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Abstract

Whereas the Gerlits—Nagy property is strictly weaker than the Galvin—Miller stropgprop-
erty, the corresponding strong notions for the Menger, Hurewicz, Rothberger, Gerlits—Nagy (
Arkhangel'ski and Sakai properties are equivalent to the original ones. The main result is that almost
each of these properties admits the game theoretic characterization suggested by the stronger notion.
We also solve a related problem of &nac and Scheepers, and answer a question of lliadis.
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1. Introduction
1.1. Thick covers

Let X be an infinite topological space. Throughout this papeQsn covemwe mean
a countablecollectioni/ of open subsets of such thal Ji/ = X and X ¢ U/. The focus
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on countable covers allows us to have no restrictions at all on the topolakjy* dthis is
useful when we wish to project the results into the purely combinatorial case—Section 10.
The additional restriction that ¢ U{ is to avoid trivialities.

Let U/ be an open cover &X. I/ is ann-coverof X if for each F C X with |F| <n,
there isU € U such thatF C U. U is anw-coverof X if for each finite F C X, there is
U € U such thatF C U (that is,U{ is ann-cover of X for eachn). U/ is ay-coverof X if
each element oX belongs to all but finitely many membersiaf

1.2. y-sets and strong -sets

According to Gerlits and Nagy [6], a topological spaceés ay -setif eachw-cover of
X contains ay-cover of X. Gerlits and Nagy consider the following seemingly stronger

property:

For each sequend#, },cn of w-covers ofX there exist members, € U,, n € N, such
that{U, },en is ay-cover ofX.

Using Scheepers’ notation [16], this property is a particular instance of the following se-
lection hypothesis (wherg and 8 are any collections of covers &f):

S1(s, B): For each sequendéf, },.n of members of4, there exist members,, € U,,
n € N, such tha{U, },,en € B.

Let £2 and I" denote the collections of opestcovers and/-covers ofX, respectively.
Then the property considered by Gerlits and Nag$1&2, I"), who proved thafX is a
y-setif, and only if, X satisfiesS1(£2, I") [6].

This result motivates the following definition. According to Galvin and Miller [5], a
spaceX is astrongy -setif there exists an increasing sequerkg},cn such that:

For each sequende/, },cn Where for eachn U, is an openk,-cover of X, there exist
memberdJ, € U,, n € N, such thafU, },cn is ay-cover of X.

Clearly every strong/-set is ay-set; however the properties are not provably equivalent
(e.g., in [4] itis shown that assuming CH, there exists an uncounjabktX such that no
uncountable subset &f is a strongy -set).

As inthe case of -sets, it will be convenient to introduce the following general notation.

Definition 1.1. Assume thata,, n € N, and 8, are collections of covers of a spa&e
Define the following selection hypothesis.

S1({oAn}nen, B): For each sequenddl, },cn Wherelt, € 4, for all n, there exist mem-
bersU, e U,,, n € N, such tha{U,},en € B.

1 A standard alternative approach is to consider spacesch that all finite powers af are Lindelsf. This
guarantees that each cover of a type considered here contains a countable cover of the same type.
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For eachn denote byO, the collection of all opem-covers of a spac&’. Then X
is a strongy -set if, and only if, there exists an increasing sequgigg, <y such thatX
satisfiesS1({Ok, lnen, I'). This does not fit exactly into the family of properties of the
form S1 ({4, }neN, B), because of the external quantifier. However, in Section 2 we show
that this quantifier can be eliminated, so thais a strongy-set if, and only if, X satisfies
S1({O, }uen, ). This motivates the study of the generalized selection hypothesis, which
is the aim of this paper.

The first part of the paper deals with the classical selection operators. In Section 2, as
said above, we prove quantifier elimination for theroperty. In Section 3 we introduce
two mild assumptions on thick covers which allow this sort of quantifier elimination. In
Sections 4 and 5 we supply a variety of examples, showing that many properties which
appear in the literature are equivalent to their stronger version. In Section 6 we answer a
guestion of lliadis by showing that no new property is obtained by considering the general-
ized selection hypothesis for the standard types of covers, except for the gtppogerty.

The second part of the paper deals with game theoretic versions of the studied proper-
ties. In Sections 7-9 we supply new methods of reductions between game strategies, and
give new game theoretic characterizations to most of the properties mentioned in the first
part of the paper. In Section 10 we describe an application of the obtained results to the
purely combinatorial case.

Part |: Strong versions of the classical selection operators

2. Strong y-setsand quantifier elimination

The following theorem shows that the external quantifier in the definition of a strong
y-set can be eliminated.

Theorem 2.1. For each spaceX, the following are equivalent

(1) X is a strongy-set, that is
There exists an increasing sequetikg},en such thatX satisfiesS1({Ox, }nen, ).
(2) For each increasing sequenék,},cn, X satisfiesS1({Ok, }nen, I').
(3) There exists a sequenkg— oo, such thatX satisfiesS1({Ox, }nen, ).
(4) For each sequende, — oo, X satisfiesS1({O, }nen, I).
(5) X satisfiess1({O,}nen, ).

Proof. Itis clear that(4) = (2) = (5) = (1) = (3). It remains to show thaB3) = (4).
Assume thak, — oo such thatX satisfiesS1({Ok, }nen, '), and let{is, },en be such

thatis,, € O,, for eachn.

Lemma2.2. For U € Oy, andV € Oy,, define

UANYy={Unv:Uel, veV}
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Thenl/ AV is an opemmin{ky, k2}-cover ofX refiningl/ andV. (Moreover, the operation
A is associative.

