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Which Isbell–Mrówka spaces (Ψ-spaces) satisfy the star version of Menger’s and 
Hurewicz’s covering properties? Following Bonanzinga and Matveev, this question 
is considered here from a combinatorial point of view. An example of a Ψ-space 
that is (strongly) star-Menger but not star-Hurewicz is obtained. The PCF-theory 
function κ �→ cof([κ]ℵ0) is a key tool. Using the method of forcing, a complete 
answer to a question of Bonanzinga and Matveev is provided.
The results also apply to the mentioned covering properties in the realm of Pixley–
Roy spaces, to the extent of spaces with these properties, and to the character of 
free abelian topological groups over hemicompact k spaces.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Isbell–Mrówka Ψ-spaces [11,16] are classic examples in the realm of topological covering properties. 
A family A ⊆ P (N) is almost disjoint if every element of A is infinite, and the sets A ∩ B are finite for 
all distinct elements A, B ∈ A. For an almost disjoint family A, let Ψ(A) := A ∪ N. A topology on Ψ(A)
is defined as follows. The natural numbers are isolated, and for each element A ∈ A and each finite set 
F ⊆ N, the set {A} ∪ (A \ F ) is a basic open neighborhood of A. Spaces constructed in this manner are 
called Ψ-spaces.

For a set X, a subset A of X and a family U of subsets of X, let star(A, U) :=
⋃
{U ∈ U : A ∩ U �= ∅}. 

A topological space X is star-Lindelöf [5] if every open cover U of X has a countable subset V such that 
X = star(

⋃
V, U). It is strongly star-Lindelöf [5] if, for each open cover U of X, there is a countable set 

* Correspondence to: Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
E-mail address: tsaban@math.biu.ac.il.
URL: http://math.biu.ac.il/~tsaban.
http://dx.doi.org/10.1016/j.topol.2015.05.082
0166-8641/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2015.05.082
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:tsaban@math.biu.ac.il
http://math.biu.ac.il/~tsaban
http://dx.doi.org/10.1016/j.topol.2015.05.082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2015.05.082&domain=pdf


B. Tsaban / Topology and its Applications 192 (2015) 198–207 199
C ⊆ X such that X = star(C, U). It is easy to see that uncountable Ψ-spaces are not Lindelöf. Being 
separable, though, all Ψ-spaces are strongly star-Lindelöf.

Menger’s property is the following selective version of Lindelöf’s property: For every sequence U1, U2, . . .
of open covers of X, there are finite sets F1 ⊆ U1, F2 ⊆ U2, . . . such that the family {

⋃
F1, 

⋃
F2, . . .}

covers X.
A topological space X is star-Menger (respectively, strongly star-Menger) [13] if for every sequence 

U1, U2, . . . of open covers of X, there are finite sets F1 ⊆ U1, F2 ⊆ U2, . . . (respectively, F1, F2, · · · ⊆ X) such 
that the family {star(

⋃
F1, U1), star(

⋃
F2, U2), . . .} (respectively, {star(F1, U1), star(F2, U2), . . .}) covers X.

A topological space X is a Hurewicz (respectively: star-Hurewicz; strongly star-Hurewicz) space [3] if, in 
the corresponding definitions in the previous paragraph, we request that every point of X is in the set 

⋃
Fn

(respectively: star(
⋃

Fn, Un); star(Fn, Un)) for all but finitely many n.
The implications among the mentioned covering properties are as follows.

Lindelöf strongly star-Lindelöf star-Lindelöf

Menger strongly star-Menger star-Menger

Hurewicz strongly star-Hurewicz star-Hurewicz

A survey of these properties and their connections to other notions is available in [14].
Background on the combinatorial cardinals of the continuum used in this paper, including the unbounding 

number b and the dominating number d, is available in [4,2]. Whether a Ψ-space is strongly star-Menger—or 
strongly star-Hurewicz—depends only on the cardinality of the space.

Theorem 1.1. (Bonanzinga–Matveev [7]) Let A ⊆ P (N) be an almost disjoint family.

(1) The space Ψ(A) is strongly star-Menger if and only if |A| < d.
(2) The space Ψ(A) is strongly star-Hurewicz if and only if |A| < b.

The question of when a Ψ-space Ψ(A) is star-Menger—or star-Hurewicz—is more elusive. Combinatorial 
characterizations in terms of the family A are provided in Section 2, but some of the most basic problems 
remain, in general, open. Some of these problems are reviewed in Section 4.

