerate all countable families of clopen sets in $P(\omega)$, and let $\langle y_i : i < \mathfrak{c} \rangle$ enumerate all elements $y \in [\omega]^{\omega}$ such that both y and $\omega \setminus y$ are infinite. Construct, by induction, $\langle x_i : i < \mathfrak{c} \rangle \subseteq [\omega]^{\omega}$ such that $i < j \to x_j \subseteq^* x_i$. For a limit i, use $i < \mathfrak{t}$ to get x_i . For successor i = k + 1, x_i is constructed as follows: - Case 1 \mathcal{G}_k is a τ -cover of $B_k = \{x_j : j \leq k\} \cup [\omega]^{<\omega}$. By theorem 2.5, as $|B_k| < \mathfrak{t}$, \mathcal{G}_k is a γ -cover of B_k . In particular, \mathcal{G}_k γ -covers $[\omega]^{<\omega}$. By the lemma, there exists an $x_{k+1} \in [x_k]^{\omega}$ such that \mathcal{G}_k γ -covers x_{k+1}^* . - Case 2 \mathcal{G}_k is not a τ -cover of $\{x_j: j < k\} \cup [\omega]^{<\omega}$. Since this case is not interesting, we may take $x_{k+1} = x_k$. After x_i is chosen (either for limit or successor i), modify it as follows: if $x_i \subseteq^* y_i$, leave it as is. Otherwise, replace it by $x_i \setminus y_i$. This does the construction. Define $X = \{x_i : i < \mathfrak{c}\}$, then $X \cup [\omega]^{<\omega}$ is a τ -space: by the construction, if \mathcal{G}_k is a τ -cover of $X \cup [\omega]^{<\omega}$, then it γ -covers $\{x_j : j \leq k\} \cup x_{k+1}^*$. But $$X \cup [\omega]^{<\omega} \subseteq \{x_j : j \le k\} \cup x_{k+1}^*.$$ This does (2). (3) X is a tower: let $a \in [\omega]^{\omega}$. We will show that a is not an a.i. of X. Take $a_0 \subseteq a$ such that both a_0 and $\omega \setminus a_0$ are infinite. Now, some x_i satisfies either $x_i \subseteq^* a_0$, or $x_i \subseteq^* \omega \setminus a_0$. Therefore, $a \not\subseteq^* x_i$. By lemma 2.4 (considering the identity function on $[\omega]^{\omega}$), X is not a τ -space. Corollary 2.14. $\mathfrak{t} = \mathfrak{c} \to \tau$ -spaces are not closed under Borel images. *Proof.* Let X be given by the theorem. Consider any function $f: X \cup [\omega]^{<\omega} \to [\omega]^{\omega}$ such that $f \upharpoonright X$ is the identity function, and $f[[\omega]^{<\omega}] \subseteq X$. As $[\omega]^{<\omega}$ is countable, f is Borel. $X \cup [\omega]^{<\omega}$ is a τ -space, but X, its Borel image, is not a τ -space. \square # 3 Comparing τ -spaces to other classical classes # Hurewicz and Menger We give Hurewicz' topological interpretations of \mathfrak{b} and \mathfrak{d} . X has the $\mathit{Hurewicz}\ \mathit{property}\ if$ for every sequence of open covers \mathcal{G}_n , there is a sequence of finite $\tilde{\mathcal{G}}_n \subseteq \mathcal{G}_n$ such that the sets $\cup \tilde{\mathcal{G}}_n$ form a γ -cover of X. X has the $\mathit{Menger}\ \mathit{property}\ if$ for every sequence of open covers \mathcal{G}_n , there is a sequence of finite $\tilde{\mathcal{G}}_n \subseteq \mathcal{G}_n$ such that the sets $\cup \tilde{\mathcal{G}}_n$ cover X. Let \mathcal{H} and \mathcal{MEN} denote the classes of spaces having the Hurewicz and Menger properties, respectively. Clearly $\mathcal{H} \subseteq \mathcal{MEN}$. Theorem 3.1 (Hurewicz [8, $\S 5$]). For every space X, - 1. X has the Hurewicz property iff every continuous image of X in ω^{ω} is bounded. In particular, $non(\mathcal{H}) = \mathfrak{b}$. - 2. X has the Menger property iff every continuous image of X in ω^{ω} is not dominating. In particular, $\operatorname{non}(\mathcal{MEN}) = \mathfrak{d}$. We get that none of these two notions is provably comparable to \mathcal{T} . # Corollary 3.2. - 1. $\mathcal{T} \not\subseteq \mathcal{MEN}$, and - 2. $\mathfrak{t} < \mathfrak{b} \to \mathcal{H} \not\subseteq \mathcal{T}$ *Proof.