For eachn let
n=min{i: m <k; forall j > i}, @)
and set
Vin =Uy N+ AUk, -1

Then eaclV,, € O,,. UseS1({Ok, }nen, I') to extract from the sequen€¥y, },en elements
Vi, € Vi, such thaf Vi },en is ay-cover of X. For eachm, letn be as in Eq. (1). A3/,
refined, for all k wherek,, < k < k,+1, we can choose for each suchn element/y € Uj.
such thatVy, € Ux. For 0< k < kg choose anyJi € U (this is a finite set so we need not
worry about it). Ther U, },en is ay-cover of X and for eactn, U, €Uf,,. O

We now consider the following general selection hypotheses, the first due to Scheepers
and the second being a “strong” version of the first.

Definition 2.3.

Siin (A4, B): For each sequencif,},en Of members ofA, there exist finite (possibly
empty) subsets, CU,,n € N, such that J, . . € B.

Siin({An }nen, B): For each sequendéf, },,cy Whereld,, € A, for all n, there exist finite
(possibly empty) subset, € U,, n € N, such that J, . F» € 8.

In [9] it is proved thatSi(£2, ') = Ssin(£2, I'). A natural question is whether
S1({Ou}nen, I') = Siin({On}nen, I'). The following characterization of the property
answers this question.

Theorem 2.4. S1(82, I') = Siin({On }nen, ).

As y-sets need not be strongsets, the properties; ({0, }uen, I') andSsin({O; }nen,
I') are not provably equivalent.
The characterization in Theorem 2.4 can be proved in a more general setting.

Theorem 2.5. Let 8 be any collection of open covers &. Then Siin(£2, B) =
Sfin({on}neNv 0(8)

Proof. It is enough to show thaSiin(£2, B8) implies Sin({Oy}uen, B). Assume that
{U, }nen is a sequence of opencovers ofX. Let{A,},<n be a partition olN into infinitely
many infinite sets. For eachdefineV,, = {J,,c4, Un- Then eachV, is anw-cover of X.
Apply Siin(£2, B) to extract finite subset§,, CV,,n €N, such thafV Upen Fn € 8.
For eachw and eachn € A,;, defme]-‘m = F, NU,,. Then for eachn ]-"n is a finite subset
of U,, andUneN]-"n =VeB. O
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3. Other strong properties

As mentioned in the previous section, the strgngroperty S1({O,},en, I') is not
provably equivalent to the usuglpropertyS1(£2, I'). Many other properties which were
studied in the literature are equivalent to properties of the ®y(®2, B) or Sfin(£2, B) for
suitably chosesB [19]. We will show that for all of these properties, the stronger versions
are equivalent to them.

We first show that as in Theorem 2.1, we do not get anything new if we consider
properties of the forns1({Ox, }nen, B) andStin({Ok, Inen, B) for general increasing se-
guences,. In the case o6, this is an immediate corollary of Theorem 2.5. In the case
of S; we need some assumptions 8n

Definition 3.1. A collection 4 of open covers of a spacgis finitely thickif:

(1) If U € A and for eaclU € U Fy is a finite nonempty family of open sets such that for
eachV € Fy, U €V # X, then{J, o, Fu € A.
(2) If U € A andV =U U F whereF is finite andX ¢ F, then) € «.

A collection A of open covers of a spacé is countably thickf for eachi/ € A and each
countable family) of open subsets of suchthatX ¢ V, U/ UV € A.

None of these two thickness properties implies the second. The colle@iofs (for
eachn), ands$2 are both finitely and countably thick: is finitely thick but not necessarily
countably thick, and, the collection of all large covers df, is countably thick but not
necessarily finitely thick.

We have the following generalization of Theorem 2.1.

Theorem 3.2. Assume tha is a finitely or countably thick collection of open coversXof
For each spaceX, the following are equivalent

(1) There exists an increasing sequeikg}, ey such thatX satisfiessS1({Ox, }nen, 8B).
(2) For each increasing sequen€k, },cn, X satisfiess1({Ok, }nen, B).

(3) There exists a sequenkg — oo, such thatX satisfiesS1({Ox, }nen. B).

(4) For each sequendg, — oo, X satisfiesS1({Ok, }nen, B).

(5) X satisfiess1({O0,},en, B).

Proof. The case whereB is finitely thick is proved exactly as in Theorem 2.1. The case
whereB is countably thick follows from Theorem 3.3.0

The fact thel” is not countably thick is related in a straightforward manner to the fact
thaty -sets need not be strongsets.

Theorem 3.3. Assume thaB is countably thick. TheB1({O,},en, B) = S1(£2, B).
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Proof. We should verify that the argument in the proof of Theorem 2.5 works in our case
as well.

Let {Uy}nen, {Anlnen, andV, be as in the proof of Theorem 2.5. AppBi(£2, B)
to extract element¥, € V,, n € N, such that{V,},,cy € 8. For eachn and eachn € A,
choosd/,, =V, if V,, e U,,, otherwise choose any,, € U,,. We have enlargefV, },,en by
at most countably many open sets.&3s countably thick, we have thlt,, },en € 8. O

4. Examples
We give some examples for the above results.
4.1. The Rothberger and Menger properties

Using our notationRothberger’s propertyC” [14] is the propertyS1(O, O). In [16]
it is proved thatS;(O, O) = S1(£2, O). This implies thatS1(£2, O) = S1({O, }nen, O).
Another way to obtain this result is to use Theorem 3.3Das countably thick.

Menger’s basis propertfintroduced in [11]), was proved by Hurewicz [7] to be equiva-
lent to the propertyssin (O, O). In [16] it is proved thaSin (O, O) = Siin(£2, O), SO again
we have thasin (2, O) = Stin({On}nen, O).

The Rothberger and Menger properties(§2, ©O) and Ssin (2, O) are not provably
equivalent, as is witnessed by the canonical Cantor set of reals [9]. Thus, the properties
S1({Oy }nen, O) andSsin({On }nen, O) are not provably equivalent.