Let P be a partially ordered set. A subset C of P is cofinal if for each element a ∈ P there is an element 
c ∈ C such that a ≤ c. The cofinality of P , denoted cof(P ), is the minimal cardinality of a cofinal subset 
of P . The number cof(P ) may, in general, be a singular cardinal number. For a set X, let Fin(X) be the 
family of all finite subsets of X. In this paper, families of sets are always partially ordered by the relation ⊆. 
The set Fin(X)N of all functions f : N → Fin(X) is partially ordered coordinate-wise: f ≤ g if f(n) ⊆ g(n) for 
all n. The cardinal cof(Fin(X)N) depends only on |X|. For an infinite cardinal κ, the cardinal cof(Fin(κ)N)
will later be expressed in simpler terms. In particular, it is known that the cardinality c of the continuum 
satisfies cof(Fin(c)N) = c.

Theorem 1.2. (Bonanzinga–Matveev [7]) Let A ⊆ P (N) be an almost disjoint family of cardinality κ. If 
cof(Fin(κ)N) = κ, then the space Ψ(A) is not star-Menger.

A simple proof of Theorem 1.2 is provided in Section 2. Section 2 also includes a similar theorem for 
star-Hurewicz Ψ-spaces (Theorem 2.4). Theorems 1.1(1) and 2.4 are used in Example 2.5 to obtain a 
consistent example of a (strongly) star-Menger Ψ-space that is not star-Hurewicz.
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The existence of a star-Menger Ψ-space that is not star-Hurewicz violates the Continuum Hypothesis, and 
thus cannot be constructed in ZFC alone. Indeed, Ψ-spaces have cardinality at most c. Since cof(Fin(c)N) = c, 
every star-Menger Ψ-space has cardinality smaller than c. By Theorem 1.1(2), we have the following corollary.

Corollary 1.3. If b = c, then every star-Menger Ψ-space is (strongly) star-Hurewicz. �
Remark 1.4. If we do not insist on Ψ-spaces then there is, provably in ZFC, a very nice (strongly) star-Menger 
space that is not star-Hurewicz: For paracompact spaces, each of the mentioned covering properties coincides 
with its star- and strongly star- versions. Chaber and Pol proved that there are Menger subsets of the Cantor 
space that are not Hurewicz (cf. [18]).

The question whether cof(Fin(κ)N) = κ for a cardinal number κ appears in a number of additional, related 
and seemingly unrelated, topological contexts. The following theorem follows from Sakai’s Theorem 2.1 
in [17], since being closed discrete is a hereditary property.

Theorem 1.5. (Sakai) Let D be a closed discrete subspace of a regular strongly star-Menger space. Then the 
cardinality of D is smaller than the minimal fixed point of the function κ 
→ cof(Fin(κ)N).

Let X be a topological space. The Pixley–Roy space PR(X) is the space of all nonempty finite subsets 
of X, with the topology determined by the basic open sets

[F,U ] := {H ∈ PR(X) : F ⊆ H ⊆ U},

F ∈ PR(X) and U open in X.

Theorem 1.6. (Sakai [17]) Let X be an infinite regular topological space of cardinality κ. If cof(Fin(κ)N) = κ, 
then the space PR(X) is not star-Menger.

The cardinals cof(Fin(κ)N) also show up in a study of the character of topological groups.

Theorem 1.7. ([6]) Let X be a nondiscrete hemicompact k space. Let κ be the supremum of the weights of 
compact subsets of X. Then the character of the free abelian topological group A(X) is cof(Fin(κ)N).

A similar result is proved in [6] for general abelian non-locally compact hemicompact k groups. A number 
of estimations of cof(Fin(κ)N) for infinite cardinals κ are provided there. The key to these is the following 
reduction. For an infinite cardinal number κ, let [κ]ℵ0 be the family of all countably infinite subsets of κ.

Proposition 1.8. ([6]) Let κ be an infinite cardinal number. Then cof(Fin(κ)N) is the maximum of the 
cardinals d and cof([κ]ℵ0).

Thus, the Bonanzinga–Matveev Theorem 1.2 can be reformulated as follows. (Recall that the space Ψ(A)
is strongly star-Menger if |A| < d.)

Theorem 1.9. Let A ⊆ P (N) be an almost disjoint family of cardinality κ ≥ d. If cof([κ]ℵ0) = κ, then the 
space Ψ(A) is not star-Menger.