* (1) By 2.9, $\omega^{\omega} \in \mathcal{T}$, and by 3.1(2), $\omega^{\omega} \notin \mathcal{MEN}$. (2) follows from 2.5 and 3.1(1). Indeed, τ -spaces could be pretty far from having the Menger property. According to a theorem of Hurewicz [7, theorem 20], an analytic set of reals having the Menger property must be F_{σ} . Corollary 2.10 could be contrasted with this. However, these classes need not be orthogonal. Gerlits and Nagy [6, p. 155] proved that, given a sequence of ω -covers \mathcal{G}_n of a γ -set X, there exists a sequence $G_n \in \mathcal{G}_n$ such that $\{G_n : n \in \omega\}$ γ -covers X. We therefore have: Corollary 3.3. $\Gamma \subseteq \mathcal{H} \cap \mathcal{T}$. ### λ -spaces X is a λ -space if every countable subset of X is G_{δ} . Let Λ denote the collection of λ -spaces. λ -spaces are perfectly meager (see [9, theorem 5.2]). Therefore, by remark 2.11(2), no uncountable analytic set is a λ -space. This again could be contrasted with corollary 2.10. On the other hand, we have the following. **Theorem 3.4.** There is a λ -space of size t which is not a τ -space. Our theorem follows from the following two lemmas. Lemma 3.5 ([16, theorem 1]). $non(\Lambda) = \mathfrak{b}$. **Lemma 3.6.** Every tower of size \mathfrak{b} is a λ -space. *Proof.* We use the standard argument (see [4, theorem 9.1]). Before getting started, note that for all $y \in [\omega]^{\omega}$, $y^* = \bigcup_{s \in [\omega]^{<\omega}} \{x : x \subseteq y \cup s\}$ is F_{σ} . Assume that $X = \{x_i : i < \mathfrak{b}\}$ is a tower with $i < j \to x_j \subseteq^* x_i$. For $\alpha < \mathfrak{b}$, set $X_{\alpha} = \{x_i : i < \alpha\}$. Then each X_{α} is G_{δ} in X (its complement in X is F_{σ}). Assume that $F \subseteq X$ is countable. As \mathfrak{b} is regular, there exists $\alpha < \mathfrak{b}$ such that $F \subseteq X_{\alpha}$. As $|X_{\alpha}| < \mathfrak{b}$, X_{α} is a λ -space. Hence, F is G_{δ} in X_{α} , i.e., there is a G_{δ} set $A \subseteq X$ such that $F = X_{\alpha} \cap A$. As X_{α} is also G_{δ} , F is G_{δ} in X. \square With some set theoretic assumptions, we can have an example of size \mathfrak{b} . In fact, our \mathfrak{b} -example will have some additional properties related to our study. $X\subseteq\mathbb{R}$ is a λ' -space if for all countable $F\subseteq\mathbb{R},\ X\cup F$ is a λ -space. For $D\subseteq\mathbb{R},\ X$ is κ -concentrated on D if for all open $U\supseteq D,\ |X\setminus U|<\kappa$. Considering the proof that an (ω_1, ω_1) -gap is a λ' -space (see [9, p. 215]), one might wonder whether our proof can be strengthened to make every \mathfrak{b} -tower X a λ' -space. In fact, following the proof steps carefully one gets that for all countable $F \subseteq [\omega]^{\omega}$, $X \cup F$ is a λ -space. The problem is with $[\omega]^{<\omega}$: if X, when viewed as a subset of ω^{ω} , is unbounded, then $[\omega]^{<\omega}$ is not G_{δ} in $X \cup [\omega]^{<\omega}$ [4, lemma 9.3]. **Theorem 3.7.