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S1(O,D)
Weakly C′′

S1(O,D)
Weakly Rothberger

1. Introduction

The following diagonalization prototypes are ubiquitous in the mathematical literature (see, e.g., the
surveys [29,19,31]):

S1(A ,B): For all U1,U2, . . . ∈ A , there are U1 ∈ U1, U2 ∈ U2, . . . such that {Un: n ∈ N} ∈ B.
Sfin(A ,B): For all U1,U2, . . . ∈ A , there are finite F1 ⊆ U1,F2 ⊆ U2, . . . such that

⋃
n Fn ∈ B.

The papers [25,18] have initiated the simultaneous consideration of these properties in the case where A

and B are important families of open covers of a topological space X. This unified study of topological
properties, that were previously studied separately, had tremendous success, some of which were surveyed in
the above-mentioned surveys. The field of selection principles is growing rapidly, and dozens of new papers
appeared since these survey articles were published. The purpose of the present paper is to initiate a similar
program for the case where A and B are dense families, as we now define.

Definition 1.1. Let X be a topological space. A family U ⊆ P (X) is a dense family if
⋃
U is a dense subset

of X. A family U ⊆ P (X) is in:

D: if U is dense;
Do: if U is dense and all members of U are open; and
O: if U is an open cover of X.

In other words, U is a dense family if each open set in X intersects some member of U . Note that

O ⊆ Do ⊆ D.

Every element of D is refined by a dense family of singletons. It follows, for example, that Sfin(D,D) is
equivalent to the following property, studied under various names in the literature (see Table 1 below):

For each sequence An, n ∈ N, such that An = X for all n, there are finite sets Fn ⊆ An, n ∈ N, such that⋃
n Fn = X.

We study all properties S(A ,B) for S ∈ {S1, Sfin} and A ,B ∈ {O,Do,D}, by making use of their
inter-connections. This approach is expected to have impact beyond these properties, not only concerning
properties that imply or are implied by the above-mentioned properties (e.g., the corresponding game-
theoretic properties), but also concerning formally unrelated properties that have a similar flavor.

The properties we are studying here were studied in the literature under various, sometimes pairwise
incompatible, names. Examples are given in Table 1 below, with some references. We do not give references
for Sfin(O,O) and S1(O,O), because there are hundreds of them. Instead, we refer to the above-mentioned
surveys. In this table, by obsolete we mean that nowadays the name stands for another property.

A topological space is A -Lindelöf (A ∈ {D,Do,O, . . .}) if each member of A contains a countable mem-
ber of A . If X satisfies Sfin(A ,A ), then X is A -Lindelöf. Thus, Sfin(O,O) spaces are Lindelöf, Sfin(D,D)
spaces are separable, and Sfin(Do,D) spaces are Do-Lindelöf, or equivalently, c.c.c. (i.e., such that every
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Table 1
Earlier names of the studied properties.

Property Classic names and references
Sfin(O,O) Hurewicz (obsolete), Menger
S1(O,O) C′′, Rothberger
Sfin(D,D) Sfin(D,D) [27], Sfin(D,D) [3], M-separable [8,9,22] selectively

separable (SS) [11,3,4,16,5,13,17,23,10,6]
S1(D,D) S1(D,D) [27], S1(D,D) [3], R-separable [8,9,16,13,23]
Sfin(Do,D) no tiny sequence [30,20], Sfin(D,D) [26,28,23]
S1(Do,D) S1(D,D) [26,28,23], no 1-tiny sequence [20], selectively c.c.c. [2]
Sfin(O,D) weakly Hurewicz (obsolete) [14,23], weakly Menger [21,24]
S1(O,D) weakly C′′ [14,23], S1(O,D) [26], weakly Rothberger [21]

maximal disjoint family of open sets in the space is countable). For the latter assertion, note that every
maximal disjoint family of open sets is dense, and every maximal open refinement of an element of Do is
a maximal disjoint family of open sets. This also explains why Aurichi’s notion of selectively c.c.c. [2] is
equivalent to S1(Do,D).2

2. Classification

2.1. Implications

We begin with the 18 properties of the form S(A ,B), where S ∈ {S1, Sfin} and A ,B ∈ {O,Do,D}. We
first observe that six of these properties are void, and consequently need not be considered.

