Information and Computatioh71, 350—-363 (2001)
doi:10.1006/inco.2001.3045, available online at http://www.idealibrary.cold D E ,Ll

Guaranteeing the Diversity of Number Generators

Adi Shamir

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
E-mail: shamir@wisdom.weizmann.ac.il

and

Boaz Tsaban

Department of Mathematics, Bar-llan University, Ramat-Gan 52900, Israel
E-mail: tsaban@macs.biu.ac.il
URL: http://www.cs.biu.ac.il/"tsaban

Received February 22, 2001

A major problem in using iterative number generators of the farma f (x;_1) is that they can enter
unexpectedly short cycles. This is hard to analyze when the generator is designed, hard to detect in real
time when the generator is used, and can have devastating cryptanalytic implications. In this paper we
define a measure of security, calleelquence diversityvhich generalizes the notion of cycle-length
for noniterative generators. We then introduce the class of counter-assisted generators and show how to
turn any iterative generator (even a bad one designed or seeded by an adversary) into a counter-assisted
generator with a provably high diversity, without reducing the quality of generators which are already
cryptographically strong. © 2001 Elsevier Science

Key Words pseudorandomness, cycle length, cryptography.

1. INTRODUCTION

In this paper we consider the problem of generating long cryptographically secure sequences |
ative number generators which start at some seed wghtes and extend it by computing = f(Xi_1)
wheref is some function. Thigh output of the generator is a (typically shorter) vajue- g(x;) derived
from the internal state by some output functip@Fig. 1). If f is a secret keyed function, thgrmay
be the identity.

A major application of number generators is to encrypt cleartext®biyng them with the generated
outputs. In this case, the sesds a secret key which is shared by the communicating parties, bt
unknown to the eavesdropping adversary.

Since the state space is finite, the sequence of internal gtatédseventually become periodic with
some periodp; i.e., x; =X+ for all i larger than som&. Any cycling of the state sequence causes
cycling of the output sequence with periaidnost p A particularly worrisome problem is the possibility
thatig and p may be unexpectedly small, and therefore the cycling pgitp is actually achieved.
This can happen even in very complex generators. An interesting example is Knuth’'s Super-re
number generator (Algorithi{) [9, Sect. 3.1], which converges rapidly to a fixed point (thatgss
very small, andp = 1).

If the cycling pointig+ p is achieved, then theor of theith andi + pth ciphertexts is equal
to thexor of theith andi + pth cleartexts, for ali > ip. If the cleartexts have a sufficiently higt
redundancy, the cryptanalyst can detect the cycling by noticing the nonuniform statistics ebsisch
and then recover the actual cleartexts from their known painwisis. Even if the cleartexts have nc
redundancy, knowledge of some cleartexts will make it possible to find other cleartexts encrypte
the same repeated values.

1.1. Partial Solutions
1.1.1. Online Monitoring

A possible solution to this problem is to monitor each execution in real time. If a particular seed
to early cycling, the cryptographic operation is stopped and the seed is replaced. However, this
350

0890-5401/01 $35.00
© 2001 Elsevier Science
All rights reserved.

GENERATORS WITH GUARANTEED DIVERSITY 351

e

FIGURE 1

very disruptive if the exchange of new seeds is time consuming or difficult to arrange. Note furthe
real time detection of cycling behavior using hash tables requires a very large memory, wherea:
methods such as Floyd's two pointer cycle detection algorithm (see, e.g., [9, p. 7]) are not guar:
to detect cycles as soon as they are entered.

1.1.2. Experimental Testings

The designer of the generator can test its behavior by applfiagimited number of times to a
limited number of random seeds (see [2]). However, such testing cannot be exhaustive, and tht
if no cycling is ever detected in these tests, the next seed or the next step can lead to a cycling.

1.1.3. Pseudorandom Functions

Pseudorandom functions: X — X are functions which are chosen from the space of all possi
functionsg : X — X with a relatively low-entropy distribution, but which are difficult to tell apart fror
truly randomfunctions (which are selected from the space of all possible functions— X with
uniform distribution). For any adversary with unlimited computational power and access to a polyn
(inlog | X]) number of values of a pseudorandom functfgrthe probability that the adversary can te
that these values came frofmrather than from a truly randognshould be negligiblePseudorandom
permutationsand pseudorandom sequencare defined similarly to be low entropy but difficult tc
distinguish from truly random permutations and sequences, respectively. For more precise defi
see [7, 10, 13, Sect. 2.2, 20] and references therein.

It is easy to see (and well known) that sequences generated by iterative number generato
pseudorandom functionfsare pseudorandom. Thus, the probability that such a generator enters a
cycleis negligible. However, all known constructions of pseudorandom functions are slow and are
on unproved conjectures (see [16, Sect. 17.9]). In fact, all practical functions used in cryptograp
ad-hoc constructions which are not proved to be pseudorandom, and nothing is known about the
structure of the cycles they generat&his is particularly worrisome for the user, since there is
guarantee that the generators that he or she uses do not contain a trapdoor leading to shért cyc

1.1.4. Mathematically Structured Generators

The need to avoid short cycles is the major motivation behind the development of several fal
of generators based on mathematical structures. These families include linear congruential gen
linear feedback shift registers (LFSR’s), clock-controlled LFSR’s, additive generators, feedback
carry shift registers, Ap generators (see [16 Sects. 16—17] and references therein), and TSR'’s
Under certain conditions, these families can be proved to have large cycles.

The drawback of this approach is that their mathematical structure can be often used to crypta
them (see[16, Sects. 16—17]for references to cryptanalysis of various implementations of the mer
generators).

1 A notable exception appears in [8] and [5], where the cycle structure of nonlinear feedback shift registers is studied. Hc
the obtained results cover only degenerate cases. Moreover, in [8] it is proved that the studied genesatwaseshort cycles.
2 Knuth’s example could be viewed as such a trapdoor generator.

