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Abstract

Marion Scheepers, in his studies of the combinatorics of open covers, introduced the property
Split(U;V) asserting that a cover of type U can be split into two covers of type V. In the 1rst
part of this paper we give an almost complete classi1cation of all properties of this form where
U and V are signi1cant families of covers which appear in the literature (namely, large covers,
!-covers, �-covers, and �-covers), using combinatorial characterizations of these properties in
terms related to ultra1lters on N.

In the second part of the paper we consider the questions whether, given U and V, the property
Split(U;V) is preserved under taking 1nite or countable unions, arbitrary subsets, powers or
products. Several interesting problems remain open.
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1. Introduction and basic facts

We consider in1nite topological spaces which are homeomorphic to sets of real
numbers (this is the case, e.g., for each separable and zero-dimensional metric space).
We will refer to such spaces as sets of reals. Assume that X is a set of reals. The
following types of “thick” covers of X were de1ned in the literature and studied under
various guises (e.g., [10,11,18,19,22,23]). Let U be a collection of subsets of X such
that X is not contained in any member of U. U is:

(1) A large cover of X if each x∈X is contained in in1nitely many members of U,
(2) An !-cover of X if each 1nite subset of X is contained in some member of U,
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(3) A �-cover of X if it is a large cover of X , and for each x; y∈X , either
{U ∈U : x∈U; y =∈U} is 1nite, or {U ∈U :y∈U; x =∈U} is 1nite; and

(4) A �-cover of X if U is in1nite, and each x∈X belongs to all but 1nitely many
members of U.

Let �, �, T, and 
 denote the collections of open large covers, !-covers, �-covers,
and �-covers of X , respectively. Also, let B�;B�;BT;B
 (respectively, C�; C�; CT; C
)
be the corresponding countable Borel (respectively, clopen) covers of X . We will in-
formally refer to all these collections as collections of thick covers. It is easy to see that


 ⊆ T ⊆ � ⊆ �:

Reverse inclusions need not hold. Consider the property
(

U
V

)
(read: U choose V),

de1ned for collections of covers U and V, which asserts that for each cover U∈U

there exists a subcover V⊆U such that V∈V. Then
(

�
�

)
never holds [11,24], and

there exist sets of reals which do not satisfy
( T



)
and

(
�
T

)
[21–23].

Assume that U and V are collections of covers of a space X . The following property
was introduced in [18].

Split(U;V): Every cover U∈U can be split into two disjoint subcovers V and W
which contain elements of V.

Several results about these properties (where U;V are collections of thick covers) are
scattered in the literature. Some of them relate them to classical properties. For ex-
ample, it is known that the Hurewicz property and Rothberger’s property both imply
Split(�;�), and that the Sakai property (asserting that each 1nite power of X has
Rothberger’s property) implies Split(�;�) [18]. It is also known that if all 1nite pow-
ers of X have the Hurewicz property, then X satis1es Split(�;�) [13]. By a recent
characterization of the Reznichenko (or: weak FrIechet–Urysohn) property of Cp(X ) in
terms of covering properties of X [17], the Reznichenko property for Cp(X ) implies
that X satis1es Split(C�; C�).

Some other works study these properties per se [11,12]. As any in1nite subset of a
�-cover is a �-cover, we have that any set of reals satis1es Split(
; 
) (and therefore
Split(
;V) for all V ⊇
) [18]. The properties Split(�;�) and Split(�;�) are more
restrictive [11,12].
Countable subcovers. It will be more convenient to work with countable covers

instead of covers of arbitrary size. Each in1nite subset of a �-cover of a space is a
�-cover of the same space. Therefore any �-cover contains a countable �-cover. It is
also true (but less trivial) that every !-cover of a set of reals X contains a countable
!-cover of X [10].

Proposition 1.1. Assume that X is a set of reals and U is an open large cover of X .
Then U contains a countable large cover of X .

Proof. For a cover V of a set Y write

V(Y ) = {y ∈ Y : y ∈ V for in1nitely many V ∈ V}:
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Write X0 =X . As X0 is LindelKof, U contains a countable subcover U0 of X0. Set
X1 =X \U0(X0). Then U\U0 is a large cover of X1 (which is LindelKof) and therefore
contains a countable subcover U1 of X1. Continue in this manner to de1ne, for each
n, the sets Xn;Un such that Xn = X \Un−1(Xn−1), and Un = U\ ⋃

k¡n Uk is a cover
of Xn. Let X ′ =

⋂
n Xn and V=

⋃
n Un. As each Un is a countable cover of X ′ and

the sets Un, n∈N, are pairwise disjoint, V is a countable large cover of X ′. For each
x∈X \X ′ there exists n such that x∈Un(Xn). Thus V is also a large cover of X \X ′,
and therefore of X .

We now prove the analogue fact for �-covers.

Proposition 1.2. Assume that X is a set of reals and U is an open �-cover of X .
Then U contains a countable �-cover of X .

Proposition 1.2 follows from Proposition 1.1 and the following observation, which
is of independent importance.

Lemma 1.3. Assume that U is a �-cover of X and that V⊆U is a large cover of
X . Then V is a �-cover of X .

Proof. Assume that U is a �-cover of X and V⊆U is a large cover of X . We
need only check that for each x; y∈X , one of the sets {U ∈ V : x∈U; y =∈U} and
{U ∈ V :y∈U; x =∈U} is 1nite. But these are subsets of {U ∈U : x∈U; y =∈U} and
{U ∈U :y∈U; x =∈U}, respectively.

We may therefore assume that all the covers we consider are countable. Conse-
quently, the following, where an arrow denotes inclusion, holds:

B
 → BT → B� → B�

↑ ↑ ↑ ↑

 → T → � → �
↑ ↑ ↑ ↑
C
 → CT → C� → C�

As the property Split(U;V) is monotonic in its 1rst variable and anti-monotonic in its
second variable, we have that for each x; y ∈ {
;T; �; �},

Split(Bx;By) → Split(x; y) → Split(Cx; Cy):

Following the mainstream of papers dealing with collections of thick covers, we will
be mostly interested in the splittability properties in the case of (general) open covers,
but we will often use the fact that these properties are “sandwiched” between the
corresponding Borel and clopen properties in order to derive theorems about them.
A Ramseyan property. It is well known [12,18] that being an !-cover is a Ramsey

theoretic property: If an !-cover is partitioned into 1nitely many pieces, then at least
one of the pieces is an !-cover. The same is true for �-covers.
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Corollary 1.4. Assume that U=U1 ∪ · · · ∪Uk is a �-cover of X . Then at least one
of the sets Ui is a �-cover of X .

Proof. U is, in particular, an !-cover of X . Now use the corresponding fact for
!-covers and Lemma 1.3.