Lemma 2.1. Let X be a nondiscrete Hausdorff space. Then X does not satisfy any of the properties S(Do,O),
S(D,O), S(D,Do) (S ∈ {S1, Sfin}).

Proof. Note that each of these properties S(A ,B) implies that each member of A contains a countable
member of B. Let x be a nonisolated point.

Since {X \ {x}} ∈ Do \ O, X does not satisfy Sfin(Do,O).
Let y ∈ X \ {x}, and let U, V be disjoint open neighborhoods of x, y respectively. Then the set U \ {x}

is not closed and not dense. Then U := {U \ {x}, (U \ {x})c} ∈ D, and each family of open sets contained
in U contains at most U \ {x}, which is not dense. Thus, X does not satisfy Sfin(D,Do).

The other assertions follow. �
The following immediate equivalences (S ∈ {S1, Sfin}) eliminate the need to consider 4 additional prop-

erties:

S(Do,D) = S(Do,Do),

S(O,D) = S(O,Do).

We are thus left with the following eight properties.

2 We thank Angelo Bella for bringing Aurichi’s notion of selectively c.c.c. to our attention, and for pointing out its equivalence
to S1(Do,D).
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Sfin(D,D) Sfin(Do,D) Sfin(O,D) Sfin(O,O)

S1(D,D) S1(Do,D) S1(O,D) S1(O,O)

Fig. 1. The Dense Families Diagram.

For the diagonal implication, note that Sfin(D,D) implies separability, which in turn implies S1(O,D).
Indeed, every countable space satisfies S1(O,O), and we have the following.

Proposition 2.2. Let S ∈ {S1, Sfin}. If X has a dense subset satisfying S(O,O), then X satisfies S(O,D). �
2.2. Non-implications

To make it clear which properties are possessed by the examples given below and which not, we supply a
version of the Dense Families Diagram (Fig. 1) with a full bullet (•) for each property the example satisfies,
and an empty bullet (◦) for each property not satisfied by the example.

2.2.1. Uncountable examples

Proposition 2.3.

(1) The spaces R and βN satisfy the following setting.

• • • •

• • • ◦

(2) The Baire space N
N satisfies the following setting.

• • • ◦

• • • ◦

Proof. Each of these spaces has a countable pseudobase, and thus satisfies S1(D,D) [11].
Being σ-compact, R and βN satisfy Sfin(O,O). Since S1(O,O) subsets of R have measure zero, R does

not satisfy S1(O,O). For the same reason, the unit interval [0, 1] does not satisfy S1(O,O). Since [0, 1]
(being separable and compact) is a continuous image of βN and S1(O,O) is preserved by continuous images,
βN does not satisfy S1(O,O), too.

The Baire space does not satisfy Sfin(O,O) (e.g., [18]). �
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Theorem 2.4. βN \ N satisfies the following setting.

◦ ◦ • •

◦ ◦ ◦ ◦

Proof. Being compact, βN \ N satisfies Sfin(O,O). As βN \ N is not c.c.c. (equivalently, not Do-Lindelöf)
[15, Example 3.6.18], it does not satisfy Sfin(Do,D).

Lemma 2.5. βN \ N does not satisfy S1(O,D).

Proof. Let [N]∞ be the family of all infinite subsets of N. For A ∈ [N]∞, let

[A] = {p ∈ βN \ N: A ∈ p}

be the standard basic clopen subset of βN \ N.
By induction on n, choose for each sequence (s1, . . . , sn) ∈ {0, 1}n an infinite set Is1,...,sn such that:

(1) I0 ∪ I1 = N, and the union is disjoint.
(2) For each n and each sequence (s1, . . . , sn) ∈ {0, 1}n,

Is1,...,sn,0 ∪ Is1,...,sn,1 = Is1,...,sn ,

and this union is disjoint.

