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Abstract

Whereas the Gerlits–Nagyγ property is strictly weaker than the Galvin–Miller strongγ prop-
erty, the corresponding strong notions for the Menger, Hurewicz, Rothberger, Gerlits–Nag∗),
Arkhangel’skǐı and Sakai properties are equivalent to the original ones. The main result is that
each of these properties admits the game theoretic characterization suggested by the strong
We also solve a related problem of Kočinac and Scheepers, and answer a question of Iliadis.
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1. Introduction

1.1. Thick covers

Let X be an infinite topological space. Throughout this paper, byopen coverwe mean
a countablecollectionU of open subsets ofX such that

⋃
U = X andX /∈ U . The focus
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on countable covers allows us to have no restrictions at all on the topology ofX.1 This is
useful when we wish to project the results into the purely combinatorial case—Secti
The additional restriction thatX /∈ U is to avoid trivialities.

Let U be an open cover ofX. U is ann-coverof X if for eachF ⊆ X with |F | � n,
there isU ∈ U such thatF ⊆ U . U is anω-coverof X if for each finiteF ⊆ X, there is
U ∈ U such thatF ⊆ U (that is,U is ann-cover ofX for eachn). U is aγ -coverof X if
each element ofX belongs to all but finitely many members ofU .

1.2. γ -sets and strongγ -sets

According to Gerlits and Nagy [6], a topological spaceX is aγ -setif eachω-cover of
X contains aγ -cover ofX. Gerlits and Nagy consider the following seemingly stron
property:

For each sequence{Un}n∈N of ω-covers ofX there exist membersUn ∈ Un, n ∈ N, such
that{Un}n∈N is aγ -cover ofX.

Using Scheepers’ notation [16], this property is a particular instance of the followin
lection hypothesis (whereA andB are any collections of covers ofX):

S1(A,B): For each sequence{Un}n∈N of members ofA, there exist membersUn ∈ Un,
n ∈ N, such that{Un}n∈N ∈ B.

Let Ω andΓ denote the collections of openω-covers andγ -covers ofX, respectively.
Then the property considered by Gerlits and Nagy isS1(Ω,Γ ), who proved thatX is a
γ -set if, and only if,X satisfiesS1(Ω,Γ ) [6].

This result motivates the following definition. According to Galvin and Miller [5]
spaceX is astrongγ -setif there exists an increasing sequence{kn}n∈N such that:

For each sequence{Un}n∈N where for eachn Un is an openkn-cover ofX, there exist
membersUn ∈ Un, n ∈ N, such that{Un}n∈N is aγ -cover ofX.

Clearly every strongγ -set is aγ -set; however the properties are not provably equiva
(e.g., in [4] it is shown that assuming CH, there exists an uncountableγ -setX such that no
uncountable subset ofX is a strongγ -set).

As in the case ofγ -sets, it will be convenient to introduce the following general notat

Definition 1.1. Assume thatAn, n ∈ N, andB, are collections of covers of a spaceX.
Define the following selection hypothesis.

S1({An}n∈N,B): For each sequence{Un}n∈N whereUn ∈ An for all n, there exist mem
bersUn ∈ Un, n ∈ N, such that{Un}n∈N ∈ B.

1 A standard alternative approach is to consider spacesX such that all finite powers ofX are Lindelöf. This
guarantees that each cover of a type considered here contains a countable cover of the same type.
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For eachn denote byOn the collection of all openn-covers of a spaceX. ThenX

is a strongγ -set if, and only if, there exists an increasing sequence{kn}n∈N such thatX
satisfiesS1({Okn}n∈N,Γ ). This does not fit exactly into the family of properties of t
form S1({An}n∈N,B), because of the external quantifier. However, in Section 2 we s
that this quantifier can be eliminated, so thatX is a strongγ -set if, and only if,X satisfies
S1({On}n∈N,Γ ). This motivates the study of the generalized selection hypothesis, w
is the aim of this paper.

The first part of the paper deals with the classical selection operators. In Sectio
said above, we prove quantifier elimination for theγ -property. In Section 3 we introduc
two mild assumptions on thick covers which allow this sort of quantifier elimination
Sections 4 and 5 we supply a variety of examples, showing that many properties
appear in the literature are equivalent to their stronger version. In Section 6 we an
question of Iliadis by showing that no new property is obtained by considering the ge
ized selection hypothesis for the standard types of covers, except for the strongγ -property.

The second part of the paper deals with game theoretic versions of the studied p
ties. In Sections 7–9 we supply new methods of reductions between game strateg
give new game theoretic characterizations to most of the properties mentioned in t
part of the paper. In Section 10 we describe an application of the obtained results
purely combinatorial case.

Part I: Strong versions of the classical selection operators

2. Strong γ -sets and quantifier elimination

The following theorem shows that the external quantifier in the definition of a s
γ -set can be eliminated.

Theorem 2.1. For each spaceX, the following are equivalent:

(1) X is a strongγ -set, that is:
There exists an increasing sequence{kn}n∈N such thatX satisfiesS1({Okn}n∈N,Γ ).

(2) For each increasing sequence{kn}n∈N, X satisfiesS1({Okn}n∈N,Γ ).
(3) There exists a sequencekn → ∞, such thatX satisfiesS1({Okn}n∈N,Γ ).
(4) For each sequencekn → ∞, X satisfiesS1({Okn}n∈N,Γ ).
(5) X satisfiesS1({On}n∈N,Γ ).

Proof. It is clear that(4) ⇒ (2) ⇒ (5) ⇒ (1) ⇒ (3). It remains to show that(3) ⇒ (4).
Assume thatkn → ∞ such thatX satisfiesS1({Okn}n∈N,Γ ), and let{Un}n∈N be such

thatUn ∈ On for eachn.

Lemma 2.2. For U ∈Ok1 andV ∈Ok2, define

U ∧ V = {U ∩ V : U ∈ U, V ∈ V}.
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ThenU ∧V is an openmin{k1, k2}-cover ofX refiningU andV . (Moreover, the operation
∧ is associative.)

For eachm let

n = min{i: m � kj for all j � i}, (1)

and set

Vm = Ukn ∧ · · · ∧ Ukn+1−1.

Then eachVm ∈ Om. UseS1({Okn}n∈N,Γ ) to extract from the sequence{Vkn}n∈N elements
Vkn ∈ Vkn such that{Vkn}n∈N is aγ -cover ofX. For eachm, let n be as in Eq. (1). AsVm

refinesUk for all k wherekn � k < kn+1, we can choose for each suchk an elementUk ∈ Uk

such thatVkn ⊆ Uk . For 0� k < k0 choose anyUk ∈ Uk (this is a finite set so we need n
worry about it). Then{Un}n∈N is aγ -cover ofX and for eachn, Un ∈ Un. �

We now consider the following general selection hypotheses, the first due to Sch
and the second being a “strong” version of the first.

