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1. Introduction

All topological spaces considered in this note are assumed to have large inductive dimension 0, that is, disjoint closed
sets can be separated by clopen sets.

By a multivalued map & from a set X into a set Y we understand a map from X into the power-set of Y, denoted
by P(Y), and we write @ : X = Y. Let X,Y be topological spaces. A multivalued map @ : X = Y is lower semi-continuous
(Isc) if for each open V CY, the set

o (V)= {xeX: )NV £0)

is open in X.
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A function f : X — Y is a selection of a multivalued map @ : X = Y if f(x) € @ (x) for all x € X. Let C C P(Y). A multival-
ued map @ : X = Y is C-valued if @ (x) € C for all x € X. Similarly, we define clopen-valued, closed-valued, and open-valued.
A general reference for selections of multivalued mappings is [11].

Theorem 1 (Michael [9]). Assume that X is a countable space, Y is a first-countable space, and & : X = Y is Isc. Then ® has a
continuous selection¢ : X — Y.

This result was extended in [17, Theorem 3.1], where it was proved that a space X is countable if and only if for each
first-countable Y, each Isc multivalued map from X to Y has a continuous selection. In fact, their proof gives the following.

Theorem 2 (Yan and Jiang [17]). A separable space X is countable if and only if for each first-countable space Y and each open-valued
Iscmap @ : X = Y, there is a continuous selection ¢ : X — Y.

We extend Theorems 1 and 2 by considering a qualitative restriction on the space X (instead of the quantitative restric-
tion “X is countable”). We also point out a connection to a conjecture of Scheepers.

2. o -Spaces
Define a topology on P(N) by identifying P(N) with the Cantor space {0, 1}N. The standard base of the topology of P(N)

consists of the sets of the form

[s;t] ={ACN: ANs=t},
where s and t are finite subsets of N. Let Fr denote the Fréchet filter, consisting of all cofinite subsets of N, and let [N]%o
be the family of all infinite subsets of N. Fr and [N]%0 are subspaces of P(N) and are homeomorphic to @ and to R\ Q,
respectively (see [7]). Let

B={[s; 9]: s is a finite subset of N};

B ={BNFr: BeB}.

Note that B is the standard clopen base at the point ¢ € P(N).
A topological space X is a o-space if each F, subset of X is a Gs subset of X [10].
The main result of this note is the following.

Theorem 3. The following are equivalent:

(1) Xisao-space;
(2) Each Bg-valued Isc map @ : X = Fr has a continuous selection.

The proof of Theorem 3 and subsequent results use the following notions. A family &/ = {U,: n € N} of subsets of a set X
is a y-cover of X if for each x € X, x € Uy, for all but finitely many n. A bijectively enumerated family &/ = {U,: n € N} of
subsets of a set X induces a Marczewski map U : X — P(N) defined by

UXx)={neN: xe Uy}
for each x € X [8].
Remark 4. Marczewski maps can be naturally associated to any sequence of sets, not necessarily bijectively enumerated. Our
restriction to bijective enumerations allows working with the classical notion of y-cover. An alternative approach would be

to use indexed y-covers, that is, sequences of sets (U,: n € N) such that each x € X belongs to U; for all but finitely many n.
All results of the present paper hold in this setting, too.

For a function f: X — Y, f[X] denotes {f(x): x € X}, the image of f.
Lemma 5. Let Y = {U,: n € N} be a bijectively enumerated family of subsets of a topological space X. Then

(1) U is a clopen y -cover of X if and only if U[X] < Frand U : X — P(N) is continuous;
(2) U is an open y-cover of X if and only if U[X] C Fr and the multivalued map @ : X = Fr defined by & (x) = P (U (x)) N Fr s Isc.

Proof. The first assertion follows immediately from the corresponding definitions. To prove the second assertion, let us
assume that U/ = {U,: n € N} is an open y-cover of X. Fix some finite subsets s,t of N and x € X such that [s; t]N & (x) # @.
There exists A € Fr such that ACU(x) and ANs=t.
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Let V = ﬂnel/{(x)ﬂs U,. The set V is open in X, being an intersection of finitely many open sets, and it contains x
by definition of /. Thus it suffices to show that [s;t] N ®@(y) # @ for all y € V. A direct verification indeed shows that
(ANsS)UU((y) \ s) belongs to [s; t] as well as to @(y).

To prove the converse implication, it suffices to note that U, = (15;] [{n}; {n}], and use the lower semi-continuity of ®. O

The following is a key result of Sakai. A cover {U,: n € N} of X is y-shrinkable [12] if there is a clopen y-cover
{Cn: n €N} of X such that C;; C U, for all n. Note that I/ is a y-cover of X if and only if U[X] C Fr.

Theorem 6 (Sakai [12]). X is a o -space if and only if each open y -cover of X is y -shrinkable.
Proof of Theorem 3. (2 = 1). Assume that each Bg-valued Isc @ : X = Fr has a continuous selection. We will show that X
is a o -set by using Sakai’s characterization (Theorem 6).

Let U be an open y-cover of X. Define @ (x) = P(U(x)) NFr. & is Br--valued, and by Lemma 5, @ is Isc. By our assump-

tion, @ has a continuous selection. The following lemma implies that ¢/ is y-shrinkable.

Lemma 7. Let U = {Up: n € N} be a bijectively enumerated open y -cover of a space X. The following are equivalent:

(1) U is y-shrinkable;
(2) The multivalued map & (x) = P (U (x)) N Fr has a continuous selection.

Proof. (1= 2).If V={V,: ne N} is a witness for (1), then the map x+— V(x) is a continuous selection of @.

(2=1).1f ¢ : X — Fr is a continuous selection of @, then {V, :={x € X: ¢(x) >n}: n € N} is a clopen y-cover of X with
the property V, C Uy, for all n € N. Indeed, if x € V,, then n € ¢(x) € P(U(x)) N Fr, and hence n € U/ (x), which is equivalent
toxeU,. O

(1= 2). Assume that X is a o-space and @ : X = Fr is Isc and Bg--valued. The following is easy to verify.

Lemma 8. For each Bg-valued @ : X = Fr, there exists a map ¢ : X — Fr such that & (x) = P(¢(x)) NFr for all x € X.
Conversely, for each map ¢ : X — Fr, the multivalued map @ : X = Fr defined by @ (x) = P(¢(x)) N Fr is B--valued.

Let ¢ be as in Lemma 8. For each n, let U, ={xe€ X: ne¢(x)} ={x € X: &(x) N [{n}; {n}] # @}. Each U, is open, and
U ={Up: neN}is a y-cover of X. By Sakai’s Theorem 6, I/ is y-shrinkable.

Note that the Marczewski map induced by the family ¢/ is exactly the map ¢. Thus, by Lemma 7, @ (x) = P(¢ (x)) N Fr =
P(U (x)) N Fr has a continuous selection. O
Corollary 9. If each clopen-valued Isc map ® : X = Fr has a continuous selection, then X is a o -space.

Problem 10. Assume that X C R is a o-space. Does each clopen-valued Isc map @ : X = QQ have a continuous selection?

It is consistent (relative to ZFC) that each metrizable separable o -space X is countable [10]. Thus, by Theorems 1 and 3,
we have the following extension of Theorem 2.

Corollary 11. It is consistent that the following statements are equivalent, for metrizable separable spaces X:

(1) Every clopen-valued Isc map @ : X = Q has a continuous selection;
(2) X is countable.