For each n, let

Un =
{
[Is1,...,sn ]: s1, . . . , sn ∈ {0, 1}

}
.

Un ∈ O. Indeed, since the involved unions are finite,

⋃
(s1,...,sn)∈{0,1}n

[Is1,...,sn ] =
[ ⋃

(s1,...,sn)∈{0,1}n

Is1,...,sn

]
= [N] = βN \ N.

Now, consider any selection [Isn1 ,...,snn ] ∈ Un, n ∈ N. By induction on n, choose tn ∈ {0, 1} such that

It1,...,tn ∩ (Is11 ∪ Is21,s22 ∪ · · · ∪ Isn1 ,...,snn) = ∅

for all n. This is possible, since the latter union is contained in a union of at most 2n−1 +2n−2 + · · ·+2+1 =
2n−1 sets of the form Is1,...,sn . The sets It1,...,tn , n ∈ N, form a decreasing sequence of infinite subsets of N.
Let A be a pseudointersection of these sets. For each n,

A ⊆∗ It1,...,tn ⊆ (Is11 ∪ Is21,s22 ∪ · · · ∪ Isn1 ,...,snn)c ⊆ Icsn1 ,...,snn ,

and thus A ∩ Isn1 ,...,snn is finite. Therefore, [A] ∩ [Isn1 ,...,snn ] = [A ∩ Isn1 ,...,snn ] = ∅ for all n. �
This completes the proof of Theorem 2.4. �
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The properties S1(O,O) and Sfin(O,O) are hereditary for closed subsets (e.g., [18]). Sfin(O,D) is heredi-
tary for compact subsets since compact spaces satisfy Sfin(O,O). In contrast to that, we have the following.

Corollary 2.6. None of the properties S1(D,D), S1(Do,D), Sfin(D,D), Sfin(Do,D), S1(O,D), is hereditary
for compact subsets.

Proof. Proposition 2.3 and Theorem 2.4. �
We consider ordinals α with the order topology, so that the basic clopen sets are the intervals (β, γ) or

[0, β) or (β, α), where β, γ ∈ α.

Theorem 2.7. Each uncountable successor ordinal α + 1 satisfies the following setting.

◦ ◦ • •

◦ ◦ • •

Proof. The theorem follows from the following two lemmata.

Lemma 2.8 ([12]). Each uncountable successor ordinal α + 1 satisfies S1(O,O).

Proof. For completeness, we reproduce the proof: Given open covers U1,U2, . . . of α + 1, each consisting of
basic clopen sets, pick U1 ∈ U1 with α ∈ U1. If α \ U1 �= ∅, it is a successor ordinal, and we can cover its
last element by some U2 ∈ U2. This must end after finitely many steps, since the sequence of last elements
is decreasing. �
Lemma 2.9 (Folklore). For each uncountable ordinal α, α + 1 is not c.c.c. (equivalently, not Do-Lindelöf ),
having an uncountable dense set of isolated points.

This completes the proof of Theorem 2.7. �
Consider the following construction from [26]. The Alexandroff double of [0, 1] is the space [0, 1]× {0, 1},

with the basic open sets {(x, 1)} for each x ∈ [0, 1], and (U × {0, 1}) \ (F × {1}) for each open U in [0, 1]
and each finite F ⊆ [0, 1]. For each dense X ⊆ [0, 1], the subspace

T (X) :=
(
[0, 1] × {0}

)
∪
(
X × {1}

)

is compact Hausdorff.3

Theorem 2.10. For a dense X ⊆ [0, 1], T (X) satisfies the following:

(1) The setting in Proposition 2.3(1) if X is countable;
(2) The setting in Theorem 2.4 if X is uncountable and does not have strong measure zero; and

3 The notation T (X) for this construction is due to Scheepers, in recognition of the inspiration provided by a related construction
of Tkachuk.
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(3) The following setting if X is uncountable and has strong measure zero (e.g., when X is a Luzin set).

◦ ◦ • •

◦ ◦ • ◦

Proof. The unit interval [0, 1] is a closed subspace of T (X). Since S1(O,O) is preserved by moving to closed
subsets, T (X) does not satisfy S1(O,O). On the other hand, T (X) is compact (after covering its lower part
by finitely many sets, there remain only finitely many uncovered points on its top part), and thus satisfies
Sfin(O,O).

(1) In this case, T (X) has a countable base, and thus satisfies S1(D,D).
(2, 3) If X is uncountable, then T (X) is not c.c.c. (equivalently, not Do-Lindelöf), since X × {1} is

an uncountable discrete dense subspace of T (X). It remains to consider S1(O,D), and this was done by
Scheepers, who proved in [26] that T (X) has this property if and only if X has strong measure zero. �

Daniels [14] proved that, for each S ∈ {S1, Sfin}, if every finite subproduct of a product space
∏

i∈I Xi

satisfies S(O,D), then so does the full product
∏

i∈I Xi. It is a classic fact that the same assertion holds for
c.c.c. (equivalently, Do-Lindelöf) spaces. We prove that this is also the case for S(Do,D) (S ∈ {S1, Sfin}).
Note that this is not the case for the remaining properties: Consider the countably infinite power N

N of N
for S(O,O) and the (nonseparable) power N

ℵ1 for S(D,D).
Modulo Lemma 2.12 below, whose proof is similar to that of Theorem 2.27 in [11], the following Theo-

rem 2.11 was independently proved by Leandro Aurichi [2].

Theorem 2.11. Let S ∈ {S1, Sfin}. Let Xi, i ∈ I, be spaces such that
∏

i∈F Xi satisfies S(Do,D) for all finite
F ⊆ I. Then

∏
i∈I Xi satisfies S(Do,D).

Proof. We prove the assertion for S = S1. The proof in the other case is similar.
For an open set U in a product space

∏
i Xi, let supp(U) (the support of U) be the finite set of coordinates

i where πi(U) �= Xi. Note that open sets U, V in a product space intersect if and only if their projections
πF (U), πF (V ) intersect, for F = supp(U) ∩ supp(V ).

Lemma 2.12. Let Xn, n ∈ N, be spaces such that
∏

n≤k Xn satisfies S1(Do,D) for all k. Then
∏

n∈N
Xn

satisfies S1(Do,D).

Proof. Let X =
∏

n∈N
Xn, and let U1,U2, . . . ∈ Do(X). Decompose N =

⋃
k∈N

Ak, with each Ak infinite.
Fix k ∈ N. Since

∏
n≤k Xn satisfies S1(Do,D) and {π{1,...,k}(U): U ∈ Un} is in Do(

∏
n≤k Xn) for all

n ∈ Ak, there are Un ∈ Un, n ∈ Ak, such that {π{1,...,k}(Un): n ∈ Ak} ∈ D(
∏

n≤k Xn).
We claim that {Un: n ∈ N} is a dense family in X. Indeed, let U be an open subset of X. Let k be such

that supp(U) ⊆ {1, . . . , k}. By our construction, there is n ∈ Ak such that the projections π{1,...,k}(U) and
π{1,...,k}(Un) intersect. Since supp(U) ⊆ {1, . . . , k}, U intersects Un. �

We now prove the general assertion. Let X =
∏

i∈I Xi, and let U1,U2, . . . ∈ Do(X). Decompose N =⋃
k∈N

Ak, with each Ak infinite.
Let I1 be any countable nonempty subset of I. By the lemma,

∏
i∈I1

Xi satisfies S1(Do,D). Thus, there
are Un ∈ Un, n ∈ A1, such that {πI1(Un): n ∈ A1} ∈ D(

∏
Xi). Let
i∈I1
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I2 = I1 ∪
⋃

n∈A1

supp(Un),

and note that I2 is countable. By the lemma,
∏

i∈I2
Xi satisfies S1(Do,D). Thus, there are Un ∈ Un, n ∈ A2,

such that {πI2(Un): n ∈ A2} ∈ D(
∏

i∈I2
Xi). Let

I3 = I2 ∪
⋃

n∈A2

supp(Un).

Continue in the same manner.
We claim that {Un: n ∈ N} is a dense family in X. Indeed, let U be an open subset of X. Let I∞ =⋃

n∈N
In, and F = supp(U) ∩ I∞. Let k be such that F ⊆ Ik. By the construction, πF (U) intersects some

πF (Un), n ∈ Ak. Since supp(Un) ⊆ I∞, supp(U) ∩ supp(Un) ⊆ F . Thus, U intersects Un. �
Theorem 2.13. For each nonempty set X, the Tychonoff power R

X satisfies:

(1) The setting of Proposition 2.3(1) if X is finite nonempty;
(2) The setting of Proposition 2.3(2) if X is countably infinite; and
(3) The following setting if X is uncountable.

◦ • • ◦

◦ • • ◦

Proof. If X is countable, then R
X has a countable base, and thus satisfies S1(D,D). If X is finite, then

R
X is σ-compact, and thus satisfies Sfin(O,O). Since R is a continuous image of RX , RX does not satisfy

S1(O,O). This concludes (1).
(2) R

N does not satisfy Sfin(O,O).
(3) As X is uncountable, RX is not Lindelöf, and in particular does not satisfy Sfin(O,O). The Σ-product∑
x∈X R (with respect to any point in R

X) is a dense, nonseparable subset of RX . Thus, RX does not satisfy
Sfin(D,D).

It remains to prove that R
X satisfies S1(Do,D), and this follows from Theorem 2.11.4 �

Theorem 2.14. The Tychonoff power {0, 1}X satisfies:

(1) The setting of Proposition 2.3(1) if X is countably infinite; and
(2) The following setting if X is uncountable.

◦ • • •

◦ • • ◦

4 That R
X satisfies S1(Do,D) was also, independently, proved by Aurichi [2].
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Proof. Sfin(O,O) for {0, 1}X follows from compactness.
The Cantor space does not satisfy S1(O,O), e.g., since [0, 1] is its continuous image. Thus, {0, 1}X does

not satisfy S1(O,O).
By Theorem 2.11, {0, 1}X satisfies S1(Do,D).
Finally, as in the previous proof, if X is uncountable, then the Σ-product

∑
x∈X{0, 1} (with respect to

any point) is a dense, nonseparable subset of {0, 1}X . Thus, {0, 1}X does not satisfy Sfin(D,D).
{0, 1}X is a compact space of uncountable π-weight, and thus does not satisfy Sfin(D,D) [11, Proposi-

tion 2.4]. �
For a topological space X, let Ω be the family of all U ∈ O such that every finite subset of X is contained

in some member of U , and X /∈ U . Covering properties involving this family were studied extensively [29,
19,31]. For a space X, Cp(X) is the space of continuous real-valued functions on X, with the topology of
pointwise convergence.

Theorem 2.15. Let X be an infinite Tychonoff space. The space Cp(X) satisfies:

(1) The setting

◦ • • ◦

◦ • • ◦

if X does not satisfy Sfin(Ω,Ω) (e.g., if X = N
N) or there is no coarser, second countable Tychonoff

topology on X;
(2) The setting

• • • ◦

◦ • • ◦

if X satisfies Sfin(Ω,Ω) but not S1(Ω,Ω) and there is a coarser, second countable Tychonoff topology
on X (e.g., if X = R); and

(3) The setting of Proposition 2.3(2) if X satisfies S1(Ω,Ω) and there is a coarser, second countable Ty-
chonoff topology on X.

Proof. Cp(X) is dense in R
X . By Theorem 2.13, Cp(X) satisfies S1(Do,D). As X is infinite, Cp(X) does

not satisfy Sfin(O,O) [1, Theorem II.2.10].
By [8, Theorems 21,57], Cp(X) satisfies Sfin(D,D) (respectively, S1(D,D)) if and only if there is a coarser,

second countable Tychonoff topology on X and X satisfies Sfin(Ω,Ω) (respectively, S1(Ω,Ω)). �
Let Rcoc be R with the topology generated by the usual open intervals and all cocountable sets. This

example was first considered in this context by Aurichi [2].
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Proposition 2.16. The space Rcoc satisfies the setting of Theorem 2.14(2).

Proof. Rcoc is not separable, and thus does not satisfy Sfin(D,D). Aurichi [2] proved that Rcoc satisfies
S1(Do,D).

Rcoc does not satisfy S1(O,O) because R, which is coarser, does not.
Rcoc satisfies Sfin(O,O) because R does: Given U1,U2, . . . ∈ O(Rcoc), whose elements have the form

(a, b) \ C with C countable, let U ′
1,U ′

2, . . . be the open covers of R obtained by replacing each (a, b) \ C

with (a, b). Take finite F ′
1 ⊆ U1,F ′

2 ⊆ U ′
2, . . . such that

⋃
n F ′

n is a cover of R. Then moving back to the
original elements, we have that R \

⋃
n Fn is countable. Choose one more element from each Un to cover

this countable remainder. �
Let X be a topological space. The Pixley–Roy space PR(X) is the space of all nonempty finite subsets

of X, with the topology determined by the basic open sets

[F,U ] :=
{
H ∈ PR(X): F ⊆ H ⊆ U

}
,

F ∈ PR(X) and U open in X.
For regular spaces X, the Pixley–Roy space PR(X) is zero-dimensional, completely regular, and heredi-

tarily metacompact.

Theorem 2.17. Let X be an uncountable separable metrizable space. The Pixley–Roy space PR(X) satisfies:

(1) The setting of Theorem 2.15(1) if X satisfies S1(Ω,Ω);
(2) None of the properties if X does not satisfy Sfin(Ω,Ω); and
(3) The following setting if X satisfies Sfin(Ω,Ω) but not S1(Ω,Ω) (e.g., if X = R).

◦ • • ◦

◦ ◦ ◦ ◦

Proof. Daniels [14] proved that, for a metrizable space X, PR(X) satisfies S1(O,D) (respectively, Sfin(O,D))
if and only if X satisfies S1(Ω,Ω) (respectively, Sfin(Ω,Ω)).

Scheepers proved that, for Pixley–Roy spaces of separable metrizable spaces and S ∈ {S1, Sfin}, S(Do,D) =
S(O,D) [28].

If PR(X) satisfies Sfin(D,D), then it is separable. It is a classic fact that, in this case, X is countable
(references are available in [23]). Thus, in our case, PR(X) does not satisfy Sfin(D,D).

Lemma 2.18. The following are equivalent, for a topological space X:

(1) PR(X) has a countable cover by basic open sets;
(2) PR(X) is Lindelöf ;
(3) PR(X) satisfies Sfin(O,O);
(4) PR(X) satisfies S1(O,O);
(5) PR(X) is countable; and
(6) X is countable.
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Proof of (1) ⇒ (6). Assume that PR(X) =
⋃

n[Fn, Un]. For each x ∈ PR(X), let n be such that {x} ∈
[Fn, Un]. Then Fn ⊆ {x}, that is, Fn = {x}. It follows that there are only countably many singletons in
PR(X), that is, X is countable. �

This completes the proof of Theorem 2.17. �
Remark 2.19. By recent results of Sakai [24], Theorem 2.17 generalizes from separable metrizable spaces to
semi-stratifiable ones.