An ultra6lter on N is a family U of subsets of N that is closed under taking
supersets, is closed under 1nite intersections, does not contain the empty set as an
element, and for each a⊆N, either a∈U or N\a∈U . An ultra1lter U on N is
nonprincipal if it is not of the form {a⊆N : n∈ a} for any n.

Corollary 1.5. Assume that U= {Un}n∈N is a �-cover of a space X which cannot be
split into two �-covers of X . Then

U = {a ⊆ N : V = {Un}n∈a is a �-cover of X }
is a nonprincipal ultra1lter on N.

Proof. This follows from Corollary 1.4, as in [12]. Alternatively, use Lemma 1.3 and
the corresponding assertion for !-covers, which is also true [12].

Part 1. Classi�cation

2. Equivalences and implications

We begin with the following complete array of properties (where an arrow denotes
implication):

Split(�;�) −−→ Split(�;�) −−→ Split(T; �) −−→ Split(
;�)�
�

�
�

Split(�;�) → Split(�;�) −−→ Split(T; �) −−→ Split(
;�)

↑
�

�
�

Split(�;T) −−→ Split(�;T) −−→ Split(T;T) −−→ Split(
;T)�
�

�
�

Split(�;
) −−→ Split(�;
) −−→ Split(T; 
) −−→ Split(
; 
)

As we already mentioned in Section 1, all properties in the last column are trivial
in the sense that all sets of reals satisfy them. On the other hand, all properties but

the top one in the 1rst column imply
(

�
�

)
and are therefore trivial in the sense that

no in1nite set of reals satis1es any of them.

Theorem 2.1. The properties Split(T;T), Split(T; �), and Split(T; �) are equivalent.

Proof. This is an immediate consequence of Lemma 1.3.
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Thus, removing trivialities and equivalences, we are left with the following proper-
ties.

Split(�;�) −−→ Split(�;�) −−→�
Split(�;�)�
Split(�;T)�
Split(�;
) −−→

Split(T;T)�
Split(T; 
)

The following easy cancellation laws can be added to those given in [23].

Proposition 2.2. If W ⊆V ⊆U, then:

(1)
(

U
V

)
∩Split(V;W) = Split(U;W); and

(2) Split(U;V) ∩
(

V
W

)
= Split(U;W).

Corollary 2.3. The following equivalences hold:

(1) Split(�;
) =
(

�



)
; and

(2) Split(T; 
) =
( T



)
.

Proof. As every set of reals satis1es Split(
; 
), we have by Proposition 2.2 that

(
�



)
=

(
�



)
∩Split(
; 
) = Split(�;
):

The proof of the second assertion is similar.

(
�



)
is the famous �-property introduced by Gerlits and Nagy in [10]. The property( T




)
was studied in [23]. The property Split(�;T) can also be expressed in terms of

other properties: By Proposition 2.2,

Split(�;T) =
(
�
T

)
∩Split(T;T):

Recall from Section 1 that the Hurewicz property implies Split(�;�). It is well known
that the �-property implies the Hurewicz property. Fig. 1 summarizes our status. The
1gures for the clopen and countable Borel cases are the same, and, as noted before,
each property in the Borel case implies the corresponding property in the open case,
which in turn implies the corresponding property in the clopen case.
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Fig. 1. The surviving properties.

3. Combinatorial characterizations

In this section we give combinatorial characterizations for all splitting properties
in the cases where the collections of covers are clopen or countable Borel. These
characterizations will be used in the coming sections to rule out most of the nonexisting
implications between the properties in Fig. 1.

We 1rst set the required terminology. The Cantor space {0; 1}N of in1nite binary
sequences is equipped with the product topology. Identify {0; 1}N with P(N) by char-
acteristic functions. Then the sets On = {a∈P(N) : n∈ a} and their complements form
a clopen subbase for the topology of P(N). Consider the subspace P∞(N) of P(N)
consisting of the in1nite sets of natural numbers. For a; b ∈ P∞(N), we write a⊆∗ b
if a\b is 1nite.

A family Y ⊆P∞(N) is centered if it is closed under taking 1nite intersections. A
family Y ⊆P∞(N) is reaping if for each a ∈ P∞(N) there exists y∈Y such that
y⊆∗ a or y⊆∗N\a. Assume that U is a nonprincipal ultra1lter on N. Observe that U
cannot contain a 1nite set as an element. Thus, U is a subset of P∞(N). (Moreover,
all co1nite sets belong to U and therefore U is closed under 1nite modi1cations of its
elements.) A family B⊆P∞(N) is a base for U if

U = {a ∈ P∞(N) : (∃b ∈ B) b ⊆∗ a}:

(Consequently, a family B⊆P∞(N) is a base for a nonprincipal ultra1lter on N if,
and only if, B is centered and reaping.) Finally, a family B⊆P∞(N) is a subbase for
a nonprincipal ultra1lter U on N if

U = {a ∈ P∞(N) : (∃k)(∃b1; : : : ; bk ∈ B) b1 ∩ · · · ∩ bk ⊆∗ a}:

The following combinatorial characterizations are given in [11].
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Theorem 3.1. For a set of reals X :

(1) X satis6es Split(C�; C�) if, and only if, every continuous image of X in P∞(N)
is not a reaping family.

(2) X satis6es Split(C�; C�) if, and only if, every continuous image of X in P∞(N)
is not a subbase for a nonprincipal ultra6lter on N.

By the same reasoning (see the proof of Theorem 3.5 below), one can prove the
following.

Theorem 3.2. For a set of reals X :

(1) X satis6es Split(B�;B�) if, and only if, every Borel image of X in P∞(N) is
not a reaping family.

(2) X satis6es Split(B�;B�) if, and only if, every Borel image of X in P∞(N) is
not a subbase for a nonprincipal ultra6lter on N.

Corollary 3.3. For a set of reals X :

(1) X satis6es Split(B�;B�) if, and only if, every Borel image of X satis6es
Split(C�; C�).

(2) X satis6es Split(B�;B�) if, and only if, every Borel image of X satis6es
Split(C�; C�).

We now give combinatorial characterizations for Split(C�; C�) and Split(CT; CT).
These characterizations as well as the above-mentioned ones follow from the following
lemma.

With each countable cover of X enumerated bijectively as U= {Un}n∈a, where
a⊆N, we associate a function hU =X → P(N), de1ned by hU(x) = {n ∈ a : x ∈
Un}. Note that hU is a Borel function whenever U is a Borel cover of X , and hU is
continuous whenever U is a clopen cover of X .

An element a ∈ P∞(N) is a pseudo-intersection of a family Y ⊆P∞(N) if for each
y∈Y , a⊆∗ y. We will need the following minor extension of the corresponding lemma
from [22].

Lemma 3.4. Assume that U = {Un}n∈ a, where a⊆N, is a cover of X .

(1) U is a large cover of X if, and only if, hU[X ] ⊆P∞(N).
(2) U is an !-cover of X if, and only if, hU[X ] is centered.
(3) U is a �-cover of X if, and only if, hU[X ] ⊆P∞(N) and is linearly ordered

by ⊆∗.
(4) U contains a �-cover of X if, and only if, hU[X ] has a pseudo-intersection.

Moreover, if f :X →P(N) is any function, and V= {On}n∈N is the above-
mentioned clopen cover of P(N), then f= hU for U = {f−1[On]}n∈N.
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For a family Y ⊆P∞(N) and an element a ∈ P∞(N), the restriction of Y to a is
the family

Y � a = {y∩ a : y∈Y}:
If Y � a⊆P∞(N), then we say that this restriction is large. A nonprincipal ultra1lter
U on N is called a simple P-point if there exists a base B for U such that B is linearly
ordered by ⊆∗ . We will call such a base a simple P-point base.

Theorem 3.5. For a set of reals X :

(1) X satis6es Split(C�; C�) if, and only if, every continuous image of X in P∞(N)
is not a base for a nonprincipal ultra6lter on N.

(2) X satis6es Split(B�;B�) if, and only if, every Borel image of X in P∞(N) is
not a base for a nonprincipal ultra6lter on N.

(3) X satis6es Split(CT; CT) if, and only if, every continuous image of X in P∞(N)
is not a simple P-point base.

(4) X satis6es Split(BT;BT) if, and only if, every Borel image of X in P∞(N) is
not a simple P-point base.

Proof. Observe that for a cover U= {Un}n∈N and any subset V= {Un}n∈a of U,

hV[X ] = hU[X ] � a:

Assume that U is a large cover which cannot be split into two large subcovers. By
Lemma 3.4 and the above observation, this means that hU[X ] ⊆P∞(N), and for each
subset V= {Un}n∈a of U, either hV[X ] = hU[X ] � a is not large, or hU\V[X ] = hU[X ] �
(N\a) is not large. In the 1rst case there exists y∈ hU[X ] such that y∩ a is 1nite, that
is, y⊆∗N\a. Similarly, in the second case there exists y∈ hU[X ] such that y⊆∗ a. In
other words, our assumption on U is equivalent to the fact that hU[X ] is reaping.

(1) Assume that X does not satisfy Split(C�; C�) and let U be a countable clopen
!-cover of X which cannot be split into two large covers of X . Fix some enumeration
of U. By Lemma 3.4, hU[X ], a continuous image of X , is centered. By the above
observation, hU[X ] is reaping and therefore a base for a nonprincipal ultra1lter on N.

To prove the remaining implication, assume that f :X →P∞(N) is a continuous
function such that Y =f[X ] is a base for a nonprincipal ultra1lter on N. By Lemma
3.4, U= {f−1[On]}n∈N is a clopen cover of X , and f= hU. Thus, Y = hU[X ]. As Y
is centered, U is an !-cover of X . As Y is reaping, U cannot be split into two large
covers of X .

(2) is similar to (1).
(3) Recall that Split(T;T) = Split(T; �).
Assume that U= {Un}n∈N is a clopen �-cover of X which cannot be split into two

large covers of X . Y = hU[X ] ⊆P∞(N) and is linearly ordered by ⊆∗. In particular,
Y is centered. By the arguments of (1), Y is a base for a nonprincipal ultra1lter on
N. As Y is linearly ordered by ⊆∗, it is a simple P-point base.

Now assume that f :X →P∞(N) is a continuous function such that Y =f[X ] is a
simple P-point base. In particular, Y is linearly ordered by ⊆∗. As in (1), we get that
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U= {f−1[On]}n∈N is a clopen �-cover of X , and, as Y is reaping, U cannot be split
into two large covers.

(4) is similar to (3).

The proofs of Theorem 3.5 and the related arguments for Split(C�; C�) and
Split(C�; C�) actually establish the following extension of Lemma 3.4.

Lemma 3.6. Assume that U= {Un}n∈N is a cover of X .

(1) U is a large cover of X which cannot be split into two large covers of X if, and
only if, hU[X ] is a reaping family.

(2) U is an !-cover of X which cannot be split into two large covers of X if, and
only if, hU[X ] is a base for a nonprincipal ultra6lter on N.

(3) U is an !-cover of X which cannot be split into two !-covers of X if, and only
if, hU[X ] is a subbase for a nonprincipal ultra6lter on N.

(4) U is an �-cover of X which cannot be split into two �-covers of X if, and only
if, hU[X ] is a simple P-point base.

From Theorem 3.5 we get the following.

Corollary 3.7. For a set of reals X :

(1) X satis6es Split(B�;B�) if, and only if, every Borel image of X satis6es
Split(C�; C�).

(2) X satis6es Split(BT;BT) if, and only if, every Borel image of X satis6es
Split(CT; CT).

The properties
(

C�
C


)
,

(
CT
C


)
, and

(
C�
CT

)
(and therefore

(
C�
CT

)
∩Split(CT; CT)) also

have combinatorial characterizations which follow from Lemma 3.4.

Theorem 3.8. For a set of reals X :

(1) X satis6es
(

C�
C


)
if, and only if, each centered continuous image of X in P∞(N)

has a pseudo-intersection [16].

(2) X satis6es
(

CT
C


)
if, and only if, each ⊆∗-linearly ordered continuous image of

X in P∞(N) has a pseudo-intersection [22].

(3) X satis6es
(

C�
CT

)
if, and only if, each centered continuous image of X in P∞(N)

has a large restriction which is linearly ordered by ⊆∗ [23].

The analogue Borel version of Theorem 3.8 also holds [19,23].

4. Special elements

Sets which are continuous images of Borel sets are called analytic. In [12] it is
proved that any analytic set of reals satis1es Split(�;�). It is well known that analytic
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sets can also be de1ned as sets which are Borel images of the Cantor space {0; 1}N.
Consequently, analytic sets are closed under taking Borel images.

Proposition 4.1.
(1) Every analytic set of reals satis6es Split(B�;B�) as well as

(
BT
B


)
.

(2) The analytic set P∞(N) does not satisfy Split(C�; C�), and it does not satisfy(
C�
CT

)
either.

(3) Split(B�;B�) ∩
(
BT
B


)
does not imply Split(C�; C�) ∪

(
C�
CT

)
.

Proof. (1) Assume that X is an analytic set of reals. Then each Borel image Y ⊆P∞(N)
of X is analytic and therefore satis1es Split(C�; C�). By Corollary 3.3, X satis1es
Split(B�;B�). The second assertion was proved in [23].

(2) The 1rst assertion is an immediate consequence of Theorem 3.1. (This is also
proved in [12].) It remains to prove the second assertion. It is well known that P∞(N)
does not have the �-property (which implies measure zero) [10], and that for separable

zero-dimensional metric spaces (this is the case for P∞(N)),
(

�



)
=

(
C�
C


)
(an open

!-cover can be re1ned to a clopen !-cover) [16]. Thus P∞(N) does not satisfy
(

C�
C


)
.

As
(

C�
CT

)
∩

(
CT
C


)
=

(
C�
C


)
, we have by (1) that P∞(N) does not satisfy

(
C�
CT

)
.

(3) Follows from (1) and (2).

Thus, no arrow can be added from Split(�;�) or from
( T



)
to any of Split(�;�)

and
(

�
T

)
∩Split(T;T).

Corollary 4.2. The closed unit interval I = [0; 1] satis6es Split(�;�), Split(�;�), and( T



)
, but does not satisfy

(
�
T

)
.

Proof. The Hurewicz property implies Split(�;�), and $-compact sets have the
Hurewicz property. Moreover, as $-compact sets of reals are F$, they satisfy Split(�;�)

as well as
( T



)
by Proposition 4.1. Finally, the unit interval does not satisfy

(
�



)
and

the required assertion follows as in the proof of Proposition 4.1.

In particular, we cannot add an arrow from Split(�;�) to
(

�
T

)
∩Split(T;T) in

Fig. 1.
One may wonder whether all examples in Split(�;�) ∩Split(�;�) are $-compact.

The answer for this is negative.

Theorem 4.3. There exists a set of reals X such that X is not $-compact, and X
satis6es Split(�;�) and Split(�;�).
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Proof. In [3] a set of reals X is constructed which is not $-compact, and such that all
1nite powers of X have the Hurewicz property. In [13] it is proved that any set with
this property satis1es Split(�;�). As X has the Hurewicz property, it also satis1es
Split(�;�).

Corollary 4.2 does not rule out the possibility that Split(B�;B�) implies
(

C�
CT

)
. This

nonimplication will be proved in the next section.

5. Consistency results

Thus far we have not used any special hypotheses beyond the usual axioms of
mathematics (ZFC). In this section we obtain several nonimplications by applying set-
theoretic consistency results.

Theorem 5.1. It is consistent that all sets of reals satisfy Split(BT;BT). In particular,
Split(BT;BT) does not imply any of Split(C�; C�) and

(
CT
C


)
.

Proof. In [20] (see also [1]) a model of set theory is constructed where there exist
no simple P-points. By Theorem 3.5(4), every set of reals in this model satis1es
Split(BT;BT). By Zorn’s Lemma there exists a nonprincipal ultra1lter U on N. By
Theorem 3.5(1), U does not satisfy Split(C�; C�). Also, one can construct by trans1nite
induction a ⊆∗-linearly ordered family Y ⊆P∞(N) which has no pseudo-intersection.

By Theorem 3.8(2), Y does not satisfy
(

CT
C


)
.

A natural question is whether Split(T;T) is, like Split(
; 
), trivial in the sense that
all sets of reals satisfy this property. It is easy to construct, assuming the Continuum
Hypothesis (or just t = c—see de1nitions below), a ⊆∗-decreasing sequence 〈a& : &¡c〉
such that for each a⊆N, there exists & such that either a& ⊆∗ a or a& ⊆∗N\a [22].
Clearly such a sequence forms a simple P-point base, and, by Theorem 3.5, does not
satisfy Split(T;T). The following shows a bit more than that (at the cost of using a
very deep result). Let c denote the cardinality of the continuum. In [5] a model of set
theory is constructed in which c = ℵ2 and there exist two simple P-points with bases
of cardinalities ℵ1 and ℵ2.

Corollary 5.2. It is consistent that c = ℵ2 and there exist sets of reals X and Y of
cardinalities ℵ1 and ℵ2, respectively, which do not satisfy Split(T;T).

In order to proceed, we introduce several cardinal characteristics of the continuum
and some of their properties (see [4,8] for details and proofs). Let r denote the minimal
cardinality of a reaping family, and u denote the minimal cardinality of a base for a
nonprincipal ultra1lter on N. Then r6u. The critical cardinality of a property P of
sets of reals, non(P), is the minimal cardinality of a set of reals which does not
satisfy this property. In [11] it is deduced from Theorem 3.1 that non(Split(�;�)) = r,
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and non(Split(�;�)) = u. (These results also hold in the clopen and Borel cases.) By
Theorem 3.5, we have the following.

Theorem 5.3. The critical cardinalities of the classes Split(B�;B�), Split(�;�), and
Split(C�; C�) are all equal to u.

Let p denote the minimal cardinality of a centered family in P∞(N) which does not
have a pseudo-intersection. In [16,19,23] it is shown that the critical cardinalities of(
B�
B


)
,
(

�



)
,
(

C�
C


)
,
(
B�
BT

)
,
(

�
T

)
, and

(
C�
CT

)
are all equal to p.

Corollary 5.4. The critical cardinalities of
(
B�
BT

)
∩Split(BT;BT),

(
�
T

)
∩Split(T;T),

and
(

C�
CT

)
∩Split(CT; CT) are all equal to p.

Proof. All these properties are implied by
(
B�
B


)
(whose critical cardinality is p), and

imply
(

C�
CT

)
(whose critical cardinality is also p).

A tower of length ' is a ⊆∗-decreasing sequence 〈a& : &¡'〉 of elements of P∞(N),
which has no pseudo-intersection. Let t denote the minimal cardinality of a tower. In
[22,23] it is deduced from Theorem 3.8 and its Borel version that the critical cardi-
nalities of the classes

(
BT
B


)
,

( T



)
, and

(
CT
C


)
are equal to t. The following diagram

summarizes the critical cardinalities of the properties we study (observe that by Theo-
rem 5.1, the critical cardinality of Split(T;T) is unde1ned):

Let h denote the distributivity number. For our purposes the de1nition of h is not
important; we need only quote the result that h6r. The following theorem strengthens
Theorem 5.1.
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Theorem 5.5. There exists a single model of set theory that witnesses the following
facts:

(1) Split(BT;BT) does not imply any of Split(C�; C�) and
(

CT
C


)
; and

(2) Split(B�;B�) ∩Split(B�;B�) does not imply any of
(

C�
CT

)
and

(
CT
C


)
.

Proof. In [7] a model of set theory is constructed in which h = c = ℵ2 but there are
no towers of length ℵ2. As h6r, r = u = c = ℵ2 in this model.

Lemma 5.6. There exist no simple P-points in this model.

Proof. Assume that B⊆P∞(N) is a simple P-point base. Then |B|¿u. As u = c = ℵ2,
|B| = ℵ2, and a co1nal ⊆∗-decreasing subset of F would be a tower of length ℵ2, a
contradiction.

Thus, in this model all sets of reals satisfy Split(BT;BT).
As there are no towers of length ℵ2 in this model, we have that p = t = ℵ1. Thus

there exist sets of reals X and Y of cardinality ℵ1 which do not satisfy
(

C�
CT

)
and

(
CT
C


)
,

respectively. As ℵ1¡r6u, X and Y satisfy Split(B�;B�) as well as
Split(B�;B�).

We now prove that Split(�;�) does not imply Split(�;�). The additivity number
of a collection (or a property) I of sets of reals is

add(I) = min{|F| : F ⊆ I and
⋃
F =∈ I};

and the covering number of I is

cov(I) = min{|F| : F ⊆ I and
⋃
F = R}:

Let M denote the collection of meager (i.e., 1rst category) sets of real numbers. By
the Baire’s category theorem, add(M)6cov(M). Assume that ' is an uncountable
cardinal. A set of reals L is a '-Luzin set if |L|¿' and for each meager set M ,
|L∩M |¡'.

Theorem 5.7. Assume the Continuum Hypothesis (or just add(M) = c). Then there
exists an add(M)-Luzin set L which satis6es Split(B�;B�) but not Split(C�; C�).

Proof. In [19] it is proved that if L is an add(M)-Luzin set, then each Borel image of
L satis1es Rothberger’s property. As Rothberger’s property implies Split(C�; C�) [18],
we have by Corollary 3.3 that L satis1es Split(B�;B�).

It therefore suPces to construct an add(M)-Luzin set which is a subbase for a
nonprincipal ultra1lter on N. To this end, 1x a nonprincipal ultra1lter U on N. It
is well known that nonprincipal ultra1lters on N do not have the Baire property,
and in particular are nonmeager [1]. It is therefore conceivable that the following
holds.
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Lemma 5.8. Assume that U is a nonprincipal ultra6lter on N and that M ⊆P∞(N)
is meager. Then U\M is a subbase for U . In fact, for each a∈U there exist
a0; a1 ∈U\M such that a0 ∩ a1 ⊆ a.

Replying to a question of ours, Shelah gave a proof for this lemma. To simplify the
proof, we make some translation. Recall that P∞(N) is a subspace of P(N) whose
topology is de1ned by its identi1cation with {0; 1}N. It is well known [1,4] that for
each meager subset M of {0; 1}N there exist x ∈ {0; 1}N and a strictly increasing
function f ∈ NN such that

M ⊆ {y ∈ {0; 1}N : (∀∞n)y � [f(n); f(n + 1)) �= x � [f(n); f(n + 1))};

where ∀∞n means “for all but 1nitely many n”. Translating this to the language of
P∞(N), we get that for each n there exist disjoint sets I n0 and I n1 satisfying I n0 ∪ I n1 =
[f(n); f(n + 1)), such that

M ⊆ {y ∈ P∞(N) : (∀∞n) y∩ I n0 �= ∅ or I n1 * y}: (1)

Proof of Lemma 5.8. Assume that the sets I n0 ; I
n
1 , n∈N, are chosen as in (1). Let a be

an in1nite co-in1nite subset of N. Then either x=
⋃

n∈a [f(n); f(n + 1) =∈U , or else
x=

⋃
n∈N\a [f(n); f(n + 1)) =∈U . We may assume that the former case holds. Split a

into two disjoint in1nite sets a1 and a2. Then xi =
⋃

n∈ ai [f(n); f(n+1)) =∈U (i= 1; 2).
Assume that b∈U . Then b̃= b\x= b ∩ (N\x) ∈U . De1ne sets y1; y2 ∈U\M as

follows:

y1 = b̃∪
⋃
n∈a2

I n1 ;

y2 = b̃∪
⋃
n∈a1

I n1 :

By (1), y1; y2 =∈M . As y1; y2 ⊇ b̃, y1; y2 ∈U . Now, y1 ∩y2 = b̃⊆ b.

We now construct the Luzin set L. Enumerate U as {a& : &¡c}, and let {M& : &¡c} be
a co1nal family of meager sets in P∞(N) (e.g., the F$ meager sets). For each &¡c
use Lemma 5.8 to choose

a0
&; a

1
& ∈ U\

⋃
*¡&

M*

such that a0
& ∩ a1

& ⊆ a&. Then L= {a0
&; a

1
& : &¡c} is as required.

It is an open problem whether
(

�
T

)
=

(
�



)
[23]. Observe that if

(
�
T

)
implies( T




)
, then

(
�
T

)
=

(
�



)
. The only remaining classi1cation problems are stated in the

following problem.
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Problem 5.9. Is the dotted implication (1) (and therefore (2) and (3)) in the following
diagram true? If not, then is the dotted implication (3) true?

Observe that with regards to the properties Split(�;�), Split(�;�), Split(T;T), and
Split(�;�), the classi1cation is complete.

Part 2. Preservation of properties

6. Unions

The proof of Theorem 5.7 can be extended to obtain more. For the proof, we need
some notation and results from [2]. A cover U of X is fat if for each 1nite F ⊆X
and nonempty open set G, there exists U ∈U such that F ⊆U and U ∩G is not
meager. In this case, for each 1nite F ⊆X and nonempty basic open set O, the set⋃{U ∈U :F ⊆U and U ∩O =∈M} is comeager, and for each element x in the intersec-
tion of all sets of this form, U is a fat cover of X ∪{x}. Let Bfat denote the collection
of countable Borel fat covers of X . The following property, which generalizes several
classical properties, was introduced in [18].

S1(U;V): For each sequence {Un}n∈N of members of U, there is a sequence {Un}n∈N
such that for each n Un ∈Un, and {Un}n∈N ∈V.

Then non(S1(Bfat ;Bfat))¿cov(M)¿add(M). Finally, if L is a '-Lusin set such that
for each nonempty basic open set G, |L∩G| = ', then every countable Borel !-cover
U of L is a fat cover of L.

Lemma 6.1. S1(B�;B�) implies Split(B�;B�) as well as Split(B�;B�).

Proof. S1(B�;B�), which is closed under taking Borel images, implies the Sakai
property, which implies Split(C�; C�) as well as Split(C�; C�). The assertion follows
from Corollary 3.3.
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Observe that a union of two add(M)-Luzin sets is again an add(M)-Luzin set,
and therefore satis1es Split(B�;B�). Thus, the following theorem, apart from showing
that the properties Split(B�;B�), Split(�;�), and Split(C�; C�) are not additive, also
extends Theorem 5.7.

Theorem 6.2. Assume the Continuum Hypothesis (or just add(M) = c). Then there
exist two add(M)-Luzin sets L0 and L1 satisfying S1(B�;B�) (and therefore
Split(B�;B�) and Split(B�;B�)), such that L=L0 ∪L1 (which satis6es Split(B�;B�))
does not satisfy Split(C�; C�).

Proof. We follow the footsteps of the proof given in Theorem 3.7 of [2, full version].
Let U = {a& : &¡c} be a nonprincipal ultra1lter on N. Let {M& : &¡c} enumerate all
F$ meager sets in P∞(N), and {{U&

n}n∈N : &¡c} enumerate all countable sequences
of countable families of Borel sets in P∞(N). Let {Oi : i∈N} enumerate all nonempty
basic open sets in P∞(N).

We construct Li = {ai* : *¡c}, i= 1; 2, by induction on &¡c as follows. At stage
&¿0 set X i

& = {ai* : *¡&} and consider the sequence {U&
n}n∈N. Say that & is i-good

if for each n U&
n is a fat cover of X i

&. In this case, by the above remarks there exist
elements U&;i

n ∈U&
n such that {U&;i

n }n∈N is a fat cover of X i
&. We make the inductive

hypothesis that for each i-good *¡&, {U*;i
n }n∈N is a fat cover of X i

&. For each 1nite
F ⊆X i

&, i-good *6&, and m de1ne

Gi(F; *; m) =
⋃

{U*;i
n : F ⊆ U*;i

n and U*;i
n ∩Om =∈ M}:

By the inductive hypothesis, Gi(F; *; m) is comeager. Set

Y& =
⋃
*¡&

M* ∪
⋃

i¡2;i-good *6&
m∈N; Finite F⊆X i

&

(P∞(N)\Gi(F; *; m));

and Y ∗
& = {x ∈ P∞(N) : (∃y∈Y&)x=∗ y} (where x=∗ y means that x⊆∗ y and y⊆∗ x.)

Then Y ∗
& is a union of less than add(M) many meager sets, and is therefore meager.

Use Lemma 5.8 to pick a0
&; a

1
& ∈U\Y ∗

& such that a0
& ∩ a1

& ⊆∗ a&. Let k = &mod !, and
change 1nitely many elements of a0

& and a1
& so that they both become members of

Ok . Then a0
&; a

1
& ∈ (U ∩Ok)\Y&, and a0

& ∩ a1
& ⊆∗ a&. Observe that, by the remarks in the

beginning of this section, the inductive hypothesis remains true for &. This completes
the construction.

Clearly L0 and L1 are Luzin sets and L0 ∪L1 is a subbase for U . We made sure that
for each nonempty basic open set G, |L0 ∩G| = |L1 ∩G| = c, thus B� =Bfat for L0 and
L1. By the construction, L0; L1 ∈ S1(Bfat ;Bfat).

The properties
(
BT
B


)
,

( T



)
, and

(
CT
C


)
are $-additive (their additivity number is

exactly t) [22,23].

We will show that no property between
(
B�
B


)
and

(
C�
CT

)
is provably additive. Let

P be a property of sets of reals. We say that a set of reals X is hereditarily-P if all
subsets of X satisfy the property P.
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Theorem 6.3. Assume the Continuum Hypothesis. There exist disjoint, zero-
dimensional sets of reals A and B satisfying

(
B�
B


)
, such that A∪B does not sat-

isfy
(

C�
CT

)
.

Proof. In [23] it is shown that assuming the Continuum Hypothesis, there exist dis-

joint, zero-dimensional sets of reals A⊆ (0; 1) and B⊆ (1; 2) satisfying
(
B�
B


)
, such that

A∪B does not satisfy
(

�
T

)
. In particular, A∪B does not satisfy

(
�



)
. As A⊆ (0; 1)

and B⊆ (1; 2), A∪B is zero-dimensional too, and therefore A∪B does not satisfy(
C�
C


)
=

(
C�
CT

)
∩

(
CT
C


)
. As

(
CT
C


)
is additive, A∪B satis1es

(
CT
C


)
. Thus, A∪B does

not satisfy
(

C�
CT

)
.

Theorem 6.4. The properties Split(BT;BT), Split(T;T), and Split(CT; CT) are
$-additive. In fact, they are closed under taking unions of size less than u.

This theorem follows Theorem 3.5 and the following Ramseyan property.

Lemma 6.5. Assume that .¡u and B=
⋃

&¡. B& is a simple P-point base. Then there
exists &¡. such that B& is a simple P-point base.

Proof. Assume that B is a simple P-point base and U is the simple P-point it generates.
In particular, B is linearly ordered by ⊆∗ . We will show that some B& is a base for
U . Assume otherwise. For each &¡. choose a& ∈U that witnesses that B& is not a
base for U , and ã& ∈B such that ã& ⊆∗ a&. As B is linearly ordered by ⊆∗, ã& is a
pseudo-intersection of B&.

The cardinality of the linearly ordered set Y = {ã& : &¡.} is smaller than u. Thus
it is not a base for U and we can 1nd again an element a ∈ F which is a pseudo-
intersection of Y , and therefore of B; a contradiction.

Using similar ideas, one can prove that the properties in the forthcoming Theorem
6.6 are (1nitely) additive. The referee has pointed out to us that in fact, these properties
are $-additive. The proof is almost verbatim the one given by the referee.

Theorem 6.6. The properties Split(B�;B�), Split(�;�), and Split(C�; C�) are $-
additive.

Proof. We will prove the open case. The other cases are similar.

Lemma 6.7. Assume that U is a countable open !-cover of Y and that X ⊆Y satis6es
Split(�;�). Then U can be partitioned into two pieces V and W such thatW is an
!-cover of Y and each element ofX is contained in in6nitelymanymembers of V. 1

1 Due to our technical requirement in the introduction that X is not contained in any member of the cover,
this does not imply that V is a large cover of X .
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Proof. First assume that there does not exist U ∈U with X ⊆U . Then U in an !-
cover of X . By the splitting property we can divide it into two pieces each a large
cover of X . Since U is an !-cover of Y , one of the pieces is an !-cover of Y (see
introduction), and the lemma is proved. If there are only 1nitely many U ∈U with
X ⊆U , then Ũ=U\{U ∈U :X ⊆U} is still an !-cover of Y and we can apply to it
the above argument.

Thus, assume that there are in1nitely many U ∈U with X ⊆U . Then take a partition
of U into two pieces such that each piece contains in1nitely many sets U with X ⊆U .
One of the pieces must be an !-cover of Y .

Assume that Y =
⋃

n∈N Xn where each Xn satis1es Split(�;�), and let U0 be an
open !-cover of Y . Given Un an open !-cover of Y , apply the lemma twice to get a
partition Un =V0

n ∪V1
n ∪Un+1 such that Un+1 is an open !-cover of Y and for each

i= 0; 1, each element of X is contained in in1nitely many V ∈Vi
n. Then the families

Vi =
⋃

n∈N V
i
n, i= 0; 1, are disjoint large covers of Y which are subcovers of U0.

One additivity problem remains open.

Problem 6.8. Is Split(�;�) additive?

7. Hereditarity

We have, implicitly and explicitly, used the following fact in the preceding sections.

Proposition 7.1. For each x; y ∈ {�;�;T; 
}:

(1) Split(Cx; Cy) is closed under taking clopen subsets and continuous images,
(2) Split(x; y) is closed under taking closed subsets and continuous images; and
(3) Split(Bx;By) is closed under taking Borel subsets and continuous images.

Proof. The proofs for these assertions are standard, see [11,19].

A class I of sets of reals is hereditary if it is closed under taking subsets.

Theorem 7.2. Assume the Continuum Hypothesis (or just p = c). Then there exists a
set of reals X (of size c) and a countable subset Q of X such that X satis6es

(
�



)
and X \Q does not satisfy Split(CT; CT).

Proof. In [3], a subset X of P(N) is constructed, such that:

(1) X satis1es
(

�



)
,

(2) X =P ∪Q where P⊆P∞(N) is linearly ordered by ⊆∗ and Q is countable; and
(3) For each in1nite coin1nite subset a of N, there exists x∈P such that either x⊆∗ a,

or else x⊆∗N\a.
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Consequently, X \Q =P is a simple P-point base, which, by Theorem 3.5, does not
satisfy Split(CT; CT).

Corollary 7.3. None of the splittability properties in the open (or clopen) case implies
any of the splittability properties in the Borel case.

Proof. Consider the set X given in Theorem 7.2. X satis1es
(

�



)
, and as Q is count-

able, X \Q is a Borel subset of X . By Proposition 7.1, if X satis1ed Split(BT;BT), so
would X \Q. In particular, we would have that X \Q satis1es Split(CT; CT), a contra-
diction.

Despite the above, some classes in the Borel case are provably hereditary.

Theorem 7.4. Split(B�;B�) is hereditary.

Proof. This follows from Theorem 3.2 and the fact that each Borel function de1ned
on a set of reals can be extended to a Borel function on R [14]. A direct proof for
this is as follows: Assume that X satis1es Split(B�;B�) and that Y is a subset of X .
Assume that U is a countable Borel cover of Y . Then

V= {U ∪ (X \ ∪U) : U ∈U}
is a countable Borel large cover of X , and therefore can be split into two disjoint large
subcovers V1 and V2. Then {V ∩ Y :V ∈ V1}\{∅} and {V ∩Y :V ∈ V2}\{∅} are
disjoint subsets of U and are large covers of Y .

Recently, Miller proved that no class between
(
B�
B


)
and

(
B�
BT

)
is provably hereditary

[15]. In particular,
(
B�
BT

)
∩Split(BT;BT) is not provably hereditary.

Problem 7.5. Is any of the remaining classes (namely, Split(B�;B�), Split(B�;B�),

Split(BT;BT), and
(
BT
B


)
) provably hereditary?

8. Finite powers and products

The �-property
(

�



)
is provably closed under taking 1nite powers, but not under

taking 1nite products [11]. This assertion can be extended.

Theorem 8.1. No class between
(
B�
B


)
and

(
C�
CT

)
is provably closed under taking 6nite

products.

Proof. The proof for this is as in [9]. Assume the Continuum Hypothesis, and let A

and B be as in Lemma 6.3. Assume that A×B satis1es
(

C�
CT

)
. Fix a∈A and b∈B. As
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A and B are zero dimensional, The set X = (A × {b}) ∪ ({a} × B) is a clopen subset

of A × B and therefore satis1es
(

C�
CT

)
too. But as A and B are disjoint, this set is

homeomorphic to A ∪ B, which does not satisfy
(

C�
CT

)
, a contradiction.

In particular,
(

�
T

)
∩Split(T;T) is not provably closed under taking 1nite products.

We do not know whether this property is provably closed under taking 1nite powers.
In fact, we cannot even answer this question for

(
�
T

)
; we only have a related result.

The following notion was introduced in [23] as an approximation for the notion of
�-cover. A family Y ⊆P∞(N) is linearly re6nable if for each y∈Y there exists an
in1nite subset ŷ⊆y such that the family Ŷ = {ŷ :y∈Y} is linearly ordered by ⊆∗ .
A cover U of X is a �∗-cover of X if and hU[X ] (where hU is the function de1ned
before Lemma 3.4) is linearly re1nable. By Lemma 3.4, every �∗-cover is an !-cover,
and any �-cover is a �∗-cover. Let T∗, BT∗ , and CT∗ denote the collections of all
countable open, Borel, and clopen �∗-covers, respectively.

Theorem 8.2. The property
(

�
T∗

)
is closed under taking 6nite powers.

Proof. Fix k. In [11] it is proved that for each open !-cover U of X k there exists an
open !-cover V of X such that the !-cover Vk = {V k :V ∈V} of X k re1nes U.

Assume that U is an open !-cover of X k . Choose an open !-cover V of X such that

Vk re1nes U. Apply
(

�
T∗

)
to choose a subcover W of V such that W is a �∗-cover

of X . Then Wk is a �∗-cover of X k [23]. For each W ∈W choose UW ∈U such that
Wk ⊆UW . As �∗-covers are closed under taking de-re1nements [23], {UW :W ∈ W}
is a �∗-cover of X .

Thus, if Split(T∗;T∗) is closed under taking 1nite powers, then so is
(

�
T∗

)
∩

Split(T∗;T∗) = Split(�;T∗).
We can get very close to showing that no class between Split(B�;B�) and

Split(CT; CT) is closed under taking 1nite powers.

Theorem 8.3. Assume the Continuum Hypothesis (or just t = c). Then there exist sets
of reals L0 and L1 such that:

(1) L0 and L1 satisfy Split(B�;B�) and Split(B�;B�),
(2) L=L0 ∪L1 satis6es Split(B�;B�),
(3) L0 × L1 and L × L do not satisfy Split(C∗

T ; C�); and
(4) L0 × L1 (and therefore L × L) is not hereditarily-Split(CT; CT).

In particular, the classes Split(�;�) and Split(�;�) (and their Borel and clopen
versions) are not closed under taking 6nite powers, and Split(�;�) (and its Borel
and clopen versions) is not closed under taking 6nite products.

Proof. The essence of the proof is the following lemma.
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Lemma 8.4. Assume the Continuum Hypothesis (or just t = c). Then there exist t-
Luzin subsets L0 = {a0

& : &¡c} and L1 = {a1
& : &¡c} of P∞(N) such that L0 and L1

satisfy S1(B�;B�), and B= {a0
& ∩ a1

& : &¡c} is a simple P-point base.

Proof. As we assume that t = c, there exists a simple P-point U = {a& : &¡c} (see the
discussion before Corollary 5.2).

As t6add(M), we have that add(M) = c and we can repeat the construction given
in 6.2, with the following modi1cation: At step & of the construction, consider the
subset Y = {a0

* ∩ a1
* : *¡&} ∪ {a&} of U . As &¡u, this is not a base for U and as

U is a simple P-point, there exists ã& ∈U which is a pseudo-intersection of Y . Now
1nd, as done there, elements a0

&; a
1
& ∈U\Y ∗

& such that a0
&; a

1
& ∈ (U ∩Gk)\Y&, and a0

& ∩
a1
& ⊆∗ ã&.

Lemma 8.5. The mapping from P∞(N) × P∞(N) to P∞(N) de1ned by

(a; b) �→ a∩ b

is continuous.

Proof. It is enough to show that the preimage of a subbasic open set is open.
Indeed, for each n the preimage of On = {a∈P∞(N) : n∈ a} is On×On, and the preim-
age of N\On is the union of the open sets On × (N\On), (N\On)×On, and (N\On)×
(N\On).

Let U , L0, and L1 be as in Lemma 8.4. By Lemma 6.1, (1) holds. As L=L0 ∪L1 is
an add(M)-Luzin set, (2) holds. By Lemma 8.5, B= {a0

& ∩ a1
& : &¡c} is a continuous

image of the subset 1= {(a0
&; a

1
&) : &¡c} of L0 × L1. As B is a simple P-point base,

we have by Lemma 3.5 that 1 does not satisfy Split(CT; CT). This proves (4).
To prove (3), we need to extend Lemma 3.6. Note that a base for a simple P-point

need not be linearly ordered by ⊆∗, and therefore need not be a simple P-point base
according to our usage of this term.

Lemma 8.6. Assume that U= {Un}n∈N is a cover of X . The following are
equivalent:

(1) U is a �∗-cover of X which cannot be split into two large covers of X ; and
(2) hU[X ] is a base for a simple P-point.

Proof. (1) ⇒ (2): U is, in particular, an !-cover which cannot be split into two large
covers. By Lemma 3.6, Y = hU[X ] is base for a nonprincipal ultra1lter U on N. By
the de1nition of �∗-covers, Y is linearly re1nable. Let Ŷ be a linear re1nement of Y .
Then also Ŷ is reaping, and clearly it is centered. Thus, Ŷ generates a nonprincipal
1lter Ũ containing U . As U is maximal, U = Ũ and Ŷ witnesses that U is a simple
P-point.

(2) ⇒ (1): Assume that Y = hU[X ] is a base for a simple P-point U . Choose a
linearly ordered base Ŷ for U . Then for each y∈Y there exists ŷ ∈ Ŷ such that
ŷ⊆∗ y. Thus Ŷ witnesses that Y is linearly re1nable.
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Consequently, a set of reals X satis1es Split(C∗
T ; C�) if, and only if, every continuous

image of X in P∞(N) is not a base for a simple P-point. 2 This proves (3).
With regard to 1nite products, only two problems remain open. It seems that we

will not take a great risk by stating them as a conjecture.

Conjecture 8.7. None of the classes Split(T;T) and
( T



)
is provably closed under

taking 6nite products.

In the case of 1nite powers, we have more problems waiting for a solution.

Problem 8.8. Is any of the classes Split(�;�),
(

�
T

)
∩Split(T;T), or Split(T;T) closed

under taking 6nite powers?

The best candidate (if any) for a positive answer seems to be Split(�;�). Observe
that the methods of [11] only give that if X satis1es Split(�;�), then for each open
!-cover U of X k there exists a re6nement V of U such that V is an open !-cover
of X k that can be split into two disjoint !-covers of X k .

We conclude this paper with the following related result. As we mentioned in the
introduction, it is proved in [13] that if all 1nite powers of X have the Hurewicz
property, then X satis1es Split(�;�). As the critical cardinality of the Hurewicz prop-
erty is b and it is consistent that b¡r, the Hurewicz property is strictly stronger than
Split(�;�) [11]. Thus, the following theorem is strictly stronger than the quoted result.

Theorem 8.9. Assume that for each k, X k satis6es Split(�;�). Then X satis6es
Split(�;�). (The analogue assertions for the clopen and Borel cases also hold.)

Proof. We say that U is a k-cover of X if (X is not contained in any member of
U, and) each k-element subset of X is covered by some member of U. Thus U is a
k-cover of X if, and only if,

Uk = {Uk : U ∈ U}
is a cover of X k . Also, observe that U is an !-cover of X if, and only if, Uk is an
!-cover of X k .

Lemma 8.10. Assume that X k satis6es Split(�;�). Then each open !-cover U of X
can be split into two disjoint subsets V and W such that V is an !-cover of X and
W is a k-cover of X .

Proof. Assume that U is an open !-cover of X . Then for each k, Uk is an !-cover
of X k , and, by the assumption, can be split into two disjoint large covers Vk and Wk .
Consequently, V and W are (large) k-covers of X . As U=V∪W and the property

2 Here too, the analogue Borel version also holds. Moreover, we can show in a similar manner that the
combinatorial counterpart of ¬ Split(CT∗ ; C�) and its Borel version is a subbase for a simple P-point.
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of being an !-cover is Ramseyan, at least one of the pieces V or W is an !-cover
of X .

Assume that U is an open !-cover of X . As X 2 satis1es Split(�;�), we have
by Lemma 8.10 that U=V1 � W1 (� denotes disjoint union) where V1 is an !-
cover of X and W1 is a 2-cover of X . Continue inductively: Given an open !-cover
Vk−1 (k¿1) of X , use the fact that X k−1 satis1es Split(�;�) and Lemma 8.10 to
split Vk−1 =Vk �Wk such that Vk is an !-cover of X and Wk is an k + 1-cover
of X . Set

U1 =
⋃
n∈N

W2n+1; U2 =
⋃
n∈N

W2n:

Then U1 and U2 are disjoint subcovers of U, and they are k-covers of X for all k,
that is, !-covers of X .

Thus, in order to prove that Split(�;�) is closed under taking 1nite powers, it is
enough to show that all 1nite powers of members of Split(�;�) satisfy Split(�;�).

9. Summary of open problems

One may argue that the property Split(U;V) is only (or, at least, more) interesting
when U⊆V. If we accept this thesis, then no classi1cation problem (Part 1) remains
open, and the more interesting problems in Part 2 are Problems 6.8, 7.5 (for the 1rst
three properties), 8.7 (for the 1rst property), and 8.8 (for the 1rst and last properties).

On the other hand, the other problems (5.9, 7.5 for the fourth property, 8.7 for
the second property, and 8.8 for the second property), which involve properties of

the form
(

U
V

)
, rise naturally in many other contexts, published (e.g. [2,3,22,23]) and

unpublished. In this sense, these problems are not less, and may be more, interesting.

Note added in proof

The notion of fat cover in the proof of Theorem 6.2 must be modi1ed to the notion
of !-fat cover used in [2]: A cover U of X is !-fat if for each 1nite F ⊆ X and each
1nite family F of nonempty open sets, there exists U ∈U such that F ⊆ U and for
each O∈F; U ∩O is not meager. Using this notion and making the obvious adoptions
to it in the proof (as in [2, full version]) makes the proof work.
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