352 SHAMIR AND TSABAN

1.1.5. Re-keying

Chambers [3] suggested a technique to reduce the risk of short cycles by restarting the gen
internal state every fixed number of iterations, with a new key seed taken from a re-keying gen
which has a provably large cycle (e.g., one of the generators mentioned in Section 1.1.4).

Given an iterative generator, lgk, k=1, 2, ..., be the probability that the cycling point of the
generator occurs after at ledsiterations. Assume that we use the generator to get an output sequ
of sizem. The probability that we do not reach the cycling point in the usual iterative mquje iSow,
if we re-key the generator evekyiterations, then the probability that we do not reach the cycling pc
even once |spk k. As nothing is known on the cycle structure of the generator, there is no guare
that pk kis greater tharp,. It may thus be the case that the re-keying mode is worse than the star
iterative mode.

Moreover, if the re-keying generator is cryptographically weak, then it could be cryptanalyzed
the outputs which come immediately after the re-keying phases.

One should note further that, as Schneier points out in [16, Sect. 17.11], algorithms that have
key setup routine are not suitable for this mode.

1.1.6. Similarity Transformations and Counter-mode

Another possible solution is to take some simple permutatiovhich is guaranteed to have long
cycles (e.g.u(x) =x+1 (modn), or any of the examples from Section 1.1.4.) and then tofuse*
(instead off) as the iteration function. This similarity transformation has the same cycle structure

Such a construction is, though, rather degenerate({) stand for a generator whose iteratio
functionisf and whose output functiongs Consider agenerator of the fokrhu f —*, g). Define§ = go
f. Thenforall seeds, settings = f ~(s) implies that théth outputisg((fuf 1) (s)) =g(fu' f ~1(s)) =
(go f)(U'(8) =§(u' (3)); that is, the generator is equivalent to the generatod). This means that the
modified generator is equivalent to another generator with a cryptographically weak iteration fun

Foru(x) = x + 1 (modn) we conclude that for sontg thei th output of the generator equéi€ +).
Generators of the forny; =g(s+i) are calledcounter-modegenerators and are a standard mo
of operation [16, Sect. 9.9]. However, such generators have the following unpleasant propert
difference of any two input values+i ands+ j to g is simplyi — j. If i is close toj, theni — j has
a small Hamming weight. This fact could be used in differential or correlation cryptanalygisTofs
is also the case for other choicespfe.g., ifu is an LFSR, themi (s) andul (s) are equal in all except
fori — j bits.

2. THE DIVERSITY OF SEQUENCE GENERATORS

In this section we propose a new notion of security for sequence generators, which generali:
cryptographically desirable concept of long cycles.
We first define the notion of diversity for a single infinite sequence.

Derinmion 2.1, Thediversity of a sequence= (X, X1, X2, ...) is the function®y(k) for k=
1,2, 3,... defined as the minimum number of distinct values occurring in any contiguous subseq
Xi, Xi 11, ..., X 1k_1 Of lengthk in x.

All of the sequences considered in this paper have a finite sample spg¢e-oh possible values.
For any sequencein X,

1<Dy(k) <Dy(k+1)<Dy(k)+1<n.

In other words, the diversity grows monotonically and at most linearly withd cannot exceed
We now generalize the concept from sequences to generators. We first define the types of ger
considered in this paper:

Derinimion 2.2, Aniterative generatoiis a structuregg = (X, Y, f : X — X, g: X — Y), where for
all x € X, f(x) andg(x) can be computed in polynomial time fraxn X is the state spageandY isthe

GENERATORS WITH GUARANTEED DIVERSITY 353

output spaceWe may writeG = (f, g) for short orG : x; = f (x;_1) if the output function is not relevant.
For a generatog : xi = f(xj_1) and seed € X, we denote thstate sequencio=Ss, X1, . ..) of the
generated internal states Gys).

We wish to bound from below the diversity of the sequences of internal states generated from pc
seeds.

Derinimion 2.3, Thediversity of an iterative generat@ : x; = f(xj_1) is the function
@g(k) = min{©g(s)(k) 'se X}

defined fork=1, 2, 3, Thetotal diversityof G is the limit limy_, ., Dg(k).3
Iterative generators on finite spaces have simple diversity functions.
Lemma 2.1. Assume thag : x; = f(x;_1) is an iterative generator.

1. Letx be a sequencf internal statecreated byg. Then®y(k) = min{k, p} where p is the
length of the cycle that enters into.

2. 9Dg(k) = min{k, p} where p is the length of the shortest cycle in f.

Proof. x has distinct values before it enters the cycle and while it completes the first traversal ¢
cycle. This implies (1) and (2) follows from (1).m

The diversity of an iterative generator is thus directly related to the size of its smallest cycle.
intended to capture one aspect of the worst case behavior of a generator in the sense that ge
with provably high diversity cannot repeat a small number of internal states a large number of tin
a result of an unlucky or adversarial choice of seed.

The diversity measure can be applied to noniterative generators, in which the computafiomagf
depend on its indeas well.

Derinimion2.4. Acounter-dependegeneratorisastructuge= (X, Y, F: X xN— X, g: X =),
where for allx € X andi € N, F(x, i) andg(x) can be computed in polynomial time froxa X is
the state spageandY is the output spacen this type of generators, the next state is calculated
xi = F(x_1,1). Here too, we denote theate sequencg, =S, X1, . ..) of generated internal states b
G(s).

Note that iterative as well as counter-mode generators are particular cases of counter-dep
generators. A straightforward generalization of Definition 2 for counter-dependent generators is:

DEeFINTION 2.5.

1. The diversity of a counter-dependent genergtok;, = F(xi_1, i) is the function®g(k) =
min{®g (k) : s € X}definedfok=1, 2, 3,.... Thetotal diversit;@tgo‘a' of Gisthe limitlimy_, .. ®g(k).