2.2.2. Countable examples
As pointed out already, Scheepers proved that, for Pixley–Roy spaces of separable metrizable spaces,

S(Do,D) = S(O,D) for both S ∈ {S1, Sfin} [28]. We prove an analogous assertion for countable spaces (note
the difference in the properties involved).

The following theorem is, perhaps, the most surprising result in this paper.

Theorem 2.20. Let S ∈ {S1, Sfin}. Let X be a countable topological space. Then PR(X) satisfies S(D,D) if
and only if it satisfies S(Do,D).

Proof. We prove the assertion for S = S1. The proof of the remaining assertion is similar.
Assume that PR(X) satisfies S1(Do,D), and let D1, D2, . . . be dense subsets of PR(X). Fix an enumer-

ation PR(X) = {Hn: n ∈ N}, and a partition N =
⋃

k Ik with each Ik infinite.
Fix k. For each n ∈ Ik, the family

Un =
{
[F,X]: Hk ⊆ F ∈ Dn

}

is dense open in the subspaces [Hk, X] of PR(X): For each basic open [H,U ] in PR(X) with [H ∪Hk, U ] =
[H,U ] ∩ [Hk, X] �= ∅, let F ∈ Dn ∩ [H ∪Hk, U ]. Then [F,X] ∈ Un, and F ∪H ∪Hk ∈ [F,X] ∩ [H ∪Hk, U ].

Since S1(Do,D) is hereditary for open subsets, there are for each k elements [Fn, X] ∈ Un, n ∈ Ik, such
that {[Fn, X]: n ∈ Ik} ∈ D([Hk, X]). It remains to observe that {Fn: n ∈ N} is dense in PR(X). Indeed,
let [F,U ] be a nonempty basic open set in PR(X). Let k be such that Hk = F . Since [Hk, U ] is open in
[Hk, X], there is n ∈ Ik (so that Hk ⊆ Fn) such that

[Fn, U ] = [Fn ∪Hk, U ] = [Fn, X] ∩ [Hk, U ] �= ∅.

Then Fn ∈ [Hk, U ]. �
For a topological space X and a point x ∈ X, let πNfin(x) be the family of all π-networks N of x (i.e.,

such that each open neighborhood of x contains an element of N ) such that all members of N are finite.
For S ∈ {S1, Sfin}, say that X satisfies S(πNfin, πNfin) if S(πNfin(x), πNfin(x)) holds for all x ∈ X.

Theorem 2.21 (Sakai [23]). Let X be a countable topological space, and S ∈ {S1, Sfin}. The following asser-
tions are equivalent:

(1) PR(X) satisfies S(D,D);
(2) X is countable, and all finite powers of X satisfy S(πNfin, πNfin).

Theorem 2.22. Let X be a countable topological space. The Pixley–Roy space PR(X) satisfies:

(1) All properties in the diagram if all finite powers of X satisfy S1(πNfin, πNfin);
(2) The setting
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• • • •

◦ ◦ • •

if some finite power of X does not satisfy S1(πNfin, πNfin), but all finite powers of X satisfy
Sfin(πNfin, πNfin);

(3) The setting

◦ ◦ • •

◦ ◦ • •

if some finite power of X does not satisfy Sfin(πNfin, πNfin).

Proof. Since X is countable, so is PR(X). Thus, PR(X) satisfies S1(O,O). Apply Theorems 2.20
and 2.21. �

To obtain concrete examples from Theorem 2.22, we use Nyikos’ Cantor Tree topologies and a result of
Sakai. Let {0, 1}<∞ be the set of all finite sequences in {0, 1}. For s, t ∈ {0, 1}<∞, let s ⊆ t mean that t is
an end-extension of s.

