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Abstract

In this paper we extend previous studies of selection principles for families of open covers of sets
of real numbers to also include families of countable Borel covers. The main results of the paper
could be summarized as follows:

(1) Some of the classes which were different for open covers are equal for Borel covers—
Section 1.

(2) Some Borel classes coincide with classes that have been studied under a different guise by
other authors—Section 4.
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1. Introduction

Let X be a topological space. LetO denote the collection of all countable open covers
of X. According to [5] an open coverU of X is said to be anω-cover ifX is not a member
of U , but for each finite subsetF of X there is aU ∈ U such thatF ⊆U . It is shown in [5]
that everyω-cover ofX has a countable subset which is anω-cover ofX if, and only if,
all finite powers ofX have the Lindelöf property. All finite powers of sets of real numbers
have the Lindelöf property. The symbolΩ denotes the collection of allcountable ω-covers
of X. Acording to [8,18] an open cover ofX is said to be aγ -cover if it is infinite and
each element ofX is a member of all but finitely many members of the cover. Since each
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infinite subset of aγ -cover is aγ -cover, eachγ -cover has a countable subset which is a
γ -cover. The symbolΓ denotes the collection of allcountable γ -covers ofX.

Let A andB be collections of subsets ofX. The following two selection hypotheses
have a long history for the case whenA andB are collections of topologically significant
subsets of a space. Early instances of these can be found in [6,16]; many papers since then
have studied these selection hypotheses in one form or another.

S1(A,B): For each sequence(An: n ∈ N) of members ofA, there is a sequence(bn: n ∈
N) such that for eachn bn ∈An, and{bn: n ∈ N} ∈ B.

Sfin(A,B): For each sequence(An: n ∈ N) of members ofA, there is a sequence
(Bn: n ∈ N) such that eachBn is a finite subset ofAn, and

⋃
n∈N

Bn ∈ B.

These selection hypotheses are monotonic in the second variable and antimonotonic in
the first. Moreover, each has a naturally associated game:

In the gameG1(A,B) ONE chooses in thenth inning an elementOn of A and then
TWO responds by choosingTn ∈ On. They play an inning per natural number. A play
(O1, T1, . . . ,On,Tn, . . .) is won by TWO if {Tn: n ∈ N} is a member ofB, otherwise,
ONE wins. If ONE does not have a winning strategy inG1(A,B), thenS1(A,B) holds.
The converse is not always true; when it is true, the game is a powerful tool for studying
the combinatorial properties ofA andB.

The gameGfin(A,B) is played similarly. In thenth inning ONE chooses an elementOn

of A and TWO responds with a finite setTn ⊆On. A play (O1, T1, . . . ,On,Tn, . . .) is won
by TWO if

⋃
n∈N

Tn is in B, otherwise, ONE wins. As above: If ONE has no winning
strategy inGfin(A,B), thenSfin(A,B) holds; when the converse is also true the game is a
powerful tool for studyingA andB.

A third selection hypothesis, introduced by Hurewicz in [6], is as follows:

Ufin(A,B): For each sequence(An: n ∈ N) of members ofA, there is a sequence
(Bn: n ∈ N) such that for eachn Bn is a finite subset ofAn, and either

⋃
Bn =X

for all but finitely manyn, or else{⋃Bn: n ∈ N}\{X} ∈ B.

The three classes of open covers above are related:Γ ⊆Ω ⊆O. This and the properties
of the selection hypotheses lead to a complicated diagram depicting how the classes defined
this way interrelate. However, only a few of these classes are really distinct, as was shown
in [8,18]. Fig. 1 (borrowed from [8]) contains the distinct ones among these classes (it is not
known if the classSfin(Γ,Ω) is Ufin(Γ,Ω), or if it containsUfin(Γ,Γ )). In this diagram,
as in the ones to follow, an arrow denotes implication.

Now we consider the following covers ofX. The symbolB denotes the family of all
countable covers ofX by Borel sets; call elements ofB countable Borel covers ofX.
A countable Borel cover ofX is said to be aBorel ω-cover of X if X is not a member of it
but for each finite subset ofX there is a member of the cover which contains the finite set.
The symbolBΩ denotes the collection of Borelω-covers ofX. A countable Borel cover
of X is said to be aBorel γ -cover of X if it is infinite and each element ofX belongs to
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Ufin(Γ,Γ ) Ufin(Γ,Ω) Ufin(Γ,O)

Sfin(Γ,Ω)

S1(Γ,Γ ) S1(Γ,Ω) S1(Γ,O)

Sfin(Ω,Ω)

S1(Ω,Γ ) S1(Ω,Ω) S1(O,O)

Fig. 1. The open covers diagram.

all but finitely many members of the cover. The symbolBΓ denotes the collection of Borel
γ -covers ofX. It is evident that the following inclusions hold:

BΓ ⊆ BΩ ⊆ B; Γ ⊆ BΓ ; Ω ⊆ BΩ and O ⊆ B.

On account of these inclusions and monotonicity properties of the selection principles
we have:S1(B,B) ⊆ S1(O,O); Sfin(B,B) ⊆ Sfin(O,O); Ufin(BΓ ,BΓ ) ⊆ Ufin(Γ,Γ );
S1(BΩ,BΓ )⊆ S1(Ω,Γ ); and so on.

The methods of [8,18] can be used to show that a diagram obtained from Fig. 1 by
substituting all the open classes by their corresponding Borel versions summarizes all the
interrelationships among these.

But there are big differences about what is provable in these two situations. For example,
it has been shown in [8,20] that there always is an uncountable set of real numbers in the
classS1(Γ,Γ ) and thus inUfin(Γ,Γ ). According to a result of [9] it is consistent that no
uncountable set of real numbers has propertyUfin(BΓ ,BΓ ). Thus it is consistent that some
of the classes which provably do not coincide in the open covers diagram, do coincide in
the Borel covers diagram.