Problem 12. [s Corollary 11 provable in ZFC?

b is the minimal cardinality of a subset of NN which is unbounded with respect to <* (f <* g means: f(n) < g(n) for
all but finitely many n). b is uncountable, and consistently, 8y < b [2]. If |X| < b, then X is a o-set [4,15]. By Theorem 3,
we have the following quantitative result.
Corollary 13. Assume that | X| < b. Then for each Bp--valued Isc map @ : X = Fr, & has a continuous selection.

3. b-Scales

Let N™ be the set of all (strictly) increasing elements of NN. B = {by: o < b} € N™ is a b-scale if by <* bg for all & < B,

and B is unbounded with respect to <*. N=NU {c0} is a convergent sequence with the limit point oo, which is assumed



D. Repovs et al. / Topology and its Applications 156 (2008) 104-109 107

Uin (O, I") — Ufin (0, ) ————— > S (0, 0)

/s (T, .Q)/ /
et

$1(I\ I —=81(I', Q) ‘ S1(I", O)
] T Shin(£2, £2) T
$1(R2, ') —=81(2,2) $1(0,0)

Fig. 1. The Scheepers Diagram.

to be larger than all elements of N. NV is the set of all nondecreasing elements of NN, and Q = {x e N'N: (3am) (vn>m)
x(n) = oo} is the set of all “eventually infinite” elements of NN,

Sets of the form BU Q where B is a b-scale were extensively studied in the literature (see [1,10,16] and references
therein). B U Q is concentrated on Q and is therefore not a o-space. Consequently, it does not have the properties stated
in Theorem 3. In fact, we have the following.

Theorem 14. Let X = B U Q, where B C NV is a b-scale. Then there exists a clopen-valued Isc map ® : X = Q with the following
properties:

(i) ®(x)=Q, forallx € B; and
(ii) Foreach'Y C X such that Q C Y, and each continuous ¢ : Y — Q such that ¢(y) € @(y) forally €Y, |Y| < |X].

Proof. Write Q = {qs: n € N}, and consider the y-cover U = {U,: n € N} of X, where U, =X\ {qn}, neN.

Lemma 15. For each B’ C B with |B’| = b, and each choice of clopen sets V, C Uy, n € N, there is x € B’ such that {n: x ¢ V,} is
infinite.

Proof. Assuming the converse, we could find a clopen y-cover {V,: n € N} of B"UQ such that V, C U,. Let V,, be a closed
subspace of N™ such that V, N X = V. Then W, = N'™N\ V,, is an open neighborhood of g, in NV, Set G, = Uksn Wi
and G =,y Gn- For each n e N the set N™N 0 (N™N\ G,) is a cofinite subset of the compact space N™N\ G, and hence it
is o -compact.

Therefore N™N N (NN G) = |,y NN N (NN Gp) is a o-compact subset of N™ as well. Since B’ is unbounded, there
exists x € BN G, and hence x belongs to W, for infinitely many n € N, which implies that {ne N: x¢ V,} ={neN: x¢ V/}
is infinite, a contradiction. O

Recall that Fr is homeomorphic to Q. Thus, it suffices to construct an Isc ¥ : X = Fr with the properties (i) and (ii). Set
W (x) = PUEX)) NFr.

By Lemma 5, the multivalued map ¥ is Isc and there are no partial selections f :Y — Fr defined on subsets Y C X such
that |Y| =|X|=b and Y D Q. Indeed, it suffices to use Lemmata 7 and 15, asserting that there is no clopen refinement
{Va: ne N} of {Uy: neN} which is a y-cover of such a subspace Y of X. O

Theorem 14 can be compared with Theorem 1.7 and Example 9.4 of [9].
The undefined terminology in the following discussion is standard and can be found in, e.g., [13]. Lemma 15 motivates
the introduction of the following covering property of a space X:

(6) There exists an open y-cover U = {Up: n € N} of X and a countable D C X such that for any family V ={V,: n € N} of
clopen subsets of X with V, C Uy for all n, if V is a y-cover of some Y C X such that D C Y, then |Y| < |X|.