Definition 2.3.

Sfin(A,B): For each sequence{Un}n∈N of members ofA, there exist finite (possibly
empty) subsetsFn ⊆ Un, n ∈ N, such that

⋃
n∈N

Fn ∈ B.
Sfin({An}n∈N,B): For each sequence{Un}n∈N whereUn ∈ An for all n, there exist finite

(possibly empty) subsetsFn ⊆ Un, n ∈ N, such that
⋃

n∈N
Fn ∈ B.

In [9] it is proved that S1(Ω,Γ ) = Sfin(Ω,Γ ). A natural question is whethe
S1({On}n∈N,Γ ) = Sfin({On}n∈N,Γ ). The following characterization of theγ property
answers this question.

Theorem 2.4. S1(Ω,Γ ) = Sfin({On}n∈N,Γ ).

As γ -sets need not be strongγ -sets, the propertiesS1({On}n∈N,Γ ) andSfin({On}n∈N,

Γ ) are not provably equivalent.
The characterization in Theorem 2.4 can be proved in a more general setting.

Theorem 2.5. Let B be any collection of open covers ofX. Then Sfin(Ω,B) =
Sfin({On}n∈N,B).

Proof. It is enough to show thatSfin(Ω,B) implies Sfin({On}n∈N,B). Assume that
{Un}n∈N is a sequence of openn-covers ofX. Let {An}n∈N be a partition ofN into infinitely
many infinite sets. For eachn defineVn = ⋃

m∈An
Um. Then eachVn is anω-cover ofX.

Apply Sfin(Ω,B) to extract finite subsetsFn ⊆ Vn, n ∈ N, such thatV = ⋃
n∈N

Fn ∈ B.
For eachn and eachm ∈ An, defineF̃m = Fn ∩ Um. Then for eachn F̃n is a finite subse
of Un, and

⋃
n∈N

F̃n = V ∈ B. �
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3. Other strong properties

As mentioned in the previous section, the strongγ propertyS1({On}n∈N,Γ ) is not
provably equivalent to the usualγ propertyS1(Ω,Γ ). Many other properties which wer
studied in the literature are equivalent to properties of the formS1(Ω,B) or Sfin(Ω,B) for
suitably chosenB [19]. We will show that for all of these properties, the stronger vers
are equivalent to them.

We first show that as in Theorem 2.1, we do not get anything new if we con
properties of the formS1({Okn}n∈N,B) andSfin({Okn}n∈N,B) for general increasing se
quenceskn. In the case ofSfin this is an immediate corollary of Theorem 2.5. In the c
of S1 we need some assumptions onB.

Definition 3.1. A collectionA of open covers of a spaceX is finitely thickif:

(1) If U ∈ A and for eachU ∈ U FU is a finite nonempty family of open sets such that
eachV ∈ FU , U ⊆ V 	= X, then

⋃
U∈U FU ∈ A.

(2) If U ∈ A andV = U ∪F whereF is finite andX /∈ F , thenV ∈ A.

A collectionA of open covers of a spaceX is countably thickif for eachU ∈ A and each
countable familyV of open subsets ofX such thatX /∈ V , U ∪ V ∈ A.

None of these two thickness properties implies the second. The collectionsO, On (for
eachn), andΩ are both finitely and countably thick.Γ is finitely thick but not necessaril
countably thick, andΛ, the collection of all large covers ofX, is countably thick but no
necessarily finitely thick.

We have the following generalization of Theorem 2.1.

Theorem 3.2. Assume thatB is a finitely or countably thick collection of open covers ofX.
For each spaceX, the following are equivalent:

(1) There exists an increasing sequence{kn}n∈N such thatX satisfiesS1({Okn}n∈N,B).
(2) For each increasing sequence{kn}n∈N, X satisfiesS1({Okn}n∈N,B).
(3) There exists a sequencekn → ∞, such thatX satisfiesS1({Okn}n∈N,B).
(4) For each sequencekn → ∞, X satisfiesS1({Okn}n∈N,B).
(5) X satisfiesS1({On}n∈N,B).

Proof. The case whereB is finitely thick is proved exactly as in Theorem 2.1. The c
whereB is countably thick follows from Theorem 3.3.�

The fact theΓ is not countably thick is related in a straightforward manner to the
thatγ -sets need not be strongγ -sets.

Theorem 3.3. Assume thatB is countably thick. ThenS1({On}n∈N,B) = S1(Ω,B).
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Proof. We should verify that the argument in the proof of Theorem 2.5 works in our
as well.

Let {Un}n∈N, {An}n∈N, andVn be as in the proof of Theorem 2.5. ApplyS1(Ω,B)

to extract elementsVn ∈ Vn, n ∈ N, such that{Vn}n∈N ∈ B. For eachn and eachm ∈ An

chooseUm = Vn if Vn ∈ Um, otherwise choose anyUm ∈ Um. We have enlarged{Vn}n∈N by
at most countably many open sets. AsB is countably thick, we have that{Un}n∈N ∈ B. �

4. Examples

We give some examples for the above results.

4.1. The Rothberger and Menger properties

Using our notation,Rothberger’s propertyC′′ [14] is the propertyS1(O,O). In [16]
it is proved thatS1(O,O) = S1(Ω,O). This implies thatS1(Ω,O) = S1({On}n∈N,O).
Another way to obtain this result is to use Theorem 3.3, asO is countably thick.

Menger’s basis property(introduced in [11]), was proved by Hurewicz [7] to be equiv
lent to the propertySfin(O,O). In [16] it is proved thatSfin(O,O) = Sfin(Ω,O), so again
we have thatSfin(Ω,O) = Sfin({On}n∈N,O).

The Rothberger and Menger propertiesS1(Ω,O) and Sfin(Ω,O) are not provably
equivalent, as is witnessed by the canonical Cantor set of reals [9]. Thus, the pro
S1({On}n∈N,O) andSfin({On}n∈N,O) are not provably equivalent.

4.2. The Arkhangel’skiı̌ and Sakai properties

A spaceX has theArkhangel’skǐı property[1] if all finite powers ofX have the Menge
propertySfin(O,O). In [9] it is proved that this is equivalent to satisfyingSfin(Ω,Ω). By
Theorem 2.5, we have thatSfin(Ω,Ω) = Sfin({On}n∈N,Ω).