It must be checked which, if any, of the classes in the Borel covers diagram are provably
equal; this is our first task.

2. Characterizations and equivalence of properties

In this section we give a number of characterizations for some of the Borel classes above.
In particular, we get that some of the new properties are equivalent, even though their
“open” versions are not provably equivalent.

The classes S1(BΓ ,BΓ ), Sfin(BΓ ,BΓ ), and Ufin(BΓ ,BΓ )
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Theorem 1. For a set X of real numbers, the following are equivalent:
(1) X has property S1(BΓ ,BΓ ).
(2) X has property Sfin(BΓ ,BΓ ).
(3) X has property Ufin(BΓ ,BΓ ).
(4) Every Borel image of X in NN is bounded.

Proof. We must show that (3)⇒ (4) and (4)⇒ (1).
(3)⇒ (4): This is a theorem of [2]. In short, note that the collectionsUn = {Un

m: m ∈ N},
whereUn

m = {f ∈ NN: f (n) < m}, are openγ -covers ofNN. Assume thatΨ is a Borel
function fromX to NN. Then the collectionsBn = {Ψ−1[Un

m]: m ∈ N} are inBΓ for X.
For all n, the sequenceUn

m is monotonically increasing with respect tom. Thus, we may
use (1) instead of (3) to get a sequenceΨ−1[Un

mn
] ∈ Bn which is inBΓ for X. Then the

sequencemn boundsΨ [X].
(4) ⇒ (1): Assume thatBn = {Bn

k : k ∈ N}, are inBΓ for X. Define a functionΨ from
X to NN so that for eachx andn:

Ψ (x)(n)= min
{
k: (∀m� k) x ∈ Bn

m

}
.

ThenΨ is a Borel map, and soΨ [X] is bounded, say by the sequencemn. Then the
sequence(Bn

mn
: n ∈ N) is in BΓ for X. ✷

Corollary 2. For a set X of real numbers, the following are equivalent:
(1) X has property Ufin(BΓ ,BΓ ).
(2) Every Borel image of X has property Ufin(Γ,Γ ).

Proof. An old theorem of Hurewicz [7] asserts thatX has propertyUfin(Γ,Γ ) if, and only
if, every continuous image ofX in NN is bounded. ✷
Theorem 3. For a set X of real numbers the following are equivalent:

(1) X has property S1(BΓ ,BΓ ).
(2) Each subset of X has property S1(BΓ ,BΓ ).
(3) For each measure zero set N of real numbers, X ∩N has property S1(BΓ ,BΓ ).

Proof. (1) ⇒ (2): This follows immediately from Theorem 1 and the fact that for sets
of real numbers a function on a subspace which is Borel on the subspace, extends to one
which is Borel on the whole space.

(3) ⇒ (1): Let X be as in (3), and letΨ be a Borel function fromX to NN. We may
assume thatX is a subset of[0,1], the unit interval (as was shown in [20], the property
S1(Γ,Γ ) is preserved by countable unions). LetΦ be a Borel function from[0,1] to NN

whose restriction toX is Ψ .
By Lusin’s Theorem choose for eachn a closed subsetCn of the unit interval such that

µ(Cn) � 1− (1
2)

n, and such thatΦ is continuous onCn. SinceCn is compact, the image
of Φ onCn is bounded inNN, say byhn. The setN = [0,1]\⋃

n∈N
Cn has measure zero,

and soX ∩ N has propertyS1(BΓ ,BΓ ). It follows that the image underΨ of X ∩ N is
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bounded, say byh. Now letf be a function which eventually dominates eachhn, andh.
Thenf eventually dominates each member ofΨ [X].

SinceΨ was an arbitrary Borel function fromX to NN, Theorem 1 implies thatX has
propertyS1(BΓ ,BΓ ). ✷
Proposition 4. If a set X of real numbers has the S1(BΓ ,BΓ ) property, then it is a σ -set.

Proof. We show that eachGδ-subset ofX is an Fσ -subset. Thus, letA be aGδ-subset
of X, sayA = ⋂

n∈N
Un where for alln Un ⊇ Un+1 are open subsets ofX. SinceX is

metrizable, eachUn is anFσ -set. Write, for eachn,

Un =
⋃
k∈N

Cn
k ,

where for allm, Cn
m ⊆ Cn

m+1 are closed sets. Then for eachn Bn := (Cn
m: m ∈ N) is in BΓ

for A. SinceS1(BΓ ,BΓ ) is hereditary,A has this property and we find for eachn anmn

such that(Cn
mn

: n ∈ N) is aγ -cover ofA. For eachk define

Fk :=
⋂
n�k

Cn
mn
.

Then eachFk is closed andA=⋃
k∈N

Fk . ✷
According to Besicovitch [3] a setX of real numbers isconcentrated on a setQ if for

every open setU containingQ, the setX\U is countable.

Corollary 5. If an uncountable set of real numbers is concentrated on a countable subset
of itself, then it does not have property S1(BΓ ,BΓ ).

The classes S1(BΓ ,B), Sfin(BΓ ,B), and Ufin(BΓ ,B)

Theorem 6. The following are equivalent:
(1) X has property S1(BΓ ,B).
(2) X has property Sfin(BΓ ,B).
(3) X has property Ufin(BΓ ,B).
(4) No Borel image of X in NN is dominating.

Proof. The proof is similar to that of Theorem 1.
(3) ⇒ (4): Given a Borel functionΨ from X to NN, defineBn as in the proof of

Theorem 1. LetAk, k ∈ N, be a partition ofN into infinitely many infinite sets. From
each sequence of coversBn, n ∈ Ