
Information Processing Letters 99 (2006) 145–148

www.elsevier.com/locate/ipl

Fast generators for the Diffie–Hellman key agreement protocol
and malicious standards

Boaz Tsaban 1

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

Received 10 August 2005; received in revised form 24 November 2005; accepted 24 November 2005

Available online 11 May 2006

Communicated by Y. Desmedt

Abstract

The Diffie–Hellman key agreement protocol is based on taking large powers of a generator of a prime-order cyclic group. Some
generators allow faster exponentiation. We show that to a large extent, using the fast generators is as secure as using a randomly
chosen generator. On the other hand, we show that if there is some case in which fast generators are less secure, then this could be
used by a malicious authority to generate a standard for the Diffie–Hellman key agreement protocol which has a hidden trapdoor.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Diffie–Hellman problem; Discrete logarithm problem; Fast generators; Trapdoor; Cryptography
1. Introduction

The Diffie–Hellman key agreement protocol [3] is
one of the most celebrated means for two parties, say
Alice and Bob, to agree on a secret key over an inse-
cure communication channel. Alice and Bob make their
computations in some previously fixed cyclic group G

with an agreed generator g. The protocol is defined as
follows:

(1) Alice chooses a random2 a ∈ {1, . . . , |G| − 1}, and
sends ga to Bob.

(2) Bob chooses a random b ∈ {1, . . . , |G| − 1}, and
sends gb to Alice.

E-mail address: boaz.tsaban@weizmann.ac.il (B. Tsaban).
URL: http://www.cs.biu.ac.il/~tsaban.

1 Supported by the Koshland Fellowship.
2 Throughout the paper, by random we mean uniformly random and

independent of earlier samples.
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.11.025
The agreed key is gab , which can be computed both by
Alice ((gb)a) and by Bob ((ga)b).

Due to the Pohlig–Hellman attack [6] (which ex-
ploits the Chinese Remainder Theorem), it is preferred
that the order of the group be prime, which is henceforth
assumed.

Consider, for example, the case g ∈ F
∗
q where q is

prime. Let p be the (prime) order of the generated group
G = 〈g〉 � F

∗
q . Computing gx for x ∈ {1, . . . , p − 1}

consists of squaring and multiplying. If g = 2, then the
multiplication operation amounts to shifting and taking
modular reduction. For h ∈ F

∗
q ,

2h mod q =
{

2h h < q/2,

2h − q q/2 � h

which is computationally negligible in comparison to
multiplying by a random g. In standard square-and-
multiply implementations this saves about 33% of the
computational complexity of evaluating gx (in fact,

146 B. Tsaban / Information Processing Letters 99 (2006) 145–148
squaring can often be done more efficiently than gen-
eral multiplication, so this saves more). Thus, if 2 ∈ G,
we may wish to chose it as our generator. If 2 /∈ G, we
can use other generators for which similar comments
apply (like 3,5, etc.).

We show that, in the common interpretation, this can
be done with no loss of security. On the other hand, we
show that if there is a conceivable way to make some
generators weaker than random ones, then this can be
used by an authority of standards to find parameters for
the Diffie–Hellman protocol with a trapdoor allowing
the authority to exploit these weaknesses. In Appen-
dix A we give an example of a public-key cryptosystem
based on this phenomenon.

The results also apply to choices of efficient genera-
tors in other groups, e.g., low hamming weight polyno-
mials in F

∗
qm , or low weight elements in hyper-elliptic

curves.

2. A fast generator is almost as secure

Let G = 〈g〉 be a cyclic group of prime order p. Let
f ∈ G be any element except the identity. Then f is a
generator of G. In the intended application, f is chosen
so that the computation of f x is more efficient (we call
f a fast generator), or that its usage is convenient for
some other reason.

Fix h ∈ G. An algorithm DHh (depending on h) is
said to solve the Diffie–Hellman Problem (DHP) for
base h if, for each x, y ∈ {1, . . . , p−1}, DHh(h

x,hy) =
hxy .