2. A counter-dependent generatprx; = F(Xi_1, i) is g(k)-diverseif Dg(k) > g(k) for all k=
12,

The diversity of a general counter-dependent generator can grow and freeze in an irregular wa
k increases, since these generators are not forced into a cycle when they accidentally repeat tt
X value. The diversity function is thus a natural generalization of the notion of cycle size.

3. MODIFYING GENERATORS

In this section we consider several ways in which we can modify a given iterative generator in
to increase its diversity. The main intuitive conditions we impose on this process are:

3 Andersoret al. [2] suggested a statistically oriented notion of diversity for random number generators, based on experir
testings of the generator. These testings give estimations faxthrage casbehavior, whereas our notion boundswhast case
behavior of the generator. Moreover, the combinatorial nature of our notion will make it possible to use mathematical th
order to apply it to cases where experimental testings are not suitable (e.g., when the state space is huge). See also Sec

354 SHAMIR AND TSABAN

Condition 3.1. We do not want to design the new generator from scratch. We usually prefer tc
known and well-studied primitives such as DES, RC5, or nonlinear feedback shift registers, for \
highly optimized code can be easily obtained or reused from other parts of the application. W
want the modified design to use the same cryptographic ingredients as the original design.

Condition 3.2. The computational complexity of the modified next-state function must not
significantly greater than that of the original one.

Condition 3.3. The modification technique should be uniformly applicable to all iterative generat
treating them as black boxes. We do not want the modification to be based on the mathemat
statistical properties of the given iteration functibnin particular, we cannot assume that we know tl
structure of its cycles.

Condition 3.4. We are more interested in increasing the diversity of the interval vajutsn in
increasing the diversity of the output valugs= g(x;): If the given generator uses an output functgpn
with a small range (e.qg., a single bit) applying diversity measures to the output values is meanin

The modification should be a win—win situation: If the given generator has a low diversity, the pro
should be rectified, but if the given generator is already strong, we do not want the modification tow
it. The problem is that we do not have a general quantitative definition of the goodness of gene
except when they are perfect. We thus concentrate in this paper on the following formal interpret

Condition 3.5.

1. For any given iteration function, the modified generator shoulgl(kgdiverse for someg(k)
which is exponential in log.

2. Ifthe iteration functionf is pseudorandom, then the state sequences generated from ra
seeds by the modified generator should be pseudorandom.

As in counter-mode (see Section 1.1.6), our black box modification technique is based on tt
the iterative generator into a counter-dependent generator, alloyittgdepend on in addition to
X _1. To sharpen our intuition, let us consider sobael constructions. (In the following examples an
throughout the paper, the state spaces identified with the set0, 1, ..., n — 1}, and addition in the
state space is carried moduig

ExampLE 3.1. X =i. This function has maximal diversity, but poor cryptographic quality.

ExampLE 3.2. x = f(i). This is the standard counter-mode. Perfect generators remain perfec
for a constantf the diversity is 1.

ExavpLe 3.3. x = f(i)+i. This is a simple combination of the previous two examples. Perf
generators remain perfect, but féfx) = —x, all the generateg, are 0, and thus the diversity is 1.

ExampLE 3.4. x = f(x;_1+1). This is an attempt to force the next state to depend both on
previous state and on the index. Perfect generators remain perfect, but the generated seque
diversity 1 whenf is a constant function.

ExampLE 3.5. X = f(Xj_1+1)+i. This is the “kitchen sink” approach, trying to combine all th
ingredients in all possible ways. However, when the funcfids f (x) = —X, the sequence generate
from any initial seekg=siss, —s, s, —S, S, —S, ... which contains at most two values.

Considering these counter-examples, the reader may suspect that all black box modifications
(for somef). In the next section we show that this is not the case.

4. APROVABLY GOOD MODIFICATION TECHNIQUE

Given an iterative generatoff, g), we apply the following black box modification.

Derinimion 4.1. A counter-assisted generatdif, g) is a generator in whickkg=s, and for all
i>1, x="f(x_1)+1i (modn), wheren is the size of the state space, and the output isg(x;)
(see Fig. 2).

GENERATORS WITH GUARANTEED DIVERSITY 355

9 o
\Igs//

FIGURE 2

Since it is easy to maintain or obtain a counter for the number of values produced so far (in
applications, one can use either the loop counter or the running block-number as a counter 1
counter-assisted mode), and no change is made in the funttimng, the modification technique
is completely trivial and can be applied to any iterative generator without increasing its con
Xity.

Formally, for all generatorgX, Y, f, g), the counter-assisted modified generator is in fact the iterat
generatofX x {0,...,n—1},Y, F, G), where

F(x,i) = (f(xX)+i (modn),i+1(modn)) L
G(x,i) = g(x). (1)

However, note that:

1. The only secret part is located in theoordinate,
2. incrementing has no cryptographical significance, and
3. the output calculatio(x, i) is independent of the.coordinate.

Thus applying diversity measures on the whole state sfax€0, ..., n — 1}—that is, measuring the
diversity of the sequences of pairg,(i), i =1, 2, ...—is misleading (and, in fact, not informative)
This is why the diversity measure is focused on the actual state seqUKBEes(Xo =S, X, ...) rather
than on the sequence of paiss, ().

Lemma 4.1. Letx=(xo, X1, X2, . ..) be a state sequence of a counter-assisted generator. Ther
alli #j (modn), if xi =X; then X1 # Xj+1 and X_1 # Xj_1.