4.2. The Arkhangel'skand Sakai properties

A spaceX has theArkhangel'ski property[1] if all finite powers of X have the Menger
propertySsin (O, O). In [9] it is proved that this is equivalent to satisfyisgn($2, £2). By
Theorem 2.5, we have tha§n (2, 2) = Siin({On }nen, 2).

A spaceX has theSakai propertyif all finite powers of X satisfy Rothberger’s prop-
erty C”. Sakai [15] proved that this property is equivalensi@s2, £2). As §2 is countably
thick, we have by Theorem 3.3 th&1(£2, 22) = S1({Op }nen, 2).

As in the case of Menger and Rothberger, the canonical Cantor set witnesses that the
Arkhangel'ski and Sakai propertieSiin(£2, £2) and S1(£2, §2) are not provably equiv-
alent [9]. Thus, the properties; ({0, },en, £2) and Siin({Oy }ren, £2) are not provably
equivalent.

4.3. The Hurewicz, Gerlits—Nagy), and related properties

X satisfies thédurewicz property(defined in [8]) if for each sequend#,, }, < of open
covers ofX there exist finite subsets, < U,, n € N, such thatX € |, (>, U Fn (if
X ¢ {J Fulnen then this means thdt ) 7, },cn is ay-cover ofX).

To simplify the presentation of the remaining properties, we introduce the following.
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Definition 4.1.

(1) (a) A coverd of X is multifinite if there exists a partition a¥ into infinitely many
finite covers ofX .
(b) Let MF denote the collection of all multifinite open coversXof
(2) Fix¢t e{w,y,...}.
(a) A coverl of X is &-groupableif it is multifinite, or there exists a partitio® of
U into finite sets such thdt J F: F € P}\ {X} is ag-cover of X.
(2) Let©%-9 denote the collection of afi-groupable open covers &f.

In [10] it is proved that the Hurewicz property is equivalent to the prop8si(s£2,
OY-9P), By Theorem 2.5, we have tha has the Hurewicz property if, and only if, it
satisfiesStin ({0, }nen, OV P).

In [6], Gerlits and Nagy introduced a property called. In [12] it is proved that(x)
is equivalent to having the Hurewicz as well as Rothberger properties. In [10] it is proved
that this is equivalent t681(£2, O79),

Lemma 4.2. ©O7"9 is countably thick.

Proof. Assume thal{ is ay-groupable cover ok, and letP be a partition ot/ withessing
this. LetV be a countable family of open sets. By shiftingtd &/ we may assume that

andV are disjoint. A9/ is infinite, P is infinite as well; choose an injectiofi: V — P.

Then

P={fVu(vy: veviu(P\ fIvl)

is a partition of/ UV witnessing that this new cover js-groupable. O
Corollary 4.3. S1({O,,}nen, O79P) = S1(£2, OV9P),

Thus a space has the Gerlits—Nagy property if, and only if, it satisfieS1({O, }nen,
O7-9P). As the property(x) is not provably equivalent to the Hurewicz property (this too
is witnessed by the Cantor set [9], @ implies Rothberger’s property [6]), we have that
S1({O0,}nen, OV 9P) is not provably equivalent t8¢in ({0, }nen, O P).

Now consider the collectio29P of openw-coversi/ of X such that there exists a
partition’P of I/ into finite sets such that for each finikeC X and all but finitely many*

P, there existd/ € F such thatF C U. In [10] it is shown thatX satisfiesSs, (§2, £29°)

if, and only if, all finite powers ofX have the Hurewicz property. By Theorem 2.5, this
property is equivalent t&in ({0, }nen, 29P). The following observation is what we need
to get the analogous result for the stronger propgiiy2, £29°).

Lemma 4.4. 29 is countably thick.

Proof. The proof for this is similar to that of Lemma 4.20
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Here too, as all finite powers of the Cantor getare compact, we have that sat-
isfies Siin(£2, £29°) but not S1(£2, £29°) (which implies Rothberger's property). Thus,
S1({Ou}nen, £29) is not provably equivalent t8sin ({O) ) nen, 29P).

4.4. A property between Hurewicz and Menger

In [16] a property calledJsin (I, £2) is considered, which is intermediate between the
Hurewicz and Menger properties. This property is a particular case of a general selection
hypothesis. Assume that and B are collections of covers of a spa&e Define the fol-
lowing selection hypothesis [16]:

Usin(+4, 8B): For each sequendéf,},cn of members of4 which do not contain a finite
subcover, there exist finite (possibly empty) subsgtsc U4, n € N, such that

{U]:n}neN €B.

Observe that any countable cover which does not contain a finite subcover can be turned
into a y-cover by taking finite unions [9]. Thus for each, Usin(+A, B) = Usin(I, B).
The Menger property is equivalent i, (I", O), and the Hurewicz property is equivalent
to Usin(I, I'). In [9] it is proved thatUsin (I, §2) is not provably equivalent to any of the
Hurewicz or Menger properties.

It is proved in [2] thatUsin (I, £2) is equivalent toSsin (£2, O“9P). By Theorem 2.5,
X satisfiesUsin (I, £2) if, and only if, it satisfieSsin ({On }nen, O 9P).

We now treat the stronger propersy (2, O“9). This property was introduced and
studied in [2]. In Problem 3 of [2] the authors ask whether this property is strictly stronger
than Rothberger’s property1(£2, A) (this is the same as the usu&l(O, O) [16]). We
give a positive answer. It is easy to see (and well known) that Rothberger’s property is
closed under taking countable unions.