Henceforth, for a number r ∈ {1, . . . , p − 1},
r−1 mod p denotes the element s of {1, . . . , p−1} such
that sr = 1 (mod p).

The following theorem is presumably known to spe-
cialists, but we have not been able to find a reference.
The method of proof, however, is standard.

Theorem 1. Assume that for some f ∈ G \ {1}, there
exists an algorithm DHf to solve the DHP for base f ,
in running time T (f). Then for each g ∈ G \ {1}, there
is an algorithm DHg which solves the DHP for base g

in running time O(T (f) · logp).

Proof. Given g, there exists a unique r ∈ {1, . . . , p−1}
such that g = f r .

Lemma 2. Given f r , we can compute f r−1 mod p using
at most 2 logp queries to DHf .
Proof. By Fermat’s Little Theorem, rp−1 = 1 (mod p),
and therefore

rp−2 = r−1 (mod p).

We can compute f r−1 = f rp−2
using DHf in a square-

and-multiply manner: Write p − 2 in base 2 as b0 +
b1 · 2 + · · · + bn · 2n, bn �= 0 (then n � log2 p).
Let f0 = f r . For each i = 1,2, . . . , n compute hi =
DHf (fi−1, fi−1), and let fi = hi if bn−i = 1, and

fi = DHf (hi, f0) otherwise. Then fn = f rp−2
. �

Now, assume that we are given gx, gy and we wish
to find gxy . Recall that g = f r . Compute f r−1

as in
Lemma 2, and proceed with

DHf

(
f r−1

, gy
) = DHf

(
f r−1

, f ry
) = f r−1ry = f y,

and

DHf

(
gx,f y

) = DHf

(
f rx, f y

) = f rxy = gxy. �
Remark 3 (Amplification). Theorem 1 generalizes to
various other settings. For example, assume that DHf

only solves the DHP with probability ε, i.e., for each
z �= xy (mod p),

Pr
[
DHf (f x, f y) = f xy

]
� Pr

[
DHf (f x, f y) = f z

] + ε.

Then DHf can be transformed to an algorithm which
succeeds in probability arbitrarily close to 1: Choose
random r, s ∈ {1, . . . , p − 1}, compute f xr = (f x)r ,
f ys = (f s)y , and h = DHf (f xr , f ys). If the output h

was correct, then

h = f xrys = f xyrs .

Let t = (rs)−1 (mod p). Then, in the case of correct
output h, ht = f xy . We can repeat this O(1/ε2) times to
get f xy as the most frequent value almost certainly.

Having the algorithm transformed to one which suc-
ceeds in probability very close to 1, the arguments in the
proof of Theorem 1 apply. These assertions apply to all
problems mentioned in this paper.

The closely related Discrete Logarithm Problem is
much easier to deal with: An algorithm DLh is said to
solve the Discrete Logarithm Problem (DLP) for base h

if, for each x ∈ {1, . . . , p − 1}, DLh(h
x) = x.

Theorem 4. Assume that f ∈ G \ {1}, and there exists
an algorithm DLf to solve the DLP for base f , in run-
ning time T (f). Then for each g ∈ G \ {1}, there is an
algorithm DLg which solves the DLP for base g in run-
ning time O(T (f)).

B. Tsaban / Information Processing Letters 99 (2006) 145–148 147
Proof. Given gx , find x using the following sequence
of computations: r = DLf (g), rx = DLf (f rx) =
DLf (gx), s = r−1 mod p, and x = srx. �

A closely related problem remains open: An algo-
rithm DDHh is said to solve the Decisional Diffie–
Hellman Problem (DDH) for base h [1] if, for each
x, y, z ∈ {1, . . . , p − 1}, DDHh(h

x,hy,hz) = 1 if, and
only if, z = xy.

Problem 5. Assume that f ∈ G\{1}, and there exists an
algorithm DDHf to solve the DDH for base f , in run-
ning time T (f). Does there exist, for each g ∈ G \ {1},
an algorithm DDHg which solves the DDH for base g

in running time polynomial in T (f) · logp?