Proof. We argue modulm. By definition,x; .1 = f(x)+(+ 1) andxj 1= f(x;)+(j +1). If
X =X; buti # j, then necessarilyi+1 # Xj+1. Now, for the very same reasox,-; = x;_; would
imply x;i # X;, which is not the case.®

In other words, the sequenk&as the interesting property that equality at any pair of locations imp
inequality at the pair of theirimmediate successors and the pair of theirimmediate predecessors.
thisthe isolated equality propertylhis is the intuitive reason why counter-assisted generators cat
enter short cycles: If they accidentally generate the same value at several locations, all the sub:t
computations are guaranteed to diverge rather than converge.

THEOREM4.1.
1. The black box modification technique modifyiggx = f(xi_1) to G’ :x = f(X_1)+i
(mod n) is max{g(k), h(k)}-diverse where

- vk—1 ksn’ and b(K) = k/| Im(f)] ksn'
J/n n<Kk n/[Im(f)] n<Kk

356 SHAMIR AND TSABAN

2. Iftheiteration function f is pseudorandoitinen the state sequences generated from rand
seeds by the modified generator are pseudorandom.

Proof. (1) We first show thaig(k) < ©¢g(k) for all k=1, 2,.... Consider any sequence kf
consecutive values;, X 11, ..., X +k-1 (K < n+1) and assume that it contains exaatlylistinct
values. There are? possible ordered pairs of these valuast(), and by Lemma 4.1 each one of ther
can occur at most once in a consecutive pair of locati®ns«{ ;- 1) along the sequence. Since there a
k — 1 such locationsy? > k — 1, which yields the desired lower bound on

Next, we need to show th§(k) < D¢ (k) forallk=1, 2, In a sequence df consecutive values
Xi, Xi+1, ..., Xi+k-1 (K < n+1), eachx; is of the formc; + j, wherec; € Im(f). Since we add
distinct values to at mosgim(f)| values, we get at leaky| Im(f)| distinct values.

(2) We now sketch the proof of the pseudorandomness part. Consider the following seque
oracles, which accept a numbefwhich is polynomial in logh) and output a sequenge, .. ., Xk € X.
(By randomwe mean statistically independent and uniformly distributed.)

Oracle 1: Returns a random sequenges X (i=1,2,...,k).
Oracle 2: Chooses a random sergl=s, and defines arf : X — X on the fly as follows:

1. AflagBirthday is initially set to O.
2. Foreach=1,2,... k

— If f(Xi_1) is undefined, then choose a randgra X and definef (xi_1) =Y.
— Otherwise, seBirthday = 1.

3. Setxi= f(x_1)+1i.
The remaining values of are chosen randomly.

Oracle 3: Chooses a particular functioh with uniform probability from the set of all func-
tions from X to X, chooses a random seggl=s, and returns the sequengewith x; = f(xj_1) +1,
i=212,...,k

Oracle 4. Same as Oracle 3, but with pseudorandonmnstead of truly random.

We say that two oracles adéstinguishablef there exists a (not necessarily polynomial time) algorith
(calleddistinguishe) which, for some constamt > 0, given a sequence of length polynomial in tog
can tell with probability greater thary 1og(n)¢ which oracle has generated this sequence. Otherw
the oracles arendistinguishablelt is clear that Oracles 2 and 3 are indistinguishable. That Oracle
and 4 are indistinguishable follows from the fact that any distinguisher of these oracles can be u
construct a distinguisher of pseudorandom functions from random ones.

It remains to show that Oracles 1 and 2 are indistinguishable. The only possible constraint
output of Oracle 2 happens whénis applied twice to the same argument, thaBisthday is set to 1.
It is well known that fork < n, the probability that no birthday occurs is closekfg(2n) [17], which
is negligible ifk is polynomial in logn. =

Remark. The upper boun#?/(2n) on the distinguishing probability is tight: In probability close t
k?/(2n), a birthdayx; = x; occurs and the distinguisher can check that — (i +1)=Xj;1 — (j +1).
Provided this, the probability that the output came from Oracle Yis 1

5. ASYMPTOTIC TIGHTNESS OF THE PROVABLE DIVERSITY

The square root lower bound on the diversity may seem to be an artifact of the proof techniqu
first consider the purely combinatorial version of the problem: What is the longest sequence or
construct fromv distinct symbols which has the isolated equality property?

Lemma 5.1. For any positive integep, there exists a sequence of length+ 1 consisting ofv
symbols and having the isolated equality property.

Proof. Let C be a complete directed graph withvertices and»? directed edges (including sell
loops). As the graph is connected and the indegree and outdegree of each v@riextia same=£v),

GENERATORS WITH GUARANTEED DIVERSITY 357

the graph is Eulerian. Lafyeyvi€; - - - v,2_16,2_1v9 be an Eulerian tour, which includes each directe
edge exactly once. Assume that for some distiaetdj, v; = vj. If vi 11 = vj41, then necessarily =g,
which is disallowed in Eulerian tours. Similarly,_; = vj_, would imply & _; = e;_;. Consequently,
the sequence has the isolated equality propemsy.

This combinatorial result does not rule out the possibility that sequences created by counter-a
generators must satisfy additional constraints, and as a result the lower bound in Theorem 4.1
improved significantly. We will show that this is not the case: We prove the asymptotic tightne:
our lower bound by constructing for eacha specific counter-assisted generator such that the t
diversities of these counter-assisted generator©égn).

THeOREM 5.1. There exist functions,f n=1, 2, ... such that the total diversitie@tg"ntal of the
counter-assisted generatofs : xi = fn(xi_1) +i (modn) are O(/n).

Proof. Fix a natural numben. We will write for short f andg instead off,, andgy, respectively.
The state sequence Gfwill be based on two sequenceg; ai, ... , 8,—1 andbg, by, ... , bg_1 (the
values ofa andg will be determined later). The sequences are meshed as follows:

1. Locations with even indices contain only thevalues, and locations with odd indices contal
only theb; values.

2. Thea values occur in block order: The fir8toccurrences aray, the nextg occurrences are
a1, and so on.

3. Theb; values occur in cyclic order: The firstoccurrences ate, . .. , bg_1 in this order, the
nextp occurrences are agag, . .. , bg_ in this order, and so on.

Putting these blocks in consecutive rows, we get a m<ex(ci;) of sizea x 28, whereg; »j = &;
andc zj11=Db;:

a bo a by -+ a bg
a bo a1 b, --- aq bﬁ,]_

C=
ay-1 bo a1 b1 - a1 bga

We define a functionf for which the counter-assisted generaorx; = f(xi_1) +i, seeded by
Xo = &g, has state sequence equal to our meshed sequence.

We begin with a few simple restrictions on our parameters. For cyclicity the counter must rett
0 after 2¢8 steps; that is, @8 =0 (modn). We will considera’s and’s such that 28 = n to make
the sequence shorter. The isolated equality property implies that all af #melb; values are distinct.
Thus, the total diversity will be + 8.

Under these restrictions, we can see via elementary calculus that the ekojge- \/n/2 yields the
minimum possible total diversity af + 8 = +/2n values.

We thus begin withn’s for whichn/2 is a square and choose= 8 = \/n/2.

We now consider the specific values of the elements in our meshed sequence. The conditio
Cij+1= f(Cj)+281 +(j +1),¢ r10= f(Ci25-1) +28(+ 1) — 1, andcoo= f(Cy—1.25-1) +2cf. In
terms of thes; andb; this is:

bj f(a)+2pi +(2j +1)
a = f(b)+28i+@j+2) (j=0,...,8-2)
g = f(bg_1)+2Bi.

Settingx = f (ap), the first equation yields; = x 4 (2j + 1) fori = 0. Putting this back in the equa-
tion we get thatf (a;)) = x — 28i for all i. Similarly, the second equation implies (setting- f (bg))
a =Y+ 2pi +2andf (bj) =y—2j forall j < g—1. Thethird equation with= 0 givesf (bg_1) =ap =
y+2.

358 SHAMIR AND TSABAN

We therefore have, for any choicexfy, the following requirements:

a = Y+2+26i > x — 26i
bj =x+1+2j+>y—2j (j<p—1)
bﬁ_lzx—1+2,3r—f>y+2.

Itis easy to check that any such definition yields the desired sequence of states, as long as the r
g andb;’s are disjoint. As we assume thats even, choosing anyandy having the same parity (e.g.
x =y =0) will do.

The values off on X\ {&, b;} can be arbitrary. It remains to check that the sequence is repe
after everyx - 28 steps. Indeed, the counter will be2=0 (modn), and thus<,s = f (X2up—1) + 0=
f (bg—1) = ap, SO we are right where we begun.

We now treat the cases whemg¢2 is not a square. Set=p = [,/n/2], and defineg;, bj, and f
as above. Now modifyf (x) to f(x mod ZB). The above argument shows that if we project the sta
sequence modulo 28, we get diversity at most + 8 = O(y/n). Therefore, the actual diversity car

be no more tha®(/n) - [n/(2aB) 1=0(/N)-2=0(/n). =

Remark. In most practical cases,/2 is not a square and thus we cannot achieve the exast
upper bound using our meshing construction. However, in many ocases even power of 2 (e.g.22
232, 264 2128 etc.), so we can choose= ,/n andg = /n/2 (note that @ = n) to get total diversity
o + B =3/n/2, which is close to the/2n upper bound achieved in the case whef2 was a square.

Our construction showed that the bouy@ for the total diversity is asymptotically tight. Howevet
we do not have a construction whe®g (k) is O(v/k) for all k simultaneously

Open problem 5.2. Does there exist a constamsuch that for all sufficiently large, there exists a
counter-assisted generatp(with state space of siz® such tha®g(k) < cvk for all k?

6. CASCADE COUNTER-ASSISTED GENERATORS

In this section we generalize the notion of counter-assisted generators.

A Latin square is a binary function which is uniquely invertible given its output and any on
the inputs. For example, the operationg-y (modn), x —y (modn) andx & y are Latin square
operations. Moreover, every group operation is a Latin square operation,’>argifs a Latin square
operation andP, Q, Z are permutations, thed(P(x) x Q(y)) is a Latin square operation. Letbe a
Latin square operation.

It is easy to see that the proof of Theorem 4.1 applies whenthenodification is replaced by
any Latin square operation (unique invertibility with respect to theinput guarantees the isolate
equality property, and unique invertibility with respect to gy@put guarantees the pseudorandomne
of the states). We can thus extend the concept of counter-assisted generators to include these
well.

Remark. Whenn is a power of 2, we can use essentially the same construction as in the prc
Theorem 5.1 to show the optimality of ti§&,/n) lower bound when thet-i (mod n) modification is
replaced by ai modification.

The next lemma shows that counter-mode generators are a degenerated case of counter-
generators.

Lemva 6.1. Every counter-mode generator is a counter-assisted generator.

Proof. A counter-mode generator witlth outputg(s = i) is equivalent to the counter-assiste
generato = (f, g), wheref = s, and the Latin square operatiorissince in this caseq = f(Xj_1) *
i=Sxi. ®

We can extend the notion of counter-assisted generators further. Assumg =th@t g, X, Y)
is an iterative generator, and let={(co, 3, ...) be any sequence of elements ¥ Define the

GENERATORS WITH GUARANTEED DIVERSITY 359

sequence-assisted generatbk c to be the generator whosth state is; = f(x_1) » ¢; (and whose
i th output isg(x;)).

THeorRem6.1. LetG = (f, g) » c be a sequence-assisted generator. Then

1. DgK) > VDOc(k)—1forallk=1,2,....
2. Ifthe the sequenceis pseudorandornthen the state sequence®fs pseudorandom.
3. If f is pseudorandonthen the state sequence®fs pseudorandom.