The estimation of the cardinal cof([κ]ℵ0) in terms of the cardinal κ is a central goal in Shelah’s PCF 
theory, the theory of possible cofinalities. In contrast to cardinal exponentiation, the function κ 
→ cof([κ]ℵ0)
is tame. For example, if there are no large cardinals in the Dodd–Jensen core model, then cof([κ]ℵ0) is simply 
κ if κ has uncountable cofinality, and κ+ (the successor of κ) otherwise [8]. Moreover, without any special 
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hypotheses, the cardinal cof([κ]ℵ0) can be estimated, and in many cases computed exactly. Some examples 
follow (for proofs and references, see [6, Section 8]).

For uncountable cardinals κ of countable cofinality, a variation of König’s Lemma implies that 
cof([κ]ℵ0) > κ. Throughout, Shelah’s Strong Hypothesis (SSH) is the assertion that cof([κ]ℵ0) = κ+ for 
all uncountable cardinals κ of countable cofinality. Clearly, the Generalized Continuum Hypothesis implies 
SSH, but the latter axiom is much weaker, being a consequence of the absence of large cardinals.

Theorem 1.10. (Folklore) The following cardinals are fixed points of the function κ 
→ cof([κ]ℵ0):

(1) The cardinals κ with κℵ0 = κ.
(2) ℵn, for natural numbers n ≥ 1.
(3) The cardinals ℵκ, for κ a singular cardinal of uncountable cofinality that is smaller than the first fixed 

point of the ℵ function.
(4) Assuming SSH, all cardinals of uncountable cofinality.

Moreover, successors of fixed points of this function are also fixed points.

For example, for n = 1, 2, . . ., the cardinal ℵℵωn
and its successors are all fixed points of the function 

κ 
→ cof([κ]ℵ0).

Corollary 1.11. Let A ⊆ P (N) be an almost disjoint family of cardinality at least d.

(1) For each cardinal κ smaller than the first fixed point of the ℵ function, with ℵ0 < cof(κ) < κ, if |A| = ℵα

for some ordinal α with κ ≤ α < κ + ω, then the space Ψ(A) is not star-Menger.
(2) Assume SSH. If the cardinal |A| has uncountable cofinality, then the space Ψ(A) is not star-Menger. �

The cardinality of Ψ-spaces is at most c. Knowing that cof(Fin(κ)N) = d · κ for the cardinals ℵn (for 
n ∈ N) and for the cardinal c, the following problem is natural.

Problem 1.12. (Bonanzinga–Matveev [7]) Is cof(Fin(κ)N) = d ·κ for each infinite cardinal κ ≤ c? In particular, 
is cof(Fin(κ)N) = d for each infinite cardinal κ ≤ d?

This problem is solved in Section 3.

2. Combinatorial characterizations and a consequence

The following theorem provides a combinatorial characterization of star-Menger Ψ-spaces.

Theorem 2.1. Let A ⊆ P (N) be an almost disjoint family. The following assertions are equivalent:

(1) The Isbell–Mrówka space Ψ(A) is star-Menger.
(2) For each function A 
→ fA from A to NN, there are finite sets F1, F2, . . . ⊆ A such that, for each A ∈ A, 

there is n with (A \ fA(n)) ∩
⋃

B∈Fn
(B \ fB(n)) �= ∅.

Proof. (2) ⇒ (1): Since the subspace N of Ψ(A) is countable, it suffices in the definition of the star-Menger 
property to cover A. Let Un, for n ∈ N, be open covers of Ψ(A). By moving to a finer open cover, we may 
assume that for each A ∈ A and each n, there is a natural number fA(n) such that {A} ∪ (A \ fA(n)) ∈ Un.
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Let F1, F2, . . . ⊆ A be finite sets as in (2). For each n, the set

{{B} ∪ (B \ fB(n)) : B ∈ Fn}

is a finite subset of Un. Let A ∈ A. Pick n as in (2). Then

A ∈ {A} ∪ (A \ fA(n)) ⊆ star
(⋃

B∈Fn
({B} ∪ (B \ fB(n))),Un

)
.

(1) ⇒ (2): For each n, let

Un := {{A} ∪ (A \ fA(n)) : A ∈ A} ∪ {{m} : m ∈ N}.