Theorem 4.5. AssumingCH (cov(M) = ¢ is enough, Rothberger’s property does not im-
ply S1(£2, O“9P); in fact, S1(£2, O?9P) is not even closed under taking finite unions.

Proof. Clearly S1(£2, ©O%9) implies Sfin(£2, O?9) = Usin (I, £2), but it is well known
that (assuming CH) Rothberger’s property does not inyahy(I", £2) [9].

Moreover, in [3] it is shown that CH (or even jusiv(M) = ¢) implies that no property
betweenS:(£2, £2) and Usin (I, £2) (inclusive) is closed under taking finite unions. But
S1(£2, 0O 9P) lies between these propertiesa

As in the case 081(£2, OY9) which is equivalent taJsin (I, I') N S1(O, O), we have
that the new propertg1($2, O“¥) can also be characterized in terms of the more classical
properties.

Theorem 4.6. S1(£2, O?9) = Usin(T, £2) N S1(O, O).
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Proof. We have seen thag;(£2, O“ %) implies Usn (I, £2) and Rothberger's property
S1(0, O). To prove the other implication, we use the result of [2], thai(I", £2) implies
A=0%P AsS1(0,0) =S1(82, A), A =0 ands1 (O, O) imply S1(£2, 0“9, O

Lemma 4.7. 0“9 is countably thick.

Proof. Assume that/ is anw-groupable cover ok, and letP be a partition o/ wit-
nessing this. Lev be a countable family of open sets. We may assumelthatd)’ are
disjoint. Let? be any partition of) into finite sets. TherP U P is a patrtition oft/ U V
witnessing that this new coveris-groupable. O

Coroallary 4.8. S1({0,,}nen, O 9P) = S1(£2, 02 9P),

Here again, Cantor's set witnesses that the properSe§O,},en, O¥9P) and
Stin({Oy }nen, O?9P) are not provably equivalent.

5. t-covers

An open covei/ of X is at-coverof X if it is a large cover, and for each y € X,
one of the set§U e U: x e U andy ¢ U} or {U eU: y € U andx ¢ U} is finite. The
notion oft-covers was introduced in [21], and incorporated into the framework of selection
principles in [22].

Let T denote the collection of open-covers of X. ThenI" C T C 2, therefore
S1(82, I') impliesS1($2, T), which impliesSiin (£2, T). It is not known whether any two of
these properties are equivalent.

By Theorem 2.5, we have th8f, ({O,},en, T) = Stin(£2, T). We have only a guess for
the situation in the remaining case.

Conjecture 1. It is consistent thas1 ({0, }nen, T) # S1(82, T).

Observe that, a31(£2, T) implies Rothberger’s properg; (O, O), we have by the con-
sistency of Borel's conjecture that the word “consistent” cannot be replaced by “provable”
in Conjecture 1.

t*-covers are a variation of-covers which is easier to work with. For a covér=
{Un}nen Of X and an element € X, write

xy ={n: x € Up}.

According to [22], A covet{ of X is at*-coverof X ifitis large, and for eacl € X there
exists an infinite subsey, of x;; such that the set§,, x € X, are linearly quasiordered
by C* (A C* B means thatd \ B is finite). If I/ is a countabler-cover, then by setting
xy = xy for eachx € X we see that it is a*-cover. The converse is not necessarily true.
Let T* denote the collection of all countable opehcovers ofX. Then TC T* C (2.

Lemma5.1. T* is countably and finitely thick.
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Proof. Assume that/ = {U,},en € T*, and letxy, x € X, be witnesses for that. Lét
be a countable family of open sets. Assume hag infinite and disjoint froni/, and let
{V.}nen be a bijective enumeration of. Enumeraté/ UV by {W,},en WhereW,, = U,
if n is even andW,, = V,, otherwise. Then the subset$§;20f x;;y, x € X, witness that
U UV e T*. The case thal has a finite cardinalit¥ is treated similarly.

To see that Tis finitely thick it remains to verify the first requirement in the definition
of finitely thick covers. In [22] we prove something strongei/IE T* refines a countable
coverV, thenV e T*. O

Corallary 5.2. S1({Oy }nen, TF) = S1(82, TH).

The last corollary can be contrasted with Conjecture 1.

6. lliadis question

In the Lecce Workshop on Coverings, Selections and Games in Top@ogg 2002),
Stavros lliadis asked whether we get new properties if we consider the generalized selec-
tion principles of the formS;({+,}sen, B) and Sgin({A,}nen, B). We check the cases
where the first coordinate is any sequence of elements from the set

C={0,A,2,T T, I'tU{0,: neN}.

Lemma 6.1. For any increasing sequengg, },en, S1({An tnen, I') impliesS1({Ax, }nen,
I"), andSiin({#n }nen, I') impliesSin ({Ax, tnen, ).

Proof. Assume thatf;, € Ay, . For eachn ¢ {k,},eny USe Lemma A.2 in Appendix A to
choose an elemebf,, € I".
Apply S1({sAn}nen, I') to the sequencgi, },cn to obtain elements/,, € U, such that
{Un}nen is ay-cover ofX. Then{Uy, },en iS ay-cover ofX, and for eacln, Uy, € U, .
The proof forSgp, is similar. O

Corallary 6.2. Assume that, },cn is a sequence of elementstbfThen

(1) If someA € {O, A}U{O,: n € N} occurs infinitely often in the sequenté,, }, cn,
thenS1({Ay }hen, I') impliesSi (4, '), which is false for a nontriviak .

(2) If A, €{O, A}foronly finitely many: and there exists an increasing sequekgsuch
that {Okn IneN isa subsequence @j“n neN, thensl({f\)n}nENa ') =S1({On}nen, I')
(strongy-se).

(3) If A, €{O, A}U{O,: n € N} for only finitely many: andi4, = £2 for infinitely many
n, thenSi({Antpen, I') = S1(2, ).