** Assume that there exists a tower of size \mathfrak{b} . Then there is a space X of size \mathfrak{b} such that: - 1. X is a λ -space, - 2. X is \mathfrak{b} -concentrated on a countable set, - 3. X is not a λ' -space, - 4. X does not have the Hurewicz property, and - 5. X is not a τ -space. *Proof.* We work in $P(\omega)$. Identify $[\omega]^{\omega}$ with $\omega^{\uparrow \omega}$, the strictly increasing elements of ω^{ω} . Let $X = \{x_i : i < \mathfrak{b}\} \subseteq \omega^{\uparrow \omega}$ be such that: (*) It is unbounded, \leq^* -increasing, and has size \mathfrak{b} . The existence of such a set follows from [4, theorem 3.3]. Let $A = \{a_i : i < \mathfrak{b}\}$ be a tower, and define $Y = \{y_i : i < \mathfrak{b}\}$ as follows: for each $i < \mathfrak{b}$, let $h \in \omega^{\omega}$ bound $\{y_k : k < i\} \cup \{x_i\}$, and take a $y_i \subseteq^* a_i$ such that $h \leq^* y_i$: $$y_i(n) = \min\{k \in a_i : y_i(n-1), h(n) < k\}$$ Y, like X, has the property (*). Rothberger [14, theorem 4] has proved that (*) implies (1) and (3) (see also [4, lemma 9.3]). By an observation of Miller [9, theorem 5.7], (*) implies that Y is \mathfrak{b} -concentrated on $[\omega]^{<\omega}$. By theorem 3.1(1), (4) is also satisfied. (5) Y is a tower: any a.i. of Y would also be an a.i. of A. $$\square$$ Our theorem has a cute corollary. Corollary 3.8. $\mathfrak{t} = \mathfrak{b} \vee \mathfrak{b} < \mathfrak{d} \rightarrow \text{there exists an } X \text{ as in theorem 3.7.}$ This follows from the following observation. **Lemma 3.9** ([17, theorem 1]). $\mathfrak{b} < \mathfrak{d} \to there is a tower of size \mathfrak{b}$. For completeness, we give a proof of this lemma. *Proof.* Let $X \subseteq \omega^{\uparrow \omega}$ have property (\clubsuit) , and let $h \in \omega^{\omega}$ witness that X is not dominating. For each $x \in X$ define $a_x \in [\omega]^{\omega}$ by $a_x = \{n : x(n) < h(n)\}$. Then $\{a_x : x \in X\}$ is linearly ordered by \subseteq^* . Assume that it has an a.i. a. Then h' defined by $h'(n) = h(\min\{k \in a : n \leq k\})$ bounds X. A contradiction. \square Despite the large difference between τ and λ spaces, these classes need not be orthogonal. Their intersection could contain a space of size \mathfrak{c} . **Theorem 3.10 (Brendle [2, theorem 4.1]).** $CH \rightarrow there is a \gamma$ -space of size $\mathfrak{c}(=\omega_1)$ all of whose subsets are γ -spaces. By [5, theorem 2], a G_{δ} γ -subspace of a space is also an F_{σ} subspace of that space. Every co-countable subspace of Brendle's space is G_{δ} and therefore F_{σ} . Therefore, every countable subspace of Brendle's space is G_{δ} . Corollary 3.11. $CH \rightarrow there is a \gamma (in particular, \tau)$ -space of size \mathfrak{c} which is also a λ -space. # 4 The selection principle S_1 Unlike γ -spaces, τ -spaces do not fit into the framework defined in [11]. We recall the basic definitions. A space X has property $S_1(x,y)$ (x,y) range over $\{\omega,\gamma,\tau,\ldots\}$ if, given a sequence of x-covers \mathcal{G}_n , one can select from each \mathcal{G}_n an element G_n such that $\{G_n:n\in\omega\}$ is a y-cover. As mentioned in section 3, Gerlits and Nagy proved that the γ -property is equivalent to the $S_1(\omega,\gamma)$ property. Using this notation, we have the following. Remark 4.1. $$S_1(\omega, \gamma) \subseteq S_1(\tau, \gamma) \subseteq S_1(\gamma, \gamma)$$. *Proof.