Remark 6. Menezes has pointed out to us that in [2]
it is shown that using 2 as a generator for certain dis-
crete logarithm based signature schemes is vulnerable
to forgeries, whereas in [7] it is shown that using a ran-
dom generator in these schemes is provably secure (this
is summarized in [9]). This can be contrasted with the
results of the current section, and motivate the discus-
sions in the remainder of the paper.

3. Malicious standards

One can still figure out models of security for which
it is not clear that using fast generators is as secure as
using a random generator. For example, assume that the
following holds.

Scenario 7 (Malicious Diffie–Hellman (MDH)).

(1) There exist f ∈ G \ {1}, a function F , and an ef-
ficient algorithm DHf such that for each x, y ∈
{1, . . . , p − 1},
DHf

(
f x,f y

) = F
(
f xy

)
.

(2) For a random g ∈ G \ {1}, F(gxy) cannot be effi-
ciently extracted from gx and gy .

(3) For random x, y, F(f xy) has enough entropy to
generate a key for symmetric encryption (e.g.,
80 bits).

Remark 8. While it seems unlikely that MDH could
hold, we should note that the field is full of surprises.
For example, in [4] it is shown that there are some
groups where the Diffie–Hellman Problem is difficult
and the Decisional Diffie–Hellman Problem (see Sec-
tion 2) is easy. See Remark 6 for another example.
If MDH holds, then DHf reveals some information
on the agreed key obtained by the Diffie–Hellman pro-
tocol using f as a generator. In an extreme case, the
function F could be the hash function which Alice and
Bob use to derive from f ab a key for symmetric encryp-
tion. However, in general it is not clear how to use DHf

to reveal the same information gab for a random gener-
ator g. Of course, there is a random r ∈ {1, . . . , p − 1}
such that g = f r and therefore

DHf

(
ga, gb

) = DHf

(
f ra, f rb

) = F
(
f r2ab

)
= F

(
grab

)
,

but rab is a random element of {1, . . . , p − 1} and inde-
pendent of ab, so this information is of no use. Similar
assertions hold for the Discrete Logarithm Problem.

Consequently, it might be the case that fast gener-
ators are not as secure as random ones. While we are
unable to prove the impossibility of Scenario 7, we can
show that if it is possible, then we cannot trust given
standards for the Diffie–Hellman key agreement proto-
col, unless we know how they were generated.

Assume that MDH holds. Then an authority of stan-
dards can do the following: Choose a uniformly ran-
dom trapdoor t ∈ {1, . . . , p − 1}, compute g = f t , and
suggest (G,p,g) as the standard’s parameters for the
Diffie–Hellman key agreement protocol. As t was uni-
formly random, g is a uniformly random generator of G,
so there is no way to know that it was chosen in a ma-
licious way. Now, assume that Alice sends Bob ga and
Bob sends Alice gb . For everyone else but the authority
of standards, deducing information on the agreed key
gab is impossible.

Claim 9. For all a, b ∈ {1, . . . , p − 1}, the authority of
standards can compute F(gab) efficiently.

Proof. Using the trapdoor t , compute t−1 mod p, and
(gb)t

−1
, which is the same as f tbt−1 = f b . Now, com-

pute F(f rab) = DHf (f ra, f b). But f rab = gab . �
Consequently, the authority of standards can decrypt

the messages sent between Alice and Bob.
In Appendix A we indicate a possible positive conse-

quence of the MDH. We believe that many more can be
derived from it. The proof of the impossibility of MDH
under mild hypotheses, or the construction of a system
for which MDH holds, are fascinating challenges.

Remark 10. Galbraith has pointed out to us that there
exist bit security results which show that for various nat-
ural functions F , computing F(gab) from ga and gb is

148 B. Tsaban / Information Processing Letters 99 (2006) 145–148
as hard as the Diffie–Hellman Problem. See, e.g., [8]
and Refs. [1,2] therein. This is an evidence for the diffi-
culty of establishing MDH.