A spaceX has theSakai propertyif all finite powers ofX satisfy Rothberger’s prop
ertyC′′. Sakai [15] proved that this property is equivalent toS1(Ω,Ω). As Ω is countably
thick, we have by Theorem 3.3 thatS1(Ω,Ω) = S1({On}n∈N,Ω).

As in the case of Menger and Rothberger, the canonical Cantor set witnesses t
Arkhangel’skǐı and Sakai propertiesSfin(Ω,Ω) and S1(Ω,Ω) are not provably equiv
alent [9]. Thus, the propertiesS1({On}n∈N,Ω) and Sfin({On}n∈N,Ω) are not provably
equivalent.

4.3. The Hurewicz, Gerlits–Nagy(∗), and related properties

X satisfies theHurewicz property(defined in [8]) if for each sequence{Un}n∈N of open
covers ofX there exist finite subsetsFn ⊆ Un, n ∈ N, such thatX ⊆ ⋃

n

⋂
m>n

⋃
Fn (if

X /∈ {⋃Fn}n∈N then this means that{⋃Fn}n∈N is aγ -cover ofX).
To simplify the presentation of the remaining properties, we introduce the followin
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Definition 4.1.

(1) (a) A coverU of X is multifinite if there exists a partition ofU into infinitely many
finite covers ofX.

(b) LetMF denote the collection of all multifinite open covers ofX.
(2) Fix ξ ∈ {ω,γ, . . .}.

(a) A coverU of X is ξ -groupableif it is multifinite, or there exists a partitionP of
U into finite sets such that{⋃F : F ∈ P} \ {X} is aξ -cover ofX.

(2) LetOξ -gp denote the collection of allξ -groupable open covers ofX.

In [10] it is proved that the Hurewicz property is equivalent to the propertySfin(Ω,

Oγ -gp). By Theorem 2.5, we have thatX has the Hurewicz property if, and only if,
satisfiesSfin({On}n∈N,Oγ -gp).

In [6], Gerlits and Nagy introduced a property called(∗). In [12] it is proved that(∗)

is equivalent to having the Hurewicz as well as Rothberger properties. In [10] it is p
that this is equivalent toS1(Ω,Oγ -gp).

Lemma 4.2. Oγ -gp is countably thick.

Proof. Assume thatU is aγ -groupable cover ofX, and letP be a partition ofU witnessing
this. LetV be a countable family of open sets. By shifting toV \ U we may assume thatU
andV are disjoint. AsU is infinite,P is infinite as well; choose an injectionf :V → P .
Then

P̃ = {
f (V ) ∪ {V }: V ∈ V

} ∪ (
P \ f [V])

is a partition ofU ∪ V witnessing that this new cover isγ -groupable. �
Corollary 4.3. S1({On}n∈N,Oγ -gp) = S1(Ω,Oγ -gp).

Thus a space has the Gerlits–Nagy(∗) property if, and only if, it satisfiesS1({On}n∈N,

Oγ -gp). As the property(∗) is not provably equivalent to the Hurewicz property (this
is witnessed by the Cantor set [9], as(∗) implies Rothberger’s property [6]), we have th
S1({On}n∈N,Oγ -gp) is not provably equivalent toSfin({On}n∈N,Oγ -gp).

Now consider the collectionΩgp of openω-coversU of X such that there exists
partitionP of U into finite sets such that for each finiteF ⊆ X and all but finitely manyF ∈
P , there existsU ∈ F such thatF ⊆ U . In [10] it is shown thatX satisfiesSfin(Ω,Ωgp)

if, and only if, all finite powers ofX have the Hurewicz property. By Theorem 2.5, t
property is equivalent toSfin({On}n∈N,Ωgp). The following observation is what we nee
to get the analogous result for the stronger propertyS1(Ω,Ωgp).

Lemma 4.4. Ωgp is countably thick.

Proof. The proof for this is similar to that of Lemma 4.2.�
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Here too, as all finite powers of the Cantor setC are compact, we have thatC sat-
isfies Sfin(Ω,Ωgp) but not S1(Ω,Ωgp) (which implies Rothberger’s property). Thu
S1({On}n∈N,Ωgp) is not provably equivalent toSfin({On}n∈N,Ωgp).

4.4. A property between Hurewicz and Menger

In [16] a property calledUfin(Γ,Ω) is considered, which is intermediate between
Hurewicz and Menger properties. This property is a particular case of a general se
hypothesis. Assume thatA andB are collections of covers of a spaceX. Define the fol-
lowing selection hypothesis [16]:

Ufin(A,B): For each sequence{Un}n∈N of members ofA which do not contain a finite
subcover, there exist finite (possibly empty) subsetsFn ⊆ Un, n ∈ N, such that
{⋃Fn}n∈N ∈ B.

Observe that any countable cover which does not contain a finite subcover can be
into a γ -cover by taking finite unions [9]. Thus for eachA, Ufin(A,B) = Ufin(Γ,B).
The Menger property is equivalent toUfin(Γ,O), and the Hurewicz property is equivale
to Ufin(Γ,Γ ). In [9] it is proved thatUfin(Γ,Ω) is not provably equivalent to any of th
Hurewicz or Menger properties.

It is proved in [2] thatUfin(Γ,Ω) is equivalent toSfin(Ω,Oω-gp). By Theorem 2.5,
X satisfiesUfin(Γ,Ω) if, and only if, it satisfiesSfin({On}n∈N,Oω-gp).

We now treat the stronger propertyS1(Ω,Oω-gp). This property was introduced an
studied in [2]. In Problem 3 of [2] the authors ask whether this property is strictly stro
than Rothberger’s propertyS1(Ω,Λ) (this is the same as the usualS1(O,O) [16]). We
give a positive answer. It is easy to see (and well known) that Rothberger’s prope
closed under taking countable unions.

Theorem 4.5. AssumingCH (cov(M) = c is enough), Rothberger’s property does not im
ply S1(Ω,Oω-gp); in fact,S1(Ω,Oω-gp) is not even closed under taking finite unions.

Proof. Clearly S1(Ω,Oω-gp) implies Sfin(Ω,Oω-gp) = Ufin(Γ,Ω), but it is well known
that (assuming CH) Rothberger’s property does not implyUfin(Γ,Ω) [9].

Moreover, in [3] it is shown that CH (or even justcov(M) = c) implies that no property
betweenS1(Ω,Ω) and Ufin(Γ,Ω) (inclusive) is closed under taking finite unions. B
S1(Ω,Oω-gp) lies between these properties.�

As in the case ofS1(Ω,Oγ -gp) which is equivalent toUfin(Γ,Γ ) ∩ S1(O,O), we have
that the new propertyS1(Ω,Oω-gp) can also be characterized in terms of the more clas
properties.