Since the space Ψ(A) is star-Menger, there are finite sets F1 ⊆ U1, F2 ⊆ U2, . . . such that Ψ(A) =⋃
n star(

⋃
Fn, Un). For each n and each {m} ∈ Fn, pick if possible an element B ∈ A such that 

m ∈ B \ fB(n), and substitute {B} ∪ (B \ fB(n)) for {m} in Fn. If there is no such B, just remove 
{m} from Fn (in this case, star({m}, Un) = {m}). Then A ⊆

⋃
n star(

⋃
Fn, Un). The assertion in (2) then 

follows from the definitions. �
We obtain the following simple proof of Theorem 1.2. The main simplification over the proof in [7] is 

that we avoid the necessity to use two types of cofinal sets simultaneously.

Proof of Theorem 1.2. We establish the negation of the characterization in Theorem 2.1.
Enumerate A := {Aα : α < κ}, and let {Fα : α < κ} be a cofinal subset of Fin(κ)N. We may assume that 

α /∈ Fα(n) for all n. Indeed, the family {F ′
α : α < κ}, defined by F ′

α(n) := Fα(n) \ {α} for all n, is cofinal 
in Fin(κ)N: Let F ∈ Fin(κ)N, and set I := {α < κ : F ≤ Fα}. For each ordinal β < κ, there is α < κ such 
that F (n) ∪ {β} ⊆ Fα(n) for all n. Thus, 

⋃
α∈I

⋃
n Fα(n) = κ, and therefore the set I is uncountable. Pick 

an ordinal α ∈ I \
⋃

n F (n). Then F (n) ⊆ Fα(n) \ {α} for all n.
For each α < κ and each n, let

fα(n) := 1 + max
⋃

β∈Fα(n)

Aα ∩Aβ .

Let F1, F2, . . . ⊆ A be finite sets. For each n, let Hn := {α < κ : Aα ∈ Fn}. Take α such that Hn ⊆ Fα(n)
for all n. Then, for each n, we have that max(Aα ∩

⋃
β∈Hn

Aβ) < fα(n), and thus

(Aα \ fα(n)) ∩
⋃

β∈Hn

(Aβ \ fβ(n)) ⊆ (Aα \ fα(n)) ∩
⋃

β∈Hn

Aβ = ∅. �

The following theorem provides a combinatorial characterization of star-Hurewicz Ψ-spaces. Its proof, 
which is similar to that of Theorem 2.1, is omitted.

Theorem 2.2. Let A ⊆ P (N) be an almost disjoint family. The following assertions are equivalent:

(1) The Isbell–Mrówka space Ψ(A) is star-Hurewicz.
(2) For each function A 
→ fA from A to NN, there are finite sets F1, F2, . . . ⊆ A such that, for each A ∈ A, 

(A \ fA(n)) ∩
⋃

(B \ fB(n)) �= ∅ for all but finitely many n. �
B∈Fn
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Proposition 2.3. Let κ be an infinite cardinal. The following cardinal numbers are equal:

(1) The minimal cardinality of a family F ⊆ Fin(κ)N such that for each g ∈ Fin(κ)N there is f ∈ F with 
g(n) ⊆ f(n) for infinitely many n.

(2) The maximum of the cardinals b and cof([κ]ℵ0).

Proof. (2) ≤ (1): Let F be as in (1).
For each f ∈ F , define a function f ′ ∈ N

N by

f ′(n) := 1 + max(f(n) ∩ N).

For each function g ∈ N
N, there is f ∈ F such that {1, . . . , g(n)} ⊆ f(n), and thus g(n) ≤ f ′(n), for infinitely 

many n. Thus, the family {f ′ : f ∈ F} is unbounded. This shows that b ≤ |F|.
For each set A ∈ [κ]ℵ0 , pick a function g ∈ Fin(κ)N such that g(n) ⊆ g(n +1) for all n, and A ⊆

⋃
n g(n). 

Pick f ∈ F such that g(n) ⊆ f(n) for infinitely many n. Then, since g(n) ⊆ g(n + 1) for all n, 
⋃

n g(n) ⊆⋃
n f(n). Thus, the family {

⋃
n f(n) : f ∈ F} is cofinal in [κ]ℵ0 . It follows that cof([κ]ℵ0) ≤ |F|.

(1) ≤ (2): Let G be an unbounded family in NN, and H be a cofinal family in [κ]ℵ0 . For each set A ∈ H, 
fix a function fA ∈ Fin(κ)N such that fA(n) ⊆ fA(n + 1) for all n, and A ⊆

⋃
n fA(n).

Let h ∈ Fin(κ)N. Pick A ∈ H with 
⋃

n h(n) ⊆ A. Pick g ∈ G such that

min{m : h(n) ⊆ fA(m)} ≤ g(n)

for infinitely many n. Then h(n) ⊆ fA(g(n)) for infinitely many n. Take F := {fA ◦ g : g ∈ G, A ∈ H}. Then 
|F| ≤ b · cof([κ]ℵ0). �

We obtain the following analogue of Theorem 1.9. (Recall that Ψ-spaces of cardinality smaller than b are 
strongly star-Hurewicz.)

Theorem 2.4. Let A ⊆ P (N) be an almost disjoint family of cardinality κ ≥ b. If cof([κ]ℵ0) = κ, then the 
space Ψ(A) is not star-Hurewicz.

Proof. The proof is almost identical to that of Theorem 1.2, using Proposition 2.3 and Theorem 2.2. The 
necessary changes are as follows. Here, we let {Fα : α < κ} ⊆ Fin(κ)N be a family as in Proposition 2.3(1). 
For the last step of the proof, we take α such that Hn ⊆ Fα(n) for infinitely many n, and restrict attention 
to these n. �
Example 2.5. Assume that b = ℵ1 < d. Then there is a strongly star-Menger Ψ-space that is not star-
Hurewicz.

Proof. Since there are almost disjoint sets of cardinality continuum, there are ones of any smaller cardinality, 
too. Let A ⊆ P (N) be an almost disjoint family of cardinality ℵ1. By Theorem 1.1, the space Ψ(A) is strongly 
star-Menger. By Theorem 1.10(2) and Theorem 2.4, this space is not star-Hurewicz. �
Corollary 2.6. (SSH) The following assertions are equivalent:

(1) There is a strongly star-Menger Ψ-space that is not star-Hurewicz.
(2) b < d.
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Proof. (1) ⇒ (2): Let Ψ(A) exemplify (1). By Theorem 1.1, |A| < d. If b = d then, by the same theorem, 
the space Ψ(A) is (strongly) star-Hurewicz; a contradiction.

(2) ⇒ (1): Take a Ψ-space of cardinality b. By Theorem 1.1, the space Ψ(A) is strongly star-Menger. By 
Theorem 1.10(4), since b is a regular cardinal, cof([b]ℵ0) = b. Apply Theorem 2.4. �
3. A solution of the Bonanzinga–Matveev problem

Problem 1.12 asks whether cof(Fin(κ)N) = d ·κ for each infinite cardinal κ ≤ c, and, in particular, whether 
cof(Fin(κ)N) = d for each infinite cardinal κ ≤ d.

Clearly, the Continuum Hypothesis implies a positive answer to Problem 1.12, and Problem 1.12 actually 
asks whether the assertions are provable without special set theoretic hypotheses. We first point out a 
negative answer to the first part of this problem.

Proposition 3.1. Let ℵα := d. If ℵα+ω < c, then there is a cardinal κ < c such that cof(Fin(κ)N) > d · κ.

Proof. Take κ := ℵα+ω. Since d ≤ κ ≤ cof([κ]ℵ0), we have by Theorem 1.10 that cof(Fin(κ)N) = cof([κ]ℵ0). 
By König’s Lemma, we have that cof([κ]ℵ0) > κ = d · κ. �

We use some facts from the theory of forcing. A general introduction is available in Kunen’s book [15], 
whose notation we follow. Some more details that are relevant for us here are available in Bartoszyński and 
Judah’s book [1], and in Blass’ chapter [2].

Fix a successor ordinal β > ω. Adding ℵβ random reals to a model of the Continuum Hypothesis, we 
obtain a model of d = ℵ1 and c = ℵβ . Such a model satisfies the condition in Proposition 3.1.

SSH implies a positive answer to the second part of the Bonanzinga–Matveev problem, and a conditional 
solution to its first part.

Theorem 3.2. (SSH)

(1) For each infinite cardinal κ ≤ d, we have that cof(Fin(κ)N) = d.
(2) cof(Fin(κ)N) = d · κ for all infinite cardinals κ ≤ c if, and only if, there is n ≥ 0 such that c = d+n, the 

n-th successor of d.

Proof. We use Theorem 1.10.
(1) If cof(κ) > ℵ0, then cof(Fin(κ)N) = d ·κ = d. Otherwise, as cof(d) ≥ b > ℵ0, we have that κ < d, and 

cof(Fin(κ)N) = d · κ+ = d.
(2) If there is such n, then each κ with d ≤ κ ≤ c has uncountable cofinality, and by SSH we have that 

cof(Fin(κ)N) = d · κ. Otherwise, Proposition 3.1 applies. �
Thus, the answer to the first part of Problem 1.12 is “No”, and the answer to its second part is “Yes” if 

there are no (inner) models of set theory with large cardinals. To complete the picture, it remains to show 
that the answer is “No” (to both parts) when large cardinal hypotheses are available. For the following 
theorem, it suffices for example to assume the consistency of supercompact cardinals, or of so-called strong 
cardinals. More precise large cardinal hypotheses are available in [10].

Theorem 3.3. (Gitik–Magidor [10]) It is consistent (relative to the consistency of ZFC with an appropriate 
large cardinal hypothesis) that 2ℵn = ℵn+1 for all n, and 2ℵω = ℵω+γ+1, for any prescribed γ < ω1.
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This theorem is related to our questions as follows. As ℵω is a limit cardinal of cofinality ℵ0, 2ℵω =
(2<ℵω )ℵ0 . If 2ℵn = ℵn+1 for all n, then 2<ℵω = ℵω, and thus 2ℵω = (ℵω)ℵ0 = 2ℵ0 ·cof([ℵω]ℵ0) = cof([ℵω]ℵ0).1

Hechler’s forcing H is a natural forcing notion adding a dominating real, i.e., d ∈ N
N such that for each 

f ∈ N
N ∩ V , where V is the ground model, f ≤∗ d. H = {(n, f) : n ∈ N, f ∈ N

N}, and (n, f) ≤ (m, g)
if n ≥ m, f ≥ g, and f(k) = g(k) for all k < m. If G is H-generic over V , then by a density argument, 
d =

⋃
(n,f)∈G f |{1,...,n} ∈ N

N is as required. H is ccc, and thus so is the finite support iteration P = 〈 Pα, Q̇α :
α < λ 〉, where for each α, Pα forces that Q̇α is Hechler’s forcing.

Theorem 3.4. It is consistent (relative to the consistency of ZFC with appropriate large cardinal hypotheses) 
that

ℵω < b = d = ℵω+1 < cof(Fin(ℵω)N) = cof([ℵω]ℵ0) = ℵω+γ+1 = c,

for each prescribed γ with 1 ≤ γ < ℵ1.

Proof. Use Theorem 3.3 to produce a model of set theory, V , satisfying c = ℵ1 and cof([ℵω]ℵ0) = ℵω+γ+1.
Let P := 〈 Pα, Q̇α : α < ℵω+1 〉 be the finite support iteration, where for each α, Pα forces that Q̇α is 

Hechler’s forcing. Let G be P -generic over V , and for each α < ℵω+1, let Gα := G ∩ Pα be the induced 
Pα-generic filter over V . For each α, let dα be the dominating real added by Qα in stage α + 1, so that for 
each f ∈ V [Gα] ∩ N

N, f ≤∗ dα.
As P is ccc, cof([ℵω]ℵ0) remains ℵω+γ+1 in V [G]. As ℵω+1 has uncountable cofinality, we have that 

N
N ∩ V [G] =

⋃
α<ℵω+1

N
N ∩ V [Gα] [1, Lemma 1.5.7]. It follows that {dα : α < ℵω+1} is dominating in 

V [G]. Moreover, it follows that for each B ⊆ N
N ∩ V [G] with |B| < ℵω+1, there is α < ℵω+1 such that 

B ⊆ N
N ∩ V [Gα], and thus B is ≤∗-bounded (by dα). Thus, in V [G], b = d = ℵω+1.

As the Continuum Hypothesis holds in V , |P | = ℵω+1, and as P is ccc, the value of c in V [G] is at 
most (by counting nice names [15, Lemma 5.13 in Chapter VII]) |P |ℵ0 = ℵℵ0

ω+1, evaluated in V . In V , 
ℵℵ0
ω+1 ≤ (2ℵω )ℵ0 = 2ℵω = ℵω+γ+1. Thus, in V [G], c ≤ ℵω+γ+1. On the other hand, in V [G], as ℵω < d ≤ c, 

ℵω+γ+1 = cof([ℵω]ℵ0) ≤ ℵℵ0
ω ≤ cℵ0 = c. �

Remark 3.5. For finite γ, which are sufficient for our purposes, a simplified proof of the Gitik–Magidor 
Theorem 3.3 is available in Gitik’s chapter [9]. Following our proof, Assaf Rinot pointed out to us that 
starting with a supercompact cardinal (a stronger assumption than that in [9]), one may argue as follows: 
Start with a model of GCH with κ supercompact. Use Silver forcing to make 2κ = κ++ [12, Theorem 21.4]. 
Since κ remains measurable, we can use Prikry forcing to make cof(κ) = ℵ0, without adding bounded 
subsets [12, Theorem 21.10]. Then GCH holds up to κ, and cof([κ]ℵ0) = κℵ0 = 2κ = κ++. Then, continue 
as in the proof of Theorem 3.4.

4. Comments and open problems

Remarkably, the following problem remains open.

Problem 4.1. (Bonanzinga–Matveev [7]) Is there, consistently, a star-Menger Ψ-space of cardinality ≥ d?

Since Ψ-spaces of cardinality smaller than d are strongly star-Menger, the problem asks whether there 
could be star-Menger Ψ-spaces that are not in fact strongly star-Menger. More importantly, the problem asks 
whether there may be, consistently, nontrivial star-Menger Ψ-spaces, that is, ones whose being star-Menger 

1 For the second equality, count the countable subsets of ℵω by taking a cofinal family in [ℵω]ℵ0 and, for each set in this family, 
take all of its subsets.
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does not follow from their cardinality being smaller than d. By Theorem 1.9, the cardinality of a nontrivial 
star-Menger Ψ-space cannot be any of the cardinals listed in Theorem 1.10. Thus, c > ℵω in every model 
witnessing a positive solution of Problem 4.1. It may be worth considering forcing extensions where d = ℵ1, 
κ = ℵω, and c = ℵω+1. Similarly, we have the following problem (to which similar comments apply).

Problem 4.2. Is there, consistently, a star-Hurewicz Ψ-space of cardinality ≥ b?

A topological space X is star-Rothberger [13] if for every sequence U1, U2, . . . of open covers of X, there 
are elements U1 ∈ U1, U2 ∈ U2, . . . such that X =

⋃
n star(Un, Un). Arguments similar to ones in Section 2

establish the following theorem.

Theorem 4.3. Let A ⊆ P (N) be an almost disjoint family. The following assertions are equivalent:

(1) The Isbell–Mrówka space Ψ(A) is star-Rothberger.
(2) For each function A 
→ fA from A to NN, there are elements A1, A2, . . . ∈ A such that, for each A ∈ A, 

there is n with (A \ fA(n)) ∩ (An \ fAn
(n)) �= ∅. �

The cardinal cov(M) is the minimal cardinality of a subset of NN that cannot be guessed by a single 
function (that is, no function is equal infinitely often to each member of the set). It is open whether there 
is an analogue of Theorems 1.9 and 2.4 for star-Rothberger Ψ-spaces. Ψ-spaces of cardinality smaller than 
cov(M) are star-Rothberger, and there is Ψ-space of cardinality cov(M) that is not star-Rothberger [7].

Problem 4.4. Is there, consistently, an almost disjoint family A ⊆ P (N) of cardinality κ ≥ cov(M) such 
that cof([κ]ℵ0) = κ and the space Ψ(A) is star-Rothberger?

It is not clear that the cardinals in Theorems 1.2 and 2.4 are not mere artifact of the proofs. Indeed, the 
proofs exploit the freedom provided by Theorems 2.1 and 2.2. In particular, we have the following problems.

Problem 4.5. What is the minimal cardinal κ such that no Ψ-space of cardinality κ is star-Menger? What 
is the corresponding cardinal for star-Hurewicz and star-Rothberger Ψ-spaces?

In light of Section 2, it may be possible to prove, using the methods of [17], the following variations of 
Theorems 1.5 and 1.6

Conjecture 4.6.

(1) Let D be a closed discrete subspace of a regular strongly star-Hurewicz space. Then the cardinality of D
is smaller than the minimal fixed point of the function κ 
→ cof([κ]ℵ0) in the interval [b, c].

(2) Let X be a regular topological space of cardinality κ. If cof([κ]ℵ0) = κ ≥ b, then the space PR(X) is not 
star-Hurewicz.

Motivated by Theorem 1.5, Sakai proposes the following problem.

Problem 4.7. (Sakai) Consider the minimal cardinal number greater than all cardinalities of closed discrete 
subspaces of regular strongly star-Menger spaces. Is this cardinal equal to the minimal fixed point of the 
function κ 
→ cof([κ]ℵ0) in the interval [d, c]?