4) If A, € {0, A, 2}U{0O,: n € N} for only finitely many: andi, = T* for infinitely
manyn, thenS1({A, }uen, I') = S1(T*, IN).

(5) If A, €{0, A, 2, T*}U{O,: n € N} for only finitely many: andi{,, = T for infinitely
manyn, thenSy ({4 }uen, I') = S1(T, IN).
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6) If A, €{O, A, 2, T, T}U{O,: n € N} for only finitely many, thenS1 ({4, }ren,
=S, TI).

The analogous assertions fgf, also hold.

Proof. We will use Lemma 6.1.

(1) follows, using the results of Appendix A.

To prove (2), observe that in this case, e&ftis a subset 0®;, for somek,, such that
k, — o0, so that Theorem 2.1 applies.

(3)—(6) follow from Lemma 6.1. O

Lemma 6.3.

(2) If A, D « for all but finitely many:, and B is closed under removing a finite subset,
thenSi({A, }en, B) impliesSi (A, B).

(2) If A occurs infinitely often in the sequents, },<n, and B is countably thick, then
S1(A, B) impliesS1 ({4 }nen, B).

(3) The same assertions hold 84, (where in(2) countable thickness is not needed

Proof. (1) Assume thatX satisfiesSi({A,}en, B). We will show that X satisfies
S1(oA, B). Fix m such that for alln > m, A, 2 A. Assume thaflf,},en IS such that
U, € A for all n. By Lemma A.2, there exists an opgnrcover) of X. Define a sequence
WVitwen by V, =V for n < m andV,, = U, _,, otherwise. ByS1({+4, }»en, B), there exist
elementsV, €V, such thaf{V,},cn € 8. As B is closed under removing a finite subset,
{Vuln>m € 8 and for eactu > m, V,, € Uy—p.

(2) Let {k, },en be an increasing enumeration{af 4, = +}, and let{i/, },cn be such
that, € A, for all n. Apply S1(+4, B) to U, to obtain elementd/;, € U, such that
{Uk, }nen is @ member ofB. From the remaining covet#, choose any elemef,. As 8
is countably thick{Uy, },en is @ member ofB as well.

(3) is similar. O

The collectionsA, 2, T* and T are all countably thick and closed under removing
a finite subset. Thus, iB is any of these, then we g&k ({4, }ren, B) = S1(A, B) in
Lemma 6.3.

Corollary 6.4. Assume thaf,},cn IS a sequence of elements@fand 8 € {A, 2}.
Then

(1) If there exist infinitely many such thatA, = I, thenS1({A, },en, B) = S1(I7, B).

(2) If there exist only finitely many such that4,, = I, and there exist infinitely many
such that4,, =T, thenS1({A, }uen, B) = S1(T, B).

(3) If there exist only finitely marwy such thata,, € {T, I'}, and there exist infinitely many
n such that4,, = T*, thenS1({A, }uen, B) = S1(T*, B).

(4) If there exist only finitely many such that4,, € {T*, T, I"'}, and there exist infinitely
manyn such thata, = 2, thenS; ({4, },en, B) = S1(82, B).
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(5) If there exist only finitely many such thats,, € {2, T*, T, I'}, and there exists an
increasing sequence, },en such thata;, < O, for all n, thenSi({A,}nen, B) =
S1(£2, B).

(6) If there exists no increasing sequenég},cn such thatA;, < O, for all n, and A
occurs infinitely often if, },en, thenS1({A, e, B) = S1(A, B) (which is Roth-
berger’s property itB € {O, A} and trivial otherwisg.

(7) If for somem A, 2 O,, for almost alln, thenS; ({4, }ren, A) is trivial.

The analogous assertions f8f, also hold.

These results and related arguments should show that no new property is introduced by
the generalized selection princCipl8s({+, }ren, B) andSiin({+An }nen, B), €xcept for the
strongy -propertyS1({O }nen, 1) and, perhapssi({Op}nen, T).

Part I11: Gametheory

In this section we give new game theoretic characterizations to most of the properties
considered in the previous sections. Although these characterizations are suggested by the
results of the earlier sections, their proofs are not as trivial.

7. Selection games and strategies

Each selection principle has a naturally associated game. In the @atvie B) ONE
chooses in theth inning an elemertt, of A and then TWO responds by choosibig €
U,. They play an inning per natural number. A plé, Uo, U1, U1, ...) is won by TWO
if {Uy}nen € 8B; otherwise ONE wins. The gam@sin (4, B) is played similarly, where
TWO responds with finite subsefs, < U, and wins if . F» € 8.

Observe that if ONE does not have a winning strategyGirg4, 8) (respectively,
Giin (A, 8B)), thenSy (A, B) (respectivelySiin(+4, B)) holds. The converse is not always
true; when it is true, the game is a powerful tool for studying the combinatorial properties
of A andB—see, e.g., [10,2], and references therein.

It is therefore appealing to try and study the generalized games associated with
S1({An}nen, B) andSin({An}nen, B).

Definition 7.1. Define the following games between two players, ONE and TWO, which
have an inning per natural number.

G1({sAn}nen, B): In the nth inning, ONE chooses an elemédit € A,, and TWO re-
sponds with an elemertt,, € U,. TWO wins if {U,},en € 8B; otherwise ONE
wins.

Gfin({#An }nen, B): In the nth inning, ONE chooses an eleméif € 4,,, and TWO re-
sponds with a finite subsef, of U,. TWO wins if | J,.y Fn € 8B; otherwise
ONE wins.
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Some terminological conventions will be needed to simplify the proofs of the upcoming
results. AstrategyF for ONE in a games1({-A, }hen, 8) can be identified with a tree of
covers in the following way. Let/(y := F(X) be the first move of ONE. Enumerate the
elements ot/ as{U,)}nen. Having defineddy, = {Usn) }nen, define for eachmn

Usmy = FUy, U1, .. ..U, Usimy),

and fix an enumeratiofUy~m.n }nen Of Us~m). Let N* denote the collection of all finite
sequences of natural numbers.