Proof. (1) AsinLemma 4, we can show thgts c; implies (i_1, Xi) # (Xj—1, Xj). The rest of the
proof is similar to the proof of Theorem 4.1 (1).

(2) If the state sequence ¢fis not pseudorandom, then the sequetican be distinguished from
pseudorandom noise by consideriffg g) » ¢ and looking at the state sequencejof

(3) This is proved as in Theorem 4.1 (2); the only difference is in the definition of Oraclm 3.

Thus, any sequenaewith large diversity can be used instead of a counter. In particular, we can
the output of any of the generators mentioned in Section 1.1.4 as the assisting sequence. In ¢
assume that is any generator with output . DefineG « C = G x ¢, wherec = (cy, ¢y, . . .) is the output
sequence of (note that the sequencalepends of the initialization af). The following definition is
inductive.

Derinimion 6.1. G is acascadecounter-assisted generator if:

1. G is a (standard) counter-assisted generator, or

2. G=F xC,whereF is an iterative generatox,is a Latin square operation, adds a cascade
counter-assisted generator.

In particular, we have:
Lemma 6.2. Every iterative generator is a cascade counter-assisted generator.

Proof. If G is an iterative generator, arddis a generator with output function 0, thén-C =G is
a cascade counter-assisted generatmr.

Thus the notion of cascade counter-assisted generators extends those of iterative, counter-mc
counter-assisted generators.

Ideally, all internal states of the cascaded generators (including the starting position of the dou
should be initialized by random, independent seeds. If this is not feasible, one can, e.g., initiali:
“driving” generator or the counter with a random seed and then clock the cascade a few times to
all internal states depend on the seed. In this case, however, caution must be taken to make s
particular choice of output functions does not make the influence of the seed “vanish” while going
the cascade.

ExavpLE 6.1. Assume that the generatots3, andC have state spaces of size= 22°6 (256 bits).
Assume further that the generat®ris counter-based with an invertible output functignand that
the output functiorgg of B is invertible as well. Consider the total diversity of the cascade gener:
A+ (B C) (see Fig. 3): AL is counter-based, we haw@.(n)=n. Thus by Theorem 6.1 (and
discreteness)®pac(n) > [v/n — 11 =22 and D 4 4 3ac)(N) > [/Dpec(n) — 11 > 254 Moreover, if
the output function of’, or any of the iteration functions df, A is pseudorandom, then the stat
sequence o#l is pseudorandom as well. (We can also use, e.g., a maximal length LFSR instead
counter-based generat®to get the same results.)

Remark. In this section we have seen that every iterative generator can be viewed as a ce
counter-assisted generator (in a degenerate manner). On the other hand, as mentioned in Se
every counter-assisted generator can be viewed as an iterative generator (with a larger state spa
advantage of our approach is that we focus on the cryptographical part of the generator, from whi
output is calculated, rather than on the state of the whole system.

360 SHAMIR AND TSABAN

FIGURE 3

7. GENERATING SEQUENCES WITH MAXIMAL DIVERSITY

If we allow the design of a new output functign then we can modify any generator to have tt
maximal possible diversitpg(k) =k forallk=1,2,...,n.

Dernimion 7.1, LetG be any iterative generator. Modify its next-state function as follows:

Xoiy1 = F(Xz)
f(Xi 1) +i.

X2i4+2

That is, the counter is incremented and added to the state value only once every two iterations
generator. The pair of generated values,(xz + 1) is used as the argument of a new output functi
g : X x X—Y x Y. We call this mode of operatidhe two-step counter-assisted molliere generally,
thet-step counter-assisted madelefined by incrementing and adding the counter once ¢venations
and using eachtuple as the input of a new output functign X! — Y'. Formally, thet-step generator
G=1(f, g, X,Y) with Latin square operatiosi is the counter-assisted genera@r= (f, §, X', Y!)
with the (injective) operatioii, where

o (X0, ... % 1)=(F (1), F2(% 1), ..., F(x%_1)),

® (Xo,...,X%_1)%i =(Xg,...,%_1*1i),and

e jisacyclic counterintherange®, ...,n— 1.

Note thatt-step counter-assisted generators require a state buffer df size
For allt > 2, anyt-step counter-assisted generator has maximal possible diversity:

THeorem7.1. For any generato = (f, g), and for all t > 2, we have the following

1. If f is pseudorandomthen the state sequencesffare pseudorandom.
2. Dg(k)=kforallk=1,...,n.

FIG. 4. A two-step counter-assisted generator.

GENERATORS WITH GUARANTEED DIVERSITY 361

Proof. The proof of the pseudorandomness part is similar to that in Theorem 4.1.

To prove the diversity part, assume that for son#ej (mod n) we have equality between thdéuples
(Xits - - -, Xit+t—1) and Kjt, . .., Xjt4t—1). In particular, Xit1t—2 = Xjt+t—2. But this impliesxi;;t—1 =
f (Xitt—2) +1 # F(Xjt4t—2) +] =Xit+1—1 (Modn), a contradiction. m

7.1. Black-Box Modifications of the Output Functign

If the computational complexity of evaluating the new output functjom the two-step mode is at
most double that of evaluatirgy then on average, the computational complexity of obtaining the n
output does not change: We clock the generator twice, but we get two outputs at once. If the
spaceY is equal toX then we can get very close to this without designing a new output function.

We will use the terminology of [13]. For a functigim X — X, define thd=eistel permutation p: X x
X—= Xx XbyDgy(L, R) def (R, L& g(R)). (Here too, any Latin square operatiooan be used instead
of ®.)

If the output functiorg is key dependent, then we can use a Luby—Rackoff construction. Denot:
key space b, and assume that the size of the key space is exponential im log

THEOREM 7.2. Assume that the mapping— g, is pseudorandom and that, «,, and «3 are
pseudorandom elements of K. Then for all functionXf- X and seedsye X, the two-step generator
(f, Dg,, o Dg, o Dg,) has pseudorandom output.