Theorem 14 implies the following.
Corollary 16. Assume that X = BU Q where B € NN is a b-scale. Then X satisfies (6).

The property (6) seems to stand apart from the classical selection principles considered in [13,6]. Fig. 1 (reproducing
[6, Fig. 3, p. 245]) summarizes the relations among these properties.

Every countable space satisfies the strongest property in that figure, namely S;(£2, I') [5], and it is clear that countable
spaces do not satisfy (6). Moreover, by Sakai’'s Theorem 6, no o -space satisfies (9).

Assuming the Continuum Hypothesis there is a b-scale B such that BU Q is not a o -space, but satisfies S1(£2, I") [5] as
well as (0) (Corollary 16).
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Consider the topological sum X =R & (R\ Q). The open sets U, = (—n,n) ® R\ Q), n €N, form a y-cover of X and
show that X satisfies (9) for a trivial reason, and does not satisfy the weakest property in the Scheepers Diagram, namely
Sen (O, O), because it contains (R \ Q) as a closed subspace. A less trivial (zero-dimensional) example is given in the
following consistency result.

Theorem 17. Assume that b =0 = cf(¢) < c. There is a set X C R \ Q satisfying () but not Sg, (O, O).

Proof. Let B = {by: o < b} be a b-scale and ¢ = J,_p Aa With Ay <¢. Fix Dy € N™ such that |Dy| = A and for each
f €Dy, |f(n) —by()| <2 for all n.

Let Y € NN be a dominating family. The direct sum of X = Q U Ua<p Do and Y satisfies (6) by the methods of Theo-
rem 14. But Y is a closed subset of this space and does not satisfy Sg, (O, O) [13]. O

4. Connections with the Scheepers Conjecture

Let A and B be any two families. Motivated by works of Rothberger, Scheepers introduced the following prototype of
properties [13]:

S1(A, B): For each sequence {Uy},eny of members of A, there exist members U, € Uy, n € N, such that {U,: ne N} e B.

Let I" and Cr be the collections of all open and clopen y-covers of a set X C R, respectively. Scheepers [14] has conjectured
that the property Sq(I', I") is equivalent to a certain local property in the space of continuous real-valued functions on X.
Sakai [12] and independently Bukovsky and Hale$ [3] proved that Scheepers’ Conjecture holds if and only if S;(I",I') =
S1(Cr, Cr) for sets of reals.

Lemma 5 establishes a bijective correspondence between open y-covers of a space X and maps ¢ : X — Fr for which
the multivalued map @ (x) = P(¢(x)) N Fr is Isc. This is used in the proof of the following characterizations, which give an
alternative justification for the Scheepers Conjecture.

Theorem 18. X satisfies S1(C, Cr) if and only if for each continuous ¢ : X — FrN thereis f € NN such that f (k) € ¢ (x)(k) for each
x € X and all but finitely many k.

Since the proof of Theorem 18 is easier than that of the following theorem, we omit it.

Theorem 19. X satisfies S; (I", I') if and only if for each ¢ : X — FrY such that the multivalued map @ : x — ey (P (¢ (x)(k)) N Fr)
is Isc, there is f € NN such that f (k) € ¢ (x)(k) for each x € X and all but finitely many k.

Proof. Assume that X satisfies S{(I", I'). Fix a map ¢ : X — FrN as in the second assertion. The multivalued map &y : X = Fr
assigning to each point x € X the subset @y (x) = P(¢(x)(k)) N Fr of Fr, is Isc for all k.

The family {Ugn: n e N}, where Uy = {x € X: &r(x) N[{n}; {n}] # 0} ={x € X: ne¢(x)(k)}, is an open y-cover of X.
Since X satisfies S1(I', I'), there exists f € NN such that {Uk.fo: ke N} is a y-cover of X. This implies that f (k) € ¢ (x)(k)
for all x € N and all but finitely many k.

The proof of the converse implication is similar, using Lemma 5. O
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