Similarly, a strategyr’ for ONE in a gameGsin ({4 }hen, 8) can be identified with a
tree covers where the sequeneeare offinite setof natural numbers rather than natural
numbers. LefN]* denote the collection of all finite sequences of finite sets of natural
numbers.

We will say that a collection of covers is densein a strategyF for ONE in a game
of type G, if for eacho € N* there exists) € N* which extendss, and such thaltt, € 4,
that is,{n € N*: U, € A} is dense ilN*. Similarly, we say that4 is dense in a strategy
for ONE in a game of typ6&in if {n € [N]*: U, € A} is dense iffN]*.

Lemma 7.2 (Density lemma)Assume thaB is countably thick, ONE has a winning strat-
egy F in G1({An}nen, B), and 4 is dense inF. Then ONE has a winning strategy in
G1(s4, B). The analogous assertion f@in also holds.

Proof. Fix some well-ordering on the collectioN* of all finite sequences of natural
numbers, and lefl,;},<n+ be the tree of covers associated with Define a function
7 :N* — N* as follows:

(1) Letz(()) be the first member df* such thaif ) € 4.

(2) Foreach letm((n)) € N* be the first extension of (())(n) such thalty () € .

(3) In general, for each € N* and each: let w (o {n)) be the first extension of () {n)
such thatlly o)) € B.

For eacho € N* definelly = Uz (), and sey~u) = Ux(oyn) for eachn. Let F be the
strategy associated Wi, },<n+. ThenF is a strategy for ONE iiG1(A, B).

We claim thatF is a winning strategy for ONE i&1(+, 8). Assume otherwise, and
let f € ¥N be such that the play

(27()’ ﬁfrl,ﬁfm, ﬁf[z,...)
against the strateg¥ is lost by ONE, that is{U ¢}, },en € 8. Define
oo=n(()), o1=7((f(0))...., i1 =7 (o {f ). ...
and takeg =, ey on- Then
Uy, Ugr1, Ug i1, Uga, ..

is a play in the game&; ({4, },en, 8) according to the strategy, and{U ¢, },en is a sub-
sequence ofUg, }nen. As 8B is countably thick, we have thét/,,}.en € B as well, so
this game is lost by ONE, a contradiction.

The proof forGiy is similar. O
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Remark 7.3. For eachy € N*, we can modify the definition of in the proof of Lemma 7.2
so thatr (()) extendso. Consequently, it is enough to assume thatlf, € A} is dense

belowo (with respect to the order of reverse inclusion) $omeo € N*. In other words,

if ONE does not have a winning strategy @&y (4, 8) but has a winning strategy in
G1({An}nen, B), then{n: U, € A} is nowhere densin N*.

8. Reductionsamong G, Strategies

Following is a surprising result. It implies thatMF € 8 and ONE could win the game
Giin({On }nen, B), then he could wirGiin (A, 8B) as well.

Theorem 8.1 (A-less strategies)Assume thatF is a strategy for ONE in a game
Giin({On }nen, B), and A is not dense inF. ThenF is not even a winning strategy for
ONE in the gamé&iin (O, }hen, MF).

Proof. Assume that" is a winning strategy for ONE in the gan®n ({O, },en, MF). Let
{Us}oeny+ be the covers tree associated wihand choose < [N]* such that for all
extendingo, ﬁn is not large. ModifyF so that its first move iﬁ?,, (that is, the strategy
determined by the subtrde: n C o} of [N]*). This is still a winning strategy for ONE
(otherwise TWO can begin with a sequence of moves which will force ONEptand
then defeat him). We may therefore assume that no element in the straiedgrge.

Lemma 8.2. Everyn + 1 cover of a spac& which is not large contains a finite-cover
of X.

Proof. Assume thal/ is an(n + 1)-cover of X which is not large. Then there existE X
such that the sef = {U € U: x € U} is finite. Now, ad/ is an(n + 1)-cover of X, for
eachn-element subsef of X there existdJ € U such thatF U {x} C U, and therefore
UeFandFCU. O

We may therefore modify the stratedy (by thinning out its covers) so that all covers
in this strategy are finite. As this only restricts the possible moves of TWO, this is still
a winning strategy for ONE in the gan@&in ({O,, },en, MF).

In particular, no cover in the stratedyis anw-cover ofX.

Lemma 8.3. Assume thafl/, },cn is a sequence of-covers ofX which are notw-covers
of X. Then there exists an increasing sequeficg,n and pairwise disjoint subsets,
of Uy, such that each;, is ann-cover ofX.

Proof. For eachn let F, be a finite subset ok witnessing that4, is not anw-cover
of X. Observe that it/ is a (k + [)-cover of X and F is ak-element subset aX. Then
{UelU: F CU}isanl-cover ofX.
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Letﬁl =U1. Setky = | F1| + 1. Thenﬁ2~: {Uely,: FLCU} is a cover ofX disjoint
from /1. Assume that we have definetty,, ..., U, ,. Letk, = |UJ;_, Fx,| + n, and
choose

i<n

ﬁkn:{U eUy,: UFki gU}.

i<k

Theni4,, is ann-cover of X, Uy, € Uy, , andid, N, =@ foralli <n. O

Thus, by the methods of Lemma 7.2, we may refine the strafegp that all its cov-

ers are (finite and) disjoint. Again, as the new strategy restricts the moves of TWO, it is
still a winning strategy in the gam®&sin ({0, }nen, MF). But in this situation TWO can
choose the whole cover in each inning, making its confident way to a victory in the game
Gin({Oy}nen, MF), a contradiction. O

We now give some applications of Theorem 8.1.
Theorem 8.4. For a spaceX, the following are equivalent

(1) X has the Menger property

(2) ONE does not have a winning strategyGg, (£2, A);

(3) ONE does not have a winning strategyGg, (A, A); and
(4) ONE does not have a winning strategyag, ({O; }nen, A).