Theorem 4.6. S1(Ω,Oω-gp) = Ufin(Γ,Ω) ∩ S1(O,O).
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Proof. We have seen thatS1(Ω,Oω-gp) implies Ufin(Γ,Ω) and Rothberger’s propert
S1(O,O). To prove the other implication, we use the result of [2], thatUfin(Γ,Ω) implies
Λ = Oω-gp. AsS1(O,O) = S1(Ω,Λ), Λ = Oω-gp andS1(O,O) imply S1(Ω,Oω-gp). �
Lemma 4.7. Oω-gp is countably thick.

Proof. Assume thatU is anω-groupable cover ofX, and letP be a partition ofU wit-
nessing this. LetV be a countable family of open sets. We may assume thatU andV are
disjoint. Let P̃ be any partition ofV into finite sets. ThenP ∪ P̃ is a partition ofU ∪ V
witnessing that this new cover isω-groupable. �
Corollary 4.8. S1({On}n∈N,Oω-gp) = S1(Ω,Oω-gp).

Here again, Cantor’s set witnesses that the propertiesS1({On}n∈N,Oω-gp) and
Sfin({On}n∈N,Oω-gp) are not provably equivalent.

5. τ -covers

An open coverU of X is a τ -coverof X if it is a large cover, and for eachx, y ∈ X,
one of the sets{U ∈ U : x ∈ U andy /∈ U} or {U ∈ U : y ∈ U andx /∈ U} is finite. The
notion ofτ -covers was introduced in [21], and incorporated into the framework of sele
principles in [22].

Let T denote the collection of openτ -covers ofX. Then Γ ⊆ T ⊆ Ω , therefore
S1(Ω,Γ ) impliesS1(Ω,T), which impliesSfin(Ω,T). It is not known whether any two o
these properties are equivalent.

By Theorem 2.5, we have thatSfin({On}n∈N,T) = Sfin(Ω,T). We have only a guess fo
the situation in the remaining case.

Conjecture 1. It is consistent thatS1({On}n∈N,T) 	= S1(Ω,T).

Observe that, asS1(Ω,T) implies Rothberger’s propertyS1(O,O), we have by the con
sistency of Borel’s conjecture that the word “consistent” cannot be replaced by “prov
in Conjecture 1.

τ ∗-covers are a variation ofτ -covers which is easier to work with. For a coverU =
{Un}n∈N of X and an elementx ∈ X, write

xU = {n: x ∈ Un}.
According to [22], A coverU of X is aτ ∗-coverof X if it is large, and for eachx ∈ X there
exists an infinite subset̂xU of xU such that the setŝxU , x ∈ X, are linearly quasiordere
by ⊆∗ (A ⊆∗ B means thatA \ B is finite). If U is a countableτ -cover, then by setting
x̂U = xU for eachx ∈ X we see that it is aτ ∗-cover. The converse is not necessarily tr
Let T∗ denote the collection of all countable openτ ∗-covers ofX. Then T⊆ T∗ ⊆ Ω .

Lemma 5.1. T∗ is countably and finitely thick.
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Proof. Assume thatU = {Un}n∈N ∈ T∗, and letx̂U , x ∈ X, be witnesses for that. LetV
be a countable family of open sets. Assume thatV is infinite and disjoint fromU , and let
{Vn}n∈N be a bijective enumeration ofV . EnumerateU ∪ V by {Wn}n∈N whereWn = Un

if n is even andWn = Vn otherwise. Then the subsets 2x̂U of xU∪V , x ∈ X, witness that
U ∪ V ∈ T∗. The case thatV has a finite cardinalityk is treated similarly.

To see that T∗ is finitely thick it remains to verify the first requirement in the definiti
of finitely thick covers. In [22] we prove something stronger: IfU ∈ T∗ refines a countabl
coverV , thenV ∈ T∗. �
Corollary 5.2. S1({On}n∈N,T∗) = S1(Ω,T∗).

The last corollary can be contrasted with Conjecture 1.

6. Iliadis’ question

In theLecce Workshop on Coverings, Selections and Games in Topology(June 2002),
Stavros Iliadis asked whether we get new properties if we consider the generalized
tion principles of the formS1({An}n∈N,B) and Sfin({An}n∈N,B). We check the case
where the first coordinate is any sequence of elements from the set

C = {
O,Λ,Ω,T∗,T,Γ

} ∪ {On: n ∈ N}.

Lemma 6.1. For any increasing sequence{kn}n∈N, S1({An}n∈N,Γ ) impliesS1({Akn}n∈N,

Γ ), andSfin({An}n∈N,Γ ) impliesSfin({Akn}n∈N,Γ ).

Proof. Assume thatUkn ∈ Akn . For eachm /∈ {kn}n∈N use Lemma A.2 in Appendix A to
choose an elementUm ∈ Γ .

Apply S1({An}n∈N,Γ ) to the sequence{Un}n∈N to obtain elementsUn ∈ Un such that
{Un}n∈N is aγ -cover ofX. Then{Ukn}n∈N is aγ -cover ofX, and for eachn, Ukn ∈ Ukn .

The proof forSfin is similar. �
Corollary 6.2. Assume that{An}n∈N is a sequence of elements ofC. Then:

(1) If someA ∈ {O,Λ} ∪ {On: n ∈ N} occurs infinitely often in the sequence{An}n∈N,
thenS1({An}n∈N,Γ ) impliesS1(A,Γ ), which is false for a nontrivialX.

(2) If An ∈ {O,Λ} for only finitely manyn and there exists an increasing sequencekn such
that {Okn}n∈N is a subsequence of{An}n∈N, thenS1({An}n∈N,Γ ) = S1({On}n∈N,Γ )

(strongγ -set).
(3) If An ∈ {O,Λ} ∪ {On: n ∈ N} for only finitely manyn andUn = Ω for infinitely many

n, thenS1({An}n∈N,Γ ) = S1(Ω,Γ ).
(4) If An ∈ {O,Λ,Ω} ∪ {On: n ∈ N} for only finitely manyn andUn = T∗ for infinitely

manyn, thenS1({An}n∈N,Γ ) = S1(T∗,Γ ).
(5) If An ∈ {O,Λ,Ω,T∗}∪ {On: n ∈ N} for only finitely manyn andUn = T for infinitely

manyn, thenS1({An}n∈N,Γ ) = S1(T,Γ ).
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(6) If An ∈ {O,Λ,Ω,T∗,T} ∪ {On: n ∈ N} for only finitely manyn, thenS1({An}n∈N,

Γ ) = S1(Γ,Γ ).