* As noted in $\S 3$, every γ -cover is a τ -cover, and every τ -cover is an ω -cover. Obviously, $S_1(\tau, \gamma) \subseteq \mathcal{T}$. By [11, theorem 2.3], 2^{ω} does not belong to the class $S_1(\gamma, \gamma)$, and therefore not to the class $S_1(\tau, \gamma)$, either. # Corollary 4.2. $S_1(\tau, \gamma) \neq \mathcal{T}$. We now study the $S_1(\tau, \gamma)$ property. Let us begin with saying that the τ -covering notion fits nicely into the framework of [11] (in fact, it suggests many interesting notions, but we will stick to $S_1(\tau, \gamma)$ in this paper). For example, it can be added to [11, theorem 3.1]. In particular, we have the following. **Theorem 4.3.** $S_1(\tau, \gamma)$ is closed under taking closed subsets and continuous images. There are more properties, which follow from remark 4.1 We quote some of them. #### Theorem 4.4. - 1. ([11, corollary 5.6]) Every element of $S_1(\tau, \gamma)$ is perfectly meager (i.e., has meager intersection with every perfect set). - 2. ([11, theorem 5.7]) If $X \in S_1(\tau, \gamma)$, then for every G_{δ} set G containing X, there exists an F_{σ} set F such that $X \subseteq F \subseteq G$. ### Remark 4.5. - 1. If we omit the metrizability assumption on the spaces, then $S_1(\tau, \gamma)$ is not closed under cartesian products, nor under finite unions: Todorčević [18] showed that there exist (nonmetrizable) $X, Y \in S_1(\omega, \gamma)$ such that neither $X \times Y$ nor $X \cup Y$ belong to $S_1(\gamma, \omega)$. - 2. Under CH, we can have such *metrizable* examples. This is achieved when applying the remarks of Galvin and Miller [5, p. 151] to Brendle's space (theorem 3.10). Theorem 4.6 (Daniels [3, lemma 9]). $S_1(\omega, \gamma)$ is closed under taking finite powers. **Question 4.7.** Is $S_1(\tau, \gamma)$ closed under taking finite powers? One can see that if \mathcal{G} is a τ -cover of X, then $\{G^n : G \in \mathcal{G}\}$ is a τ -cover of X^n . But this is not enough for answering this question. Theorem 4.8. $non(S_1(\tau, \gamma)) = \mathfrak{t}$. *Proof.* Assume that $|X| < \mathfrak{t}$ and let \mathcal{G}_n be τ -covers of X. We wish to conclude that the \mathcal{G}_n 's are γ -covers of X. Corollary 2.5 is not enough for our purposes, since the τ -covers need not be clopen. However, theorem 2.2 gives the desired result. Now, by [11, theorem 4.7], $\operatorname{non}(S_1(\gamma, \gamma)) = \mathfrak{b}$. As $|X| < \mathfrak{b}$, $X \in S_1(\gamma, \gamma)$. Therefore, one can extract a γ -cover of X from the \mathcal{G}_n 's. This proves $\mathfrak{t} \leq \operatorname{non}(S_1(\tau, \gamma))$. The other direction follows from the fact that $S_1(\tau, \gamma) \subseteq \mathcal{T}$, together with corollary 2.5. In particular, it is consistent that $S_1(\tau, \gamma) \neq S_1(\gamma, \gamma)$. Corollary 4.9. $\mathfrak{t} < \mathfrak{b} \to S_1(\tau, \gamma) \neq S_1(\gamma, \gamma)$. We therefore have the following. Question 4.10. Does $S_1(\omega, \gamma) = S_1(\tau, \gamma)$? As the consistency of $\mathfrak{p} < \mathfrak{t}$ would imply a negative answer, this question seems to be closely related to the main problem whether $\mathfrak{p} = \mathfrak{t}$. #### Remark 4.11. - 1. Due to 4.4(1), the (in fact, any) Luzin set used in [11] to distinguish $S_1(\omega,\omega)$ from $S_1(\omega,\gamma)$ will also distinguish it from $S_1(\tau,\gamma)$. - 2. By 4.6, a negative answer to question 4.7 would imply a negative answer to question 4.10. - 3. Showing $S_1(\tau, \gamma) \not\subseteq S_1(\omega, \omega)$ is consistent would also yield a negative answer. # Acknowledgements I thank Martin Goldstern for supervising my thesis work (and the writing of this paper). I also thank Saharon Shelah for theorem 2.8, and Arnold W. Miller and Ireneusz Recław for showing interest in this work and making comments on it. A special thanks is owed to Marion Scheepers, for very fruitful discussions and suggestions which led to 2.12, 2.14, and §§3,4. # References - [1] T. Bartszyński and H. Judah, *Borel images of sets of reals*, Real Analysis Exchange **20** (1994/5), pp. 536–558. - [2] J. Brendle, Generic constructions of small sets of reals, Topology and its Applications 71 (1996), pp. 125–147. - [3] P. Daniels, *Pixeley-Roy spaces over subsets of the reals*, Topology and its Applications **29** (1988), pp. 93–106. - [4] E.K. van Douwen, *The integers and topology*, in: **Handbook of Set Theoretic Topology** (K. Kunen and J. Vaughan, Eds.), North-Holland, Amsterdam, 1984, pp. 111–167. - [5] F. Galvin and A.W. Miller, γ -sets and other singular sets of real numbers, Topology and its Applications 17 (1984), pp. 145–155. - [6] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology and its applications 14 (1982), pp. 151–161. - [7] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Mathematische Zeitschrift **24** (1925), pp. 401–421. - [8] —, Über Folgen stetiger Funktionen, Fundamenta Mathematicae 9 (1927), pp. 193–204. - [9] A.W. Miller, Special subsets of the real line, in: Handbook of Set Theoretic Topology (K. Kunen and J. Vaughan, Eds.), North-Holland, Amsterdam, 1984, pp. 201–233. - [10] Y.N. Moschovakis, *Descriptive Set Theory*, North-Holland, Amsterdam, 1980. - [11] W. Just, A.W. Miller, M. Scheepers, and P. J. Szeptycki, *The combinatorics of open covers II*, Topology and its applications **73** (1996), pp. 241–266. - [12] J. Pawlikowski and I. Recław, *Parametrized Cichon's diagram and small sets*, Fundamenta Mathematicae **147** (1995), pp. 135–155. - [13] I. Recław, Every Luzin set is undetermined in point-open game, Fundamenta Mathematicae 144 (1994), pp. 43–54. - [14] F. Rothberger, Sur un ensemble toujours de premiére categorie qui est depourvu de la propriété λ , Fundamenta Mathematicae **32** (1939), pp. 294–300. - [15] —, On some problems of Hausdorff and of Seierpiński, Fundamenta Mathematicae **35** (1948), pp. 29–46. - [16] —, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proceedings of the Cambridge Philosophical Society 37 (1941), pp. 109–126. - [17] Z. Shuguo, *Relations among cardinal invariants*, in: Proceedings of Chinese Conference on Pure and Applied Logic (ed. Z. Jinwen), Beijing 1992, pp. 145–147. - [18] S. Todorčević, *Aronszajn Orderings*, Publications de L'Institut Mathematique **57** (1995), pp. 29–46.