Proof. Hurewicz [7] proved that the Menger property is equivalent to ONE not having
a winning strategy irGsn (O, ©O). Using this and the method in Theorem 3 of [18], one
shows that(1) < (3). Now, (3) = (2), and (2) implies Menger’s propert\iin (§2, A).
Thus (1) & (2) & (3). Clearly (4) = (2). To see that(3) = (4), assume thaf is a
strategy for ONE inGiin ({0, }nen, A). By (3) and Lemma 7.2A is not dense inF'. By
Theorem 8.1F is not a winning strategy for ONE iGsin ({0, }nen, A). O

Theorem 8.5. For a spaceX, the following are equivalent

(1) X has the Hurewicz property

(2) ONE does not have a winning strategyGgn (£2, OY"9P);

(3) ONE does not have a winning strategyGdg, (A, OY9); and
(4) ONE does not have a winning strategyGgn ({On }nen, O 9P).

Proof. The equivalencél) < (2) is established in Theorem 12 of [10]. It is clear that
B) = (2 and(4) = (2.

(1) = (3): This is proved like the proof ofl) = (2) (see Theorem 12 of [10]), as is
closed under removing a finite subset.

(3) = (4): Assume that ONE has a winning strateflyin the gameGiin ({O;, }nen,
O79P). Then by Theorem 8.14 is dense inF, and by Lemma 7.2, ONE has a winning
strategy in the gam&gin (A, OY9P). O
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The lastGsin game we consider is the one associated to the propgptel”, £2) from
Section 4.4.

Theorem 8.6. For a spaceX, the following are equivalent

(1) X satisfiedUsin(I, £2);

(2) ONE does not have a winning strategyGhn (2, O“9P);

(3) ONE does not have a winning strategyGm, (A, O*9); and
(4) ONE does not have a winning strategyGfin ({Oy }nen, O P).

Proof. (1) < (2) is proved in Theorem 13 of [2].

(2) = (3): Assume 2. Then ONE does not have a winning strategy in the game
Giin(£2, A). By Theorem 8.4, ONE does not have a winning strategy in the game
Giin(A, A). According to Lemma 11 of [2](1) (which is implied by(2)) implies that
each large cover of is w-groupable, that isg = O“9 for X. Thus ONE does not have
a winning strategy in the gan@;n (A, O®9P),

(2) = (4) is proved similarly. O

The following problem remains open.

Problem 8.7. Is the Arkhangel'ski property Sfin(§2, £2) equivalent to ONE not having
a winning strategy irGsin ({0, }, £2)?

9. Reductionsamong G1 strategies

We now turn toGi-games. To deal with these, we need some more terminology and
tools. Assume thak is a strategy for ONE in &;-game. Theo-strategyF,, associated to
F is the strategy defined as follows. L@1, },n+ be the covers tree associatedioFix
a bijectiong : N — N*. For eachr € N* of lengthk let

¢ () =¢(a (0] b (o (D) "p(a(k — D).

For each defineﬁ<n> =U{Uy11, Upr2, - .., Uy} wheren = ¢(n), and set?O = {ﬁ<n>}neN.
In general, for each € N* and eachr let n = ¢ (n), and define

Uotny = | JWpornir: Usornizs - - Uporn)-

Setﬁa = {ﬁUA(n)}nEN-

As we have required thaf is not a member of any cover we consLidEJ, need not be
a strategy for ONE. We will say that is w-densen F if the set{o: U, = X} is dense
in N*,

Lemma 9.1. Assume that for each, U, is disjoint from its pastUs 1, Us 12, ..., Us). If
X is w-dense inF, then there exists a game according to this strategy where the moves of
TWO constitute a groupable large coverXf
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Proof. In the covers tree of' there exists a path with infinitely many disjoint intervals
which constitute a finite cover of. O

Lemma 9.2. Fix 8 € {A, 0% OV9} Assume thatF is a strategy for ONE in
G1({sA,}nen, B) such thatX is notw-dense inF, and for eachr, U, is disjoint from its
past{Ust1, Us 12, ..., Us}. If F,, is notawinning strategy for ONE in the garge(s2, 8),
thenF is not a winning strategy for ONE in the garGe ({4, },en, B).

Proof. Any move of TWO inF,, can be translated to a finite sequence of moves for TWO
in F, replacing eactU,~, chosen by TWO with the element& i1, Uso1y12> - - -»

Uy oy Wheren = ¢ (n). Itis easy to see, by disjointness from the past, that this disassem-
bling preserves being a member®ffor 8 € {A, 0¥ Or 9P}, g

For shortness, we give the characterizations for the Rothberger, Gerlits-tNagyd
S1(82, O 9P) properties simultaneously.

Theorem 9.3. Fix 8 € {A, O¥9, OY-9P}, For a spaceX, the following are equivalent

(1) X satisfiess1($2, 8B);

(2) ONE does not have a winning strategyGa($2, 8B);

(3) ONE does not have a winning strategyan(A, 8); and
(4) ONE does not have a winning strategy@a({O, },,eN, B).