The analogous assertions forSfin also hold.

Proof. We will use Lemma 6.1.
(1) follows, using the results of Appendix A.
To prove (2), observe that in this case, eachUn is a subset ofOkn for somekn, such that

kn → ∞, so that Theorem 2.1 applies.
(3)–(6) follow from Lemma 6.1. �

Lemma 6.3.

(1) If An ⊇ A for all but finitely manyn, andB is closed under removing a finite subs
thenS1({An}n∈N,B) impliesS1(A,B).

(2) If A occurs infinitely often in the sequence{An}n∈N, andB is countably thick, then
S1(A,B) impliesS1({An}n∈N,B).

(3) The same assertions hold forSfin (where in(2) countable thickness is not needed).

Proof. (1) Assume thatX satisfiesS1({An}n∈N,B). We will show that X satisfies
S1(A,B). Fix m such that for alln � m, An ⊇ A. Assume that{Un}n∈N is such that
Un ∈ A for all n. By Lemma A.2, there exists an openγ -coverV of X. Define a sequenc
{Vn}n∈N by Vn = V for n < m andVn = Un−m otherwise. ByS1({An}n∈N,B), there exist
elementsVn ∈ Vn such that{Vn}n∈N ∈ B. As B is closed under removing a finite subs
{Vn}n�m ∈ B and for eachn � m, Vn ∈ Un−m.

(2) Let {kn}n∈N be an increasing enumeration of{n: An = A}, and let{Un}n∈N be such
that Un ∈ An for all n. Apply S1(A,B) to Ukn to obtain elementsUkn ∈ Ukn such that
{Ukn}n∈N is a member ofB. From the remaining coversUn choose any elementUn. As B
is countably thick,{Ukn}n∈N is a member ofB as well.

(3) is similar. �
The collectionsΛ, Ω , T∗ and T are all countably thick and closed under remov

a finite subset. Thus, ifB is any of these, then we getS1({An}n∈N,B) = S1(A,B) in
Lemma 6.3.

Corollary 6.4. Assume that{An}n∈N is a sequence of elements ofC, and B ∈ {Λ,Ω}.
Then:

(1) If there exist infinitely manyn such thatAn = Γ , thenS1({An}n∈N,B) = S1(Γ,B).
(2) If there exist only finitely manyn such thatAn = Γ , and there exist infinitely manyn

such thatAn = T, thenS1({An}n∈N,B) = S1(T,B).
(3) If there exist only finitely manyn such thatAn ∈ {T,Γ }, and there exist infinitely man

n such thatAn = T∗, thenS1({An}n∈N,B) = S1(T∗,B).
(4) If there exist only finitely manyn such thatAn ∈ {T∗,T,Γ }, and there exist infinitely

manyn such thatAn = Ω , thenS1({An}n∈N,B) = S1(Ω,B).
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(5) If there exist only finitely manyn such thatAn ∈ {Ω,T∗,T,Γ }, and there exists an
increasing sequence{kn}n∈N such thatAkn ⊆ On for all n, thenS1({An}n∈N,B) =
S1(Ω,B).

(6) If there exists no increasing sequence{kn}n∈N such thatAkn ⊆ On for all n, andΛ

occurs infinitely often in{An}n∈N, thenS1({An}n∈N,B) = S1(Λ,B) (which is Roth-
berger’s property ifB ∈ {O,Λ} and trivial otherwise).

(7) If for somem An ⊇ Om for almost alln, thenS1({An}n∈N,Λ) is trivial.

The analogous assertions forSfin also hold.

These results and related arguments should show that no new property is introdu
the generalized selection principlesS1({An}n∈N,B) andSfin({An}n∈N,B), except for the
strongγ -propertyS1({On}n∈N,Γ ) and, perhaps,S1({On}n∈N,T).

Part II: Game theory

In this section we give new game theoretic characterizations to most of the prop
considered in the previous sections. Although these characterizations are suggeste
results of the earlier sections, their proofs are not as trivial.

7. Selection games and strategies

Each selection principle has a naturally associated game. In the gameG1(A,B) ONE
chooses in thenth inning an elementUn of A and then TWO responds by choosingUn ∈
Un. They play an inning per natural number. A play(U0,U0,U1,U1, . . .) is won by TWO
if {Un}n∈N ∈ B; otherwise ONE wins. The gameGfin(A,B) is played similarly, where
TWO responds with finite subsetsFn ⊆ Un and wins if

⋃
n∈N

Fn ∈ B.
Observe that if ONE does not have a winning strategy inG1(A,B) (respectively,

Gfin(A,B)), thenS1(A,B) (respectively,Sfin(A,B)) holds. The converse is not alwa
true; when it is true, the game is a powerful tool for studying the combinatorial prop
of A andB—see, e.g., [10,2], and references therein.

It is therefore appealing to try and study the generalized games associate
S1({An}n∈N,B) andSfin({An}n∈N,B).

Definition 7.1. Define the following games between two players, ONE and TWO, w
have an inning per natural number.

G1({An}n∈N,B): In the nth inning, ONE chooses an elementUn ∈ An, and TWO re-
sponds with an elementUn ∈ Un. TWO wins if {Un}n∈N ∈ B; otherwise ONE
wins.

Gfin({An}n∈N,B): In the nth inning, ONE chooses an elementUn ∈ An, and TWO re-
sponds with a finite subsetFn of Un. TWO wins if

⋃
n∈N

Fn ∈ B; otherwise
ONE wins.
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Some terminological conventions will be needed to simplify the proofs of the upco
results. AstrategyF for ONE in a gameG1({An}n∈N,B) can be identified with a tree o
covers in the following way. LetU〈 〉 := F(X) be the first move of ONE. Enumerate t
elements ofU〈 〉 as{U〈n〉}n∈N. Having definedUσ = {Uσ 〈̂n〉}n∈N, define for eachm

Uσ 〈̂m〉 := F(U〈 〉,Uσ�1, . . . ,Uσ ,Uσ 〈̂m〉),
and fix an enumeration{Uσ 〈̂m,n〉}n∈N of Uσ 〈̂m〉. Let N

∗ denote the collection of all finit
sequences of natural numbers.

Similarly, a strategyF for ONE in a gameGfin({An}n∈N,B) can be identified with a
tree covers where the sequencesσ are offinite setsof natural numbers rather than natu
numbers. Let[N]∗ denote the collection of all finite sequences of finite sets of na
numbers.