Let X ⊆ {0, 1}N, and define a topology on the countable space CT(X) := {0, 1}<∞ ∪ {∞} by declaring
all points of {0, 1}<∞ isolated, and taking the sets

CT(X) \
(
{0, 1}≤k ∪

{
s ∈ {0, 1}<∞: ∃f ∈ F, s ⊆ f

})
,

k ∈ N, F ⊆ X finite, as a local base at ∞.

Theorem 2.23 (Sakai [23]). Let X ⊆ {0, 1}N and S ∈ {S1, Sfin}. The following assertions are equivalent:

(1) CT(X) satisfies S(πNfin, πNfin);
(2) X satisfies S(Ω,Ω).

Corollary 2.24. Let X ⊆ {0, 1}N and S ∈ {S1, Sfin}. The following assertions are equivalent:

(1) PR(CT(X)) satisfies S(Do,D).
(2) PR(CT(X)) satisfies S(D,D).
(3) X satisfies S(Ω,Ω).

Proof. The equivalence of (1) and (2) follows from Theorem 2.20. The equivalence of (2) and (3) follows
from Sakai’s Theorems 2.21 and 2.23. �
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The first construction of a countable space not satisfying Sfin(Do,D) is due to Aurichi [2]. Our method
makes it possible to transport examples from classic selection principles, and is consequently more flexible,
as the following theorem shows.

Theorem 2.25. Let X ⊆ {0, 1}N. The countable space PR(CT(X)) satisfies:

(1) Setting (2) in Theorem 2.22 if X satisfies Sfin(Ω,Ω) but not S1(Ω,Ω) (e.g., X = {0, 1}N);
(2) Setting (3) in Theorem 2.22 if X does not satisfy Sfin(Ω,Ω) (e.g., X = N

N).

Proof. By Corollary 2.24. �
We conclude with an example of Barman and Dow [4]: Let N ∪ {∞} be the one-point compactification

of N. Take the box-product on (N ∪ {∞})N. Let

EI
� =

{
f ∈

(
N ∪ {∞}

)N: ∃n, f(1), . . . , f(n) < ∞, f(n + 1) = f(n + 2) = · · · = ∞
}
,

a countable subspace of the box-product space (N ∪ {∞})N. EI� does not satisfy Sfin(D,D) [4].

Theorem 2.26. The Barman–Dow space EI
� satisfies the following setting.

◦ ◦ • •

◦ ◦ • •

Proof. Since EI� is countable, it satisfies S1(O,O). It Remains to prove that EI� does not satisfy Sfin(Do,D).
The proof is similar to the one above, due to Barman and Dow.

For n, let

Un
m =

{
f ∈ EI

�: f(n) = m
}

for each m ∈ N. Then Un = {Un
m: m ∈ N} is an open dense family. Let Fn ⊆ Un be finite for all n. For each

n, let mn be maximal with Un
mn

∈ Fn. Let

U = EI
� ∩

∏
n

[mn + 1,∞].

Then U is disjoint of
⋃

Fn, for all n. �
Theorem 2.27. No implication can be added to the Dense Families Diagram (Fig. 1), except for those obtained
by composition of existing ones. Moreover, this is exhibited by ZFC examples.

Proof. We go over the properties one by one, and verify that no new implication can be added from it to
another property, by referring to the appropriate (one, in case there are several) proposition or theorem.
When treating a property, we consider only potential implications not ruled out by the treatment of the
previous properties.
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(1) S1(D,D) � Sfin(O,O) (Proposition 2.3).
(2) Sfin(D,D) � Sfin(Do,D) (Theorem 2.25).
(3) S1(Do,D) � Sfin(D,D) (Theorem 2.13).
(4) Sfin(Do,D) � S1(O,D) (Theorem 2.17).
(5) S1(O,O) � Sfin(Do,D) (Theorem 2.7).
(6) Sfin(O,O) � S1(O,D) (Theorem 2.4). �

The classification is completed.
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