Proof. In Theorem 3 of [18] it is proved thatl) < (3) for 8 = A. In Theorem 12 of [10]
it is proved that(1) & (2) for 8 = 079, and in Theorem 15 of [2] this is proved for
B =P,

(2) & (3): Assume thatF is a winning strategy for ONE itG1(A, 8). Modify the
covers tree by removing from eaély its past{U,1, Ust2, ..., Us}. ThenF is still a
winning strategy for ONE. By Lemma 9.X is notw-dense inF, and by Lemma 9.2 we
get thatF,, is a winning strategy for ONE i®1(£2, 8).

(2) & (4): Assume thatF' is a winning strategy for ONE i1 ({0, },en, B). If 2 is
dense inF then by Lemma 7.2 ONE has a winning strategyi(2, 8). Otherwise, by
Lemma 8.3 we may assume that the covers in each branch of the stratagydisjoint.
By Lemma 9.1,X is notw-dense inF, and by Lemma 9.2 we get that, is a winning
strategy for ONE irG1(£2, 8). O

Remark 9.4. The characterizations of Rothberger’'s property usihgnstead ofA are
much more simple to deal with: Pawlikowski [13] proved that Rothberger's property
S1(0, O) is equivalent to ONE not having a winning strateg@in O, 0). AsS1(0, O) =
S1(£2, O), we get that Rothberger’s property is equivalent to ONE not having a winning
strategy inG1({On}nen, O).

We now treat the remaininG1-games:G1(£2, £2) andG1(£2, 29). For 8 C £2, the
propertiesSsin (A, B) are trivial (see Appendix A). Thus we cannot hope to have an equiv-
alent item “ONE does not have a winning strategyGif{ A, 8)” in the theorems dealing
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with these covers. Fortunately, there exists an elegant technique to deal with these cases
without appealing toi.

Lemma9.5. Assume thaB is countably thick. For a spack, the following are equivalent

(1) ONE does not have a winning strategyGn($2, B);
(2) ONE does not have a winning strategyGa({O, },,eN, B).

Proof. We prove that(1) = (2). AssumeF is a strategy for ONE irG1({O0,,}en, B)
whose covers tree g4, },<n+. Define a strategy” for ONE inG1(£2, 8) as follows: The
first move of ONE 94y = (J, o+ Us - If TWO choosed/,,, then ONE responds with

Uy = U Z/[G’Ar/,
neN*

etc. Now, a game lost by ONE according to the stratefg)can be completed (by
choosing the moves of TWO appropriately) to a game lost by ONE accordiiigjito
G1({O, }nen, B). As B is countably thick, this shows that is not a winning strategy. O

Theorem 9.6. Fix B € {£2, £29P}. For each space, the following are equivalent

(1) X satisfiess1(£2, B);
(2) ONE does not have a winning strategyGa($2, B);
(3) ONE does not have a winning strategyGa({O, },.eN, B).

Proof. (2) < (3) by Lemma 9.5.
(1) & (2): For 8 = 2 this is Theorem 2 of [17]. FoB = 29 this is Theorem 17
of [10]. O

We do not know whether analogous game theoretic characterizations can be given to
the remaining few properties. The most interesting problem seems to be the following.

Problem 9.7. Is it true thatX is a strongy-set if, and only if, ONE has no winning strategy
in the gameG1({On}nen, 11)?

10. TheBorel case and the discrete case

We need not stop in the case of open covers. One important variant of open covers is
that of countable Borel coversAs in [20], one can translate all of the results presented
here to this case as well. Another important variant is thatrbftrary countable covers
of an uncountable cardinal Since these are exactly the countable open coversnth
respect to the discrete topology enour results apply in this purely combinatorial case
as well, and we obtain new characterizations of some well known combinatorial cardinal
characteristics of the continuum. For example:
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(1) Theunbounding numbeb is equal to the minimal cardinal such that ONE has a
winning strategy in the gam@sin ({0, }nen, OY9P) played ork.

(2) The dominating numbery is equal to the minimal cardinat such that ONE
has a winning strategy in any (and both) of the gan®&g({O,}.en, A) and
Giin({On}nen, O 9P), played onx.

(3) Thecovering number for the meager idealv(M) is equal to the minimal cardinal
such that ONE has a winning strategy in any (and both) of the ga®1€89,,},,cn, A)
andG1({O, },en, £2), played onk.

(4) Theadditivity number for the meager ideadd (M) is equal to the minimal cardinal
such that ONE has a winning strategy in the ga@€{O, },cn, OY ), played on.

All of these results follow easily from the equivalences with the corresponding properties
using the operatorS; and Sy, together with the known critical cardinalities of these
properties—see [9].

Appendix A. Too strong properties

Assume that4 and8 are collections of covers df. We say thatX satisfies(g) if each
element ofA contains an element a8 [22]. Clearly Siin (4, B) implies (g).

Proposition A.1. Assume thak is an infinite 7y space, and fix € N. ThenX does not
satisfy any of the following properties

M (&)
@) (9); and
®) ((9(311) )

Proof. (1) Fix a nonrepeating sequente, },cn of elements ofX, and two distinct ele-
mentsa, b € X. As X is T3, all singletons are closed subsetsxafThen

U= {X\{xzn,a}: neN} U{X\{x2n+l,b}: neN}

is a large open cover of, and for eactU e U, a,b Z U.
(2) and (3): Fix distinct elements, ..., x,+1 € X. Then

U={X\{xad, o X\ )}

is an opem-cover ofX. But the(n + 1)-element sefx1, ..., x,+1} iS not contained in any
member of{. AsU{ is a finite cover, it does not contain a large cover either.

Any nontrivial space has an opencover:

Lemma A.2. Assume thak is an infiniteT; space. TherX has an openy-cover.
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Proof. Fix a nonrepeating sequenfe,},<n Of element ofX. Then
U:{X\{xn}: neN}

is an opery-cover ofX. O
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