Proof. By Theorem 7.1, for all iteration functiorfsand seedg, € X, the inputstdg, oDg,, o Dg,,
are all distinct. By a result of Luby and Rackoff [11], this implies pseudorandomness of the oulpuf

This construction makes the output calculation slower by a factor of 3:2. The computational
plexity of the following alternative is closer to the desired optimum and is a more straightfory
modification.

THeEOREM 7.3. Assume that gX — X is pseudorandopand assume that hX — X is pseudo-
randomly chosen from a family H of functions such that for all distingt x X and for all ze X,
the probability that iix) @ h(y) =z (h € H) is negligible. Then for all functions :fX — X and seeds
Xo € X, the two-step counter-assisted generator Dg o Dy o Dy) has pseudorandom outpuit.

Proof. By a result of Lucks [12] (see also [13]Rg o Dy o Dy is pseudorandom. The rest of th
proof is like in Theorem 7.2. m

There exist very efficient familiesl with the property mentioned in Theorem 7.1 (see [13] f
examples and references). Thus, the computational overhead of applsgnall, and the resulting
generator is almost as efficient as the original one. Note that, unlike the results in earlier sectio
get here a black box madification of an iterative generafog) which has maximal output diversity,
and if either one of the functionk or g is pseudorandom, then the output sequence is pseudoranc

ExavpLe 7.1. Let f = DES [14],g= RC5 [15], andh, : {0, 1}* — {0, 1}5* be a function from
Vazirani's shift family (theith bit of h,(x) is > Xikj+i—1 mod 2; see [13] and [19]). The two-stej
counter-assisted genera{@ES Dgrcso Dreso Dp,) has maximal (state and output) diverditfor all
k=1,2,...,2%. On average, the calculation of any output 64 bit block requires a single invoce
of DES and a single invocation of RC5. The execution time overhead of the rest of the operati
negligible. Furthermore, éither one of the twéunctions DES and RC5 is difficult to distinguish fron
random, then the output sequence will be difficult to distinguish from random as well.

OpenProBLem 7.4, Assume that both f and g aeuly) random and consider an output sequenc
of length m generated from a random seed by the two-step counter-assisted gegesatdr, Dgo Dg).
What is the highest distinguishing probability between such a sequence and a random sequenc

Remark. Using the results from [13], we get that for allthe output function of the-step counter-
assisted mode can be modified in a black-box manner with a small computational overhead to
same diversity and pseudorandomness results. See [13] for details.

Remark. In certain cases, whenis large (e.g.f > 4) it is desirable that the inputs to thestep
output function are distinct in as many entries as possible (for example, this guarantees many

362 SHAMIR AND TSABAN

S-boxes in differential cryptanalysis of the output function). We can achieve this goal via lettin
next state be the same as when clocking the (standard) counter-assisted génienato(that is, the
counter is incremented and added to healue every clock). By the isolated equality property, th
guarantees that any twetuples are distinct in at least/2] entries. In this mode of operation, the
diversity remains maximal as long ks n/t.

7.2. Safe Transition to New Generations of Cryptographic Functions

A common practice in the design of new generations of cryptographic functions is to double the
and output length. Nowadays, we experience the evolution from 64 bit functions (such as DES,
etc.) to 128 bit functions (such as the AES candidates [1]). The advantage of old generation funct
that they have gone through years of extensive academic research and are thus well understoot
take a long time to gain similar confidence in the new generation functions.

Our two-step counter-assisted mode suggests a natural and straightforward way to combine n
old generation functions in a way thatither oneof them is pseudorandom, then the resulting genere
is pseudorandom: Assume thiats an old generation function amgs a new generation function with
double input size. Then we simply use the two-step counter-assisted gemél:agpr

ExampLE 7.2. In Example 7.1, we can use RC6 instead@ts o Dres o Dy, as the output func-
tion. This results in a faster and more elegant generator. Here too, the diversity is maximal f
k=1,...,25, and the generator is difficult to distinguish from random if either DES or RC6 is.

7.3. Cascaded Multiple-Step Counter-Assisted Generators

If we have enough state-space (this is usually the case with software encryption), we can ¢
multiple-step counter-assisted generators without decreasing the diversity. Consider for examp

eratorsGo, Gy, . . ., Gm—1 having the same state-space and output-space. For any sequence of p
integerdy <t; < -- - <tm_1, and Latin-square operatioss, . . . , x, , (on spaces of sizg, t1, ..., tn_2
blocks, respectively), the ty, . . ., tm_1)-Step cascades defined to be

tm_1 ~ ~ tg ~ {
G cascade= gn?,a*tm,z skt gll Xty goo

in the sense of Definition 6.1. Here(. . ., X;;,,—1) *t; (Yo. ¥t;,—1) i defined as the concatenatio

Of (X0, + v+ Xty —t;—1) AN ey 15 -+ oo Xt p—1) * (Yoo - - o5 Yij—1)-
Using this notation, we have the following:

THeorRem 7.5. For all generatorsGy, G1, . . . , Gm—1 having the same state-space and output-spal
and for any Latin-square operatioRrs, . . ., %, , (onspaces ofsizgk t; < - - - < tym_p blocks respecti-
vely), the(to, ty, . . ., tm_1)-Step cascad@.ascage= grtgjlitmfz Y gtl *t gg) has the following properties

1' QGDascadL(k) = k for a“ k= 1, 2, 1

2. Ifeitherthe iteration or the output function of any of the cascaded generators is pseudoran
then the output 0ficascagdS pseudorandom as well.