B. Tsaban / Topology and its Applications 192 (2015) 198–207 207
Acknowledgements

I thank Moti Gitik for bringing Theorem 3.3 to my attention and for his useful suggestions, Assaf Rinot 
for his comment in Remark 3.5, and Masami Sakai and Shir Sivroni for their useful comments. I owe special 
thanks to Ari Meir Brodsky, whose comments helped improving the presentation of this paper considerably, 
and to the referee for a detailed and useful report.

A part of the research reported here was conducted during a Sabbatical leave at the Faculty of Mathe-
matics and Computer Science, Weizmann Institute of Science. I thank Gideon Schechtman and the Faculty 
of Mathematics and Computer Science for their hospitality.

References

[1] T. Bartoszyński, H. Judah, Set Theory: On the Structure of the Real Line, A. K. Peters, Massachusetts, 1995.
[2] A. Blass, Combinatorial cardinal characteristics of the continuum, in: M. Foreman, A. Kanamori, M. Magidor (Eds.), 

Handbook of Set Theory, Kluwer Academic Publishers, 2010, pp. 395–490.
[3] M. Bonanzinga, F. Cammaroto, L. Kočinac, Star-Hurewicz and related spaces, Appl. Gen. Topol. 5 (2004) 79–89.
[4] E. van Douwen, The integers and topology, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set Theoretic Topology, 

North-Holland, Amsterdam, 1984, pp. 111–167.
[5] E. van Douwen, G. Reed, A. Roscoe, I. Tree, Star covering properties, Topol. Appl. 39 (1991) 71–103.
[6] C. Chis, M.V. Ferrer, S. Hernández, B. Tsaban, The character of topological groups, via bounded systems, Pontryagin–van 

Kampen duality and pcf theory, J. Algebra 420 (2014) 86–119.
[7] M. Bonanzinga, M. Matveev, Some covering properties for Ψ-spaces, Mat. Vesn. 61 (2009) 3–11.
[8] M. Gitik, The strength of the failure of the singular cardinal hypothesis, Ann. Pure Appl. Log. 51 (1991) 215–240.
[9] M. Gitik, Prikry-type forcings, in: M. Foreman, A. Kanamori, M. Magidor (Eds.), Handbook of Set Theory, Kluwer 

Academic Publishers, Dordrecht, 2010, pp. 1351–1448.
[10] M. Gitik, M. Magidor, The singular cardinal hypothesis revisited, in: Set Theory of the Continuum, Berkeley, CA, 1989, 

in: Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 243–279.
[11] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
[12] T. Jech, Set Theory, the third millennium edition, Springer-Verlag, 2002.
[13] L. Kočinac, Star-Menger and related spaces, Publ. Math. (Debr.) 55 (1999) 421–431.
[14] L. Kočinac, Star selection principles: a survey, Khayyam J. Math. 1 (2015) 82–106.
[15] K. Kunen, Set Theory: An Introduction to Independence Proofs, Stud. Logic Found. Math., vol. 102, North Holland 

Publishing Company, 1980.
[16] S. Mrówka, On completely regular spaces, Fundam. Math. 41 (1954) 105–106.
[17] M. Sakai, Star versions of the Menger property, Topol. Appl. 176 (2014) 22–34.
[18] B. Tsaban, Menger’s and Hurewicz’s problems: solutions from “The Book” and refinements, Contemp. Math. 533 (2011) 

211–226.

http://refhub.elsevier.com/S0166-8641(15)00261-8/bib6261726A75s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib426C61737348424Bs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib426C61737348424Bs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib42434B3034s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib7644s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib7644s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib73746172s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib50764Bs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib50764Bs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4D696C656E614D69736861s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib476974696B3931s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib476974696B48424Bs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib476974696B48424Bs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib476974696B4D616769646F723932s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib476974696B4D616769646F723932s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib497362656C6Cs1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4A6563685354s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4B6F633939s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4B6F6350736953757276s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4B756E656E5354s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4B756E656E5354s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4D726F776B613534s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib53616B61693134s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4D4850s1
http://refhub.elsevier.com/S0166-8641(15)00261-8/bib4D4850s1

	Combinatorial aspects of selective star covering properties in Ψ-spaces
	1 Introduction
	2 Combinatorial characterizations and a consequence
	3 A solution of the Bonanzinga-Matveev problem
	4 Comments and open problems
	Acknowledgements
	References