We will say that a collection of coversA is densein a strategyF for ONE in a game
of typeG1 if for eachσ ∈ N

∗ there existsη ∈ N
∗ which extendsσ , and such thatUη ∈ A,

that is,{η ∈ N
∗: Uη ∈ A} is dense inN∗. Similarly, we say thatA is dense in a strategyF

for ONE in a game of typeGfin if {η ∈ [N]∗: Uη ∈ A} is dense in[N]∗.

Lemma 7.2 (Density lemma).Assume thatB is countably thick, ONE has a winning stra
egyF in G1({An}n∈N,B), and A is dense inF . Then ONE has a winning strategy
G1(A,B). The analogous assertion forGfin also holds.

Proof. Fix some well-ordering on the collectionN∗ of all finite sequences of natur
numbers, and let{Uσ }σ∈N∗ be the tree of covers associated withF . Define a function
π :N∗ → N

∗ as follows:

(1) Letπ(〈 〉) be the first member ofN∗ such thatUπ(〈 〉) ∈ A.
(2) For eachn let π(〈n〉) ∈ N

∗ be the first extension ofπ(〈 〉)̂ 〈n〉 such thatUπ(〈n〉) ∈ A.
(3) In general, for eachσ ∈ N

∗ and eachn let π(σ̂ 〈n〉) be the first extension ofπ(σ )̂ 〈n〉
such thatUπ(σ 〈̂n〉) ∈ B.

For eachσ ∈ N
∗ defineŨσ = Uπ(σ), and set̃Uσ 〈̂n〉 = Uπ(σ )̂ 〈n〉 for eachn. Let F̃ be the

strategy associated with{Ũσ }σ∈N∗ . ThenF̃ is a strategy for ONE inG1(A,B).
We claim thatF̃ is a winning strategy for ONE inG1(A,B). Assume otherwise, an

let f ∈ N
N be such that the play(

Ũ〈 〉, Ũf �1, Ũf �1, Ũf �2, . . .
)

against the strategỹF is lost by ONE, that is,{Uf �n}n∈N ∈ B. Define

σ0 = π(〈 〉), σ1 = π
(〈
f (0)

〉)
, . . . , σn+1 = π

(
σn̂

〈
f (n)

〉)
, . . .

and takeg = ⋃
n∈N

σn. Then

(U〈 〉,Ug�1,Ug�1,Ug�2, . . .)

is a play in the gameG1({An}n∈N,B) according to the strategyF , and{Uf �n}n∈N is a sub-
sequence of{Ug�n}n∈N. As B is countably thick, we have that{Ug�n}n∈N ∈ B as well, so
this game is lost by ONE, a contradiction.

The proof forGfin is similar. �



B. Tsaban / Topology and its Applications 153 (2005) 620–639 633

n

e

e
r

rs
still
Remark 7.3. For eachσ ∈ N
∗, we can modify the definition ofπ in the proof of Lemma 7.2

so thatπ(〈 〉) extendsσ . Consequently, it is enough to assume that{η: Uη ∈ A} is dense
belowσ (with respect to the order of reverse inclusion) forsomeσ ∈ N

∗. In other words,
if ONE does not have a winning strategy inG1(A,B) but has a winning strategy i
G1({An}n∈N,B), then{η: Uη ∈ A} is nowhere densein N

∗.

8. Reductions among Gfin strategies

Following is a surprising result. It implies that ifMF ⊆ B and ONE could win the gam
Gfin({On}n∈N,B), then he could winGfin(Λ,B) as well.

Theorem 8.1 (Λ-less strategies).Assume thatF is a strategy for ONE in a gam
Gfin({On}n∈N,B), and Λ is not dense inF . ThenF is not even a winning strategy fo
ONE in the gameGfin({On}n∈N,MF).

Proof. Assume thatF is a winning strategy for ONE in the gameGfin({On}n∈N,MF). Let
{Uσ }σ∈[N]∗ be the covers tree associated withF , and chooseσ ∈ [N]∗ such that for allη
extendingσ , Ũη is not large. ModifyF so that its first move is̃Uη (that is, the strategy
determined by the subtree{σ : η ⊆ σ } of [N]∗). This is still a winning strategy for ONE
(otherwise TWO can begin with a sequence of moves which will force ONE intoŨη and
then defeat him). We may therefore assume that no element in the strategyF is large.

Lemma 8.2. Everyn + 1 cover of a spaceX which is not large contains a finiten-cover
of X.

Proof. Assume thatU is an(n+1)-cover ofX which is not large. Then there existsx ∈ X

such that the setF = {U ∈ U : x ∈ U} is finite. Now, asU is an(n + 1)-cover ofX, for
eachn-element subsetF of X there existsU ∈ U such thatF ∪ {x} ⊆ U , and therefore
U ∈F andF ⊆ U . �

We may therefore modify the strategyF (by thinning out its covers) so that all cove
in this strategy are finite. As this only restricts the possible moves of TWO, this is
a winning strategy for ONE in the gameGfin({On}n∈N,MF).

In particular, no cover in the strategyF is anω-cover ofX.

Lemma 8.3. Assume that{Un}n∈N is a sequence ofn-covers ofX which are notω-covers
of X. Then there exists an increasing sequence{kn}n∈N and pairwise disjoint subsets̃Ukn

of Ukn such that each̃Ukn is ann-cover ofX.

Proof. For eachn let Fn be a finite subset ofX witnessing thatUn is not anω-cover
of X. Observe that ifU is a (k + l)-cover ofX andF is a k-element subset ofX. Then
{U ∈ U : F ⊆ U} is anl-cover ofX.
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Let Ũ1 = U1. Setk1 = |F1| + 1. ThenŨ2 = {U ∈ Uk1: F1 ⊆ U} is a cover ofX disjoint
from Ũ1. Assume that we have defined̃Uk1, . . . , Ũkn−1. Let kn = |⋃i<n Fki

| + n, and
choose

Ũkn =
{
U ∈ Ukn :

⋃
i<k

Fki
⊆ U

}
.

ThenŨkn is ann-cover ofX, Ũkn ⊆ Ukn , andŨkn ∩ Ũki
= ∅ for all i < n. �

Thus, by the methods of Lemma 7.2, we may refine the strategyF so that all its cov-
ers are (finite and) disjoint. Again, as the new strategy restricts the moves of TWO
still a winning strategy in the gameGfin({On}n∈N,MF). But in this situation TWO can
choose the whole cover in each inning, making its confident way to a victory in the
Gfin({On}n∈N,MF), a contradiction. �

We now give some applications of Theorem 8.1.