Proof. (1) follows from Theorem 7.1, by induction an. (2) follows readily from Theorem 6.1.
[

8. CONCLUDING REMARKS AND FURTHER RESEARCH

We have presented a new mode of operation which makes the diversity of every state set
provably large with a negligible computational cost. Unlike other solutions, this mode does not intrc
new (trivial) risks. The well-known threat of “no available theory” on the cycle structure of complic:
iterative generators (see, e.g., [4, p. 525], [3, p. 22], [16, Sect. 17.6], and [6, p. 347]) is eliminatet
important to stress, however, that the diversity measures only one aspect of security and is clez
sufficient for evaluating the cryptographical strength of the generator.

GENERATORS WITH GUARANTEED DIVERSITY 363

Our new mode has various possible implementations via multiple-stepping and/or cascading
allow the user a wide range of choices to fit the implementation to his or her constraints and nee
of the suggested modes require a counter, but in most of the applications a counter either alread
or is easy to maintain. The cascaded mode reduces the provable diversity with respect to the
counter-assisted mode, but it suggests an interesting new way to combine the cryptographic s
of several generators. The multiple-stepping mode requires a larger state buffer (and thus may b
suitable in software applications), but ensures perfect diversity.

The cryptographical impact of our modification technique when the functicorygy are not pseudo-
random remains open. Itis easy to find pathological examples of output functions where the modifi
makes things worse, but we believe that such pathological cases will be easy to inspect. Howeve
user wants complete confidence, then he or she may wish to replace the output fgrmtione that
he or she trusts. In this case, it may be worthwhile to use the generator in the two-step mode ar
the maximal possible diversity as in Section 7.

As we have proved, in the multiple-stepping modes it is enough that either the itevatimoutput
function is pseudorandom to obtain pseudorandom output. This suggests combining two function
“orthogonal” sources, such as in Example 7.1, and combining strength of well-studied primitives
with new, promising ones, as in Example 7.2.

The counter-assisted mode suggests many open problems. Some of these problems are men
the paper. To these we can add practical problems such as the challenge of findingfasebdich the
counter-assisted generator with DES as the iteration functio®bags) (k) =~ Vk for some largd and
theoretical problems such as statistical analysis of the behavior of the state sequence of counter-
generators.

REFERENCES

1. NIST’s “Advanced Encryption Standard,” home paailable athttp://csrc.nist.gov/encryption/aes/aes _
home.htm.
2. Anderson, R., Gibbens, R., Jagger, C., Kelly, F., and Roe, M. (unpublished), Measuring the diversity of random n
generators.
3. Chambers, W. G. (1995), “On Random Mappings and Random Permutations,” Lecture Notes in Computer Science, Vo
pp. 22—-28, Springer-Verlag, Berlin/New York.
4. Gollman, D., and Chambers, W. G. (1989), Clock-controlled shift registers: A rdtiE#, Selected Areas Comit)525-533.
5. Coven, E. M., and Hedlund, G. A. Periods of some nonlinear shift registe€&smbin. TheoryA) 27, 186-197.
6. Cusick, T.W., Ding, C., and Renvall, A. (1998), “Stream Ciphers and Number Theory,” North-Holland Mathematical Lik
Vol. 55, Elsevier, Amsterdam.
7. Goldreich, O., Goldwasser, S., and Micali, M. (1986), How to construct random funclioAssoc. Comput. Macl33,
792-807.
8. Kjeldsen, K. (1976), On the cycle structure of a set of nonlinear shift registers with symmetric feedback fuhcBionshin.
Theory(A) 20, 154-169.
9. Knuth, D. E. (1981), “The Art of Computer Programming. 2,” pp. 5-6, Addison-Wesley, Reading, MA.
10. Luby, M. (1996), “Pseudorandomness and Its Applications,” Princeton University Press, Princeton, NJ.
11. Luby, M., and Rackoff, C. (1988), How to construct pseudorandom permutations and pseudorandom fusiétidns
J. Comput17, 373-386.
12. Lucks, S. (1996), Faster Luby—Rackoff ciphéns;Proc. Fast Software Encryption,” Lecture Notes in Computer Scienc
Vol. 1039, pp. 189-203, Springer-Verlag, Berlin/New York.
13. Naor, M., and Reingold, O. (1999), On the construction of pseudorandom permutations: Luby—Rackoff rév@&iygdology
12, 29-66.
14. National Bureau of Standards, (1977), “Data Encryption Standard,” FIPS PUB 46, Federal Information Processing St
U.S. Department of Commerce, Washington, DC.
15. Rivest, R. L. (1995), The RC5 encryption algorithim.“Proceedings of the 1994 Leuven Workshop on Fast Softwe
Encryption,” pp. 86—96, Springer-Verlag, Berlin/New York.
16. Schneier, B. (1996), “Applied Cryptography,” Wiley, New York.
17. Tsaban, B., Bernoulli numbers and the probability of a birthday surprise, submitted.
18. Tsaban, B., and Vishne, U., Efficient linear feedback shift registers with maximal peindd,Fields Appl, to appear.
19. Vazirani, U. V. (1986), “Randomness, Adversaries and Computation,” Ph.D. thesis, U.C. Berkeley.
20. Yao, A. C. (1982), Theory and applications of trapdoor functioaméProc. 23rd IEEE Symp. Foundations of Compute
Science,” pp. 80-91.

	1. INTRODUCTION
	FIGURE 1

	2. THE DIVERSITY OF SEQUENCE GENERATORS
	3. MODIFYING GENERATORS
	4. A PROVABLY GOOD MODIFICATION TECHNIQUE
	FIGURE 2

	5. ASYMPTOTIC TIGHTNESS OF THE PROVABLE DIVERSITY
	6. CASCADE COUNTER-ASSISTED GENERATORS
	FIGURE 3

	7. GENERATING SEQUENCES WITH MAXIMAL DIVERSITY
	FIG. 4.

	8. CONCLUDING REMARKS AND FURTHER RESEARCH
	REFERENCES