Acknowledgements

We thank Steven Galbraith and Alfred Menezes for
their useful comments.

Appendix A. A public-key cryptosystem from the
malicious Diffie–Hellman assumption

Assume that MDH holds for a group G with prime
order p and a generator f . Then we define the fol-
lowing public-key cryptosystem for celebrities: In the
intended application, we have some center (a “celebri-
ty”) sending messages to many recipients. The purpose
is to minimize the communication load of the center’s
messages.

(1) G and p are publicly known.
(2) A celebrity, say Bob, chooses a random r ∈ {1, . . . ,

p − 1} and publishes g = f r .
(3) Each one (say, Alice) who wishes to obtain in the

future messages from Bob should choose a random
a ∈ {1, . . . , p − 1} and publish ga .

(4) When Bob wishes to encrypt a message to Alice, he
computes F(ga2

) (using r he can do that, as shown
in Section 3) and uses some known hash function of
the result as a key for a block cipher with which he
encrypts the message to Alice.

(5) Alice can compute ga2
and thus decrypt the mes-

sage.
(6) Users other than Bob who wish to send messages to

one another or to Bob can use standard algorithms
like El-Gamal.

Note that the lengths of Bob’s encrypted messages is the
same as that of the plain messages.

Our suggested protocol is based on the difficulty of
finding ga2

given ga . Menezes has pointed out to us that
in Section 5.3 of [5] it is shown that this is as difficult as
the Diffie–Hellman Problem: Indeed, given ga and gb ,
compute ga+b = ga ·gb , and then compute ga2

, gb2
, and

g(a+b)2
. Using these, compute

g2ab = g(a+b)2 · (ga2)−1 · (gb2)−1
.

Finally, compute gab = (g2ab)2−1 mod p .

Remark 11. We can base a protocol with the same prop-
erties on classical assumptions: Bob publishes g and gb

(for some random b of his choice), and each other user,
say Alice, publishes ga and computes a hash value of
gab to be used as symmetric key to decipher messages
from Bob. Thus, our suggested protocol should only be
considered as an indication of the potential usefulness
of MDH, which is not fully understood yet.

References

[1] D. Boneh, The decision Diffie–Hellman problem, in: Proceedings
of the Third Algorithmic Number Theory Symposium, in: Lec-
ture Notes in Computer Science, vol. 1423, Springer, Berlin, 1998,
pp. 48–63.

[2] D. Bleichenbacher, Generating El-Gamal signatures with-
out knowing the secret key, in: Advances in Cryptology—
EUROCRYPT’96, in: Lecture Notes in Computer Science,
vol. 1070, Springer, Berlin, 1996, pp. 10–18. Corrected version:
ftp.inf.ethz.ch/pub/crypto/publications/Bleich96.ps.

[3] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory 22 (1976) 644–654.

[4] A. Joux, K. Nguyen, Separating decision Diffie–Hellman from
Diffie–Hellman in cryptographic groups, Journal of Cryptol-
ogy 16 (2003) 239–247.

[5] U.M. Maurer, S. Wolf, The relationship between breaking the
Diffie–Hellman protocol and computing discrete logarithms,
SIAM Journal on Computing 28 (1999) 1689–1721.

[6] S. Pohlig, M. Hellman, An improved algorithm for computing log-
arithms in GF(p) and its cryptographic significance, IEEE Trans-
actions on Information Theory 24 (1978) 106–111.

[7] D. Pointcheval, J. Stern, Security proofs for signature schemes, in:
Advances in Cryptology—EUROCRYPT’96, in: Lecture Notes in
Computer Science, vol. 1070, Springer, Berlin, 1996, pp. 387–
398.

[8] I. Shparlinski, A. Winterhof, A hidden number problem in small
subgroups, Mathematics of Computation 74 (2005) 2073–2080.

[9] J. Stern, The validation of cryptographic algorithms, in: Advances
in Cryptology—ASIACRYPT’96, in: Lecture Notes in Computer
Science, vol. 1163, Springer, Berlin, 1996, pp. 301–310.