Theorem 8.4. For a spaceX, the following are equivalent:

(1) X has the Menger property;
(2) ONE does not have a winning strategy inGfin(Ω,Λ);
(3) ONE does not have a winning strategy inGfin(Λ,Λ); and
(4) ONE does not have a winning strategy inGfin({On}n∈N,Λ).

Proof. Hurewicz [7] proved that the Menger property is equivalent to ONE not ha
a winning strategy inGfin(O,O). Using this and the method in Theorem 3 of [18], o
shows that(1) ⇔ (3). Now, (3) ⇒ (2), and (2) implies Menger’s propertySfin(Ω,Λ).
Thus (1) ⇔ (2) ⇔ (3). Clearly (4) ⇒ (2). To see that(3) ⇒ (4), assume thatF is a
strategy for ONE inGfin({On}n∈N,Λ). By (3) and Lemma 7.2,Λ is not dense inF . By
Theorem 8.1,F is not a winning strategy for ONE inGfin({On}n∈N,Λ). �
Theorem 8.5. For a spaceX, the following are equivalent:

(1) X has the Hurewicz property;
(2) ONE does not have a winning strategy inGfin(Ω,Oγ -gp);
(3) ONE does not have a winning strategy inGfin(Λ,Oγ -gp); and
(4) ONE does not have a winning strategy inGfin({On}n∈N,Oγ -gp).

Proof. The equivalence(1) ⇔ (2) is established in Theorem 12 of [10]. It is clear th
(3) ⇒ (2) and(4) ⇒ (2).

(1) ⇒ (3): This is proved like the proof of(1) ⇒ (2) (see Theorem 12 of [10]), asΛ is
closed under removing a finite subset.

(3) ⇒ (4): Assume that ONE has a winning strategyF in the gameGfin({On}n∈N,

Oγ -gp). Then by Theorem 8.1,Λ is dense inF , and by Lemma 7.2, ONE has a winnin
strategy in the gameGfin(Λ,Oγ -gp). �



B. Tsaban / Topology and its Applications 153 (2005) 620–639 635

ame
ame

e

g

and

es of
The lastGfin game we consider is the one associated to the propertyUfin(Γ,Ω) from
Section 4.4.

Theorem 8.6. For a spaceX, the following are equivalent:

(1) X satisfiesUfin(Γ,Ω);
(2) ONE does not have a winning strategy inGfin(Ω,Oω-gp);
(3) ONE does not have a winning strategy inGfin(Λ,Oω-gp); and
(4) ONE does not have a winning strategy inGfin({On}n∈N,Oω-gp).

Proof. (1) ⇔ (2) is proved in Theorem 13 of [2].
(2) ⇒ (3): Assume 2. Then ONE does not have a winning strategy in the g

Gfin(Ω,Λ). By Theorem 8.4, ONE does not have a winning strategy in the g
Gfin(Λ,Λ). According to Lemma 11 of [2],(1) (which is implied by(2)) implies that
each large cover ofX is ω-groupable, that is,Λ = Oω-gp for X. Thus ONE does not hav
a winning strategy in the gameGfin(Λ,Oω-gp).

(2) ⇒ (4) is proved similarly. �
The following problem remains open.

Problem 8.7. Is the Arkhangel’skǐı propertySfin(Ω,Ω) equivalent to ONE not havin
a winning strategy inGfin({On},Ω)?

9. Reductions among G1 strategies

We now turn toG1-games. To deal with these, we need some more terminology
tools. Assume thatF is a strategy for ONE in aG1-game. Theω-strategyFω associated to
F is the strategy defined as follows. Let{Uσ }σ∈N∗ be the covers tree associated toF . Fix
a bijectionφ :N → N

∗. For eachσ ∈ N
∗ of lengthk let

φ(σ) = φ
(
σ(0)

)̂
φ
(
σ(1)

)̂ · · ·̂ φ
(
σ(k − 1)

)
.

For eachn defineÛ〈n〉 = ⋃{Uη�1,Uη�2, . . . ,Uη} whereη = φ(n), and set̂U〈 〉 = {Û〈n〉}n∈N.
In general, for eachσ ∈ N

∗ and eachn let η = φ(n), and define

Ûσ 〈̂n〉 =
⋃

{Uφ(σ )̂ η�1,Uφ(σ )̂ η�2, . . . ,Uφ(σ )̂ η}.
SetÛσ = {Ûσ 〈̂n〉}n∈N.

As we have required thatX is not a member of any cover we consider,Fω need not be
a strategy for ONE. We will say thatX is ω-densein F if the set{σ : Ûσ = X} is dense
in N

∗.

Lemma 9.1. Assume that for eachσ , Uσ is disjoint from its past{Uσ�1,Uσ�2, . . . ,Uσ }. If
X is ω-dense inF , then there exists a game according to this strategy where the mov
TWO constitute a groupable large cover ofX.
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Proof. In the covers tree ofF there exists a path with infinitely many disjoint interva
which constitute a finite cover ofX. �
Lemma 9.2. Fix B ∈ {Λ,Oω-gp,Oγ -gp}. Assume thatF is a strategy for ONE in
G1({An}n∈N,B) such thatX is notω-dense inF , and for eachσ , Uσ is disjoint from its
past{Uσ�1,Uσ�2, . . . ,Uσ }. If Fω is not a winning strategy for ONE in the gameG1(Ω,B),
thenF is not a winning strategy for ONE in the gameG1({An}n∈N,B).

Proof. Any move of TWO inFω can be translated to a finite sequence of moves for T
in F , replacing eacĥUσ n̂ chosen by TWO with the elementsUφ(σ )̂ η�1,Uφ(σ )̂ η�2, . . . ,

Uφ(σ )̂ η whereη = φ(n). It is easy to see, by disjointness from the past, that this disas
bling preserves being a member ofB for B ∈ {Λ,Oω-gp,Oγ -gp}. �

For shortness, we give the characterizations for the Rothberger, Gerlits–Nagy(∗), and
S1(Ω,Oω-gp) properties simultaneously.

Theorem 9.3. Fix B ∈ {Λ,Oω-gp,Oγ -gp}. For a spaceX, the following are equivalent:

(1) X satisfiesS1(Ω,B);
(2) ONE does not have a winning strategy inG1(Ω,B);
(3) ONE does not have a winning strategy inG1(Λ,B); and
(4) ONE does not have a winning strategy inG1({On}n∈N,B).

Proof. In Theorem 3 of [18] it is proved that(1) ⇔ (3) for B = Λ. In Theorem 12 of [10]
it is proved that(1) ⇔ (2) for B = Oγ -gp, and in Theorem 15 of [2] this is proved fo
B = Oω-gp.

(2) ⇔ (3): Assume thatF is a winning strategy for ONE inG1(Λ,B). Modify the
covers tree by removing from eachUσ its past{Uσ�1,Uσ�2, . . . ,Uσ }. ThenF is still a
winning strategy for ONE. By Lemma 9.1,X is notω-dense inF , and by Lemma 9.2 w
get thatFω is a winning strategy for ONE inG1(Ω,B).

(2) ⇔ (4): Assume thatF is a winning strategy for ONE inG1({On}n∈N,B). If Ω is
dense inF then by Lemma 7.2 ONE has a winning strategy inG1(Ω,B). Otherwise, by
Lemma 8.3 we may assume that the covers in each branch of the strategyF are disjoint.
By Lemma 9.1,X is not ω-dense inF , and by Lemma 9.2 we get thatFω is a winning
strategy for ONE inG1(Ω,B). �
Remark 9.4. The characterizations of Rothberger’s property usingO instead ofΛ are
much more simple to deal with: Pawlikowski [13] proved that Rothberger’s prop
S1(O,O) is equivalent to ONE not having a winning strategy inG1(O,O). AsS1(O,O) =
S1(Ω,O), we get that Rothberger’s property is equivalent to ONE not having a win
strategy inG1({On}n∈N,O).

We now treat the remainingG1-games:G1(Ω,Ω) andG1(Ω,Ωgp). For B ⊆ Ω , the
propertiesSfin(Λ,B) are trivial (see Appendix A). Thus we cannot hope to have an eq
alent item “ONE does not have a winning strategy inG1(Λ,B)” in the theorems dealin
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with these covers. Fortunately, there exists an elegant technique to deal with thes
without appealing toΛ.

Lemma 9.5. Assume thatB is countably thick. For a spaceX, the following are equivalent:

(1) ONE does not have a winning strategy inG1(Ω,B);
(2) ONE does not have a winning strategy inG1({On}n∈N,B).

Proof. We prove that(1) ⇒ (2). AssumeF is a strategy for ONE inG1({On}n∈N,B)

whose covers tree is{Uσ }σ∈N∗ . Define a strategỹF for ONE in G1(Ω,B) as follows: The
first move of ONE is̃U〈 〉 = ⋃

σ∈N∗ Uσ . If TWO choosesUσ , then ONE responds with

Ũσ =
⋃

η∈N∗
Uσ η̂,

etc. Now, a game lost by ONE according to the strategyF̃ can be completed (b
choosing the moves of TWO appropriately) to a game lost by ONE according toF in
G1({On}n∈N,B). AsB is countably thick, this shows thatF is not a winning strategy. �
Theorem 9.6. Fix B ∈ {Ω,Ωgp}. For each spaceX, the following are equivalent:

(1) X satisfiesS1(Ω,B);
(2) ONE does not have a winning strategy inG1(Ω,B);
(3) ONE does not have a winning strategy inG1({On}n∈N,B).

Proof. (2) ⇔ (3) by Lemma 9.5.
(1) ⇔ (2): For B = Ω this is Theorem 2 of [17]. ForB = Ωgp this is Theorem 17

of [10]. �
We do not know whether analogous game theoretic characterizations can be g

the remaining few properties. The most interesting problem seems to be the followin

Problem 9.7. Is it true thatX is a strongγ -set if, and only if, ONE has no winning strateg
in the gameG1({On}n∈N,Γ )?

10. The Borel case and the discrete case

We need not stop in the case of open covers. One important variant of open co
that of countable Borel covers. As in [20], one can translate all of the results presen
here to this case as well. Another important variant is that ofarbitrary countable covers
of an uncountable cardinalκ . Since these are exactly the countable open covers ofκ with
respect to the discrete topology onκ , our results apply in this purely combinatorial ca
as well, and we obtain new characterizations of some well known combinatorial ca
characteristics of the continuum. For example:
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(1) Theunbounding numberb is equal to the minimal cardinalκ such that ONE has
winning strategy in the gameGfin({On}n∈N,Oγ -gp) played onκ .

(2) The dominating numberd is equal to the minimal cardinalκ such that ONE
has a winning strategy in any (and both) of the gamesGfin({On}n∈N,Λ) and
Gfin({On}n∈N,Oω-gp), played onκ .

(3) Thecovering number for the meager idealcov(M) is equal to the minimal cardinalκ
such that ONE has a winning strategy in any (and both) of the games:G1({On}n∈N,Λ)

andG1({On}n∈N,Ω), played onκ .
(4) Theadditivity number for the meager idealadd(M) is equal to the minimal cardinalκ

such that ONE has a winning strategy in the gameG1({On}n∈N,Oγ -gp), played onκ .

All of these results follow easily from the equivalences with the corresponding prop
using the operatorsS1 and Sfin, together with the known critical cardinalities of the
properties—see [9].

Appendix A. Too strong properties

Assume thatA andB are collections of covers ofX. We say thatX satisfies
(A
B

)
if each

element ofA contains an element ofB [22]. ClearlySfin(A,B) implies
(A
B

)
.

Proposition A.1. Assume thatX is an infiniteT1 space, and fixn ∈ N. ThenX does not
satisfy any of the following properties:

(1)
(

Λ
O2

)
;

(2)
(On

Λ

)
; and

(3)
( On

On+1

)
.

Proof. (1) Fix a nonrepeating sequence{xn}n∈N of elements ofX, and two distinct ele
mentsa, b ∈ X. As X is T1, all singletons are closed subsets ofX. Then

U = {
X \ {x2n, a}: n ∈ N

} ∪ {
X \ {x2n+1, b}: n ∈ N

}
is a large open cover ofX, and for eachU ∈ U , a, b 	⊆ U .

(2) and (3): Fix distinct elementsx1, . . . , xn+1 ∈ X. Then

U = {
X \ {x1}, . . . ,X \ {xn+1}

}
is an openn-cover ofX. But the(n+ 1)-element set{x1, . . . , xn+1} is not contained in an
member ofU . AsU is a finite cover, it does not contain a large cover either.�

Any nontrivial space has an openγ -cover:

Lemma A.2. Assume thatX is an infiniteT1 space. ThenX has an openγ -cover.
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Proof. Fix a nonrepeating sequence{xn}n∈N of element ofX. Then

U = {
X \ {xn}: n ∈ N

}
is an openγ -cover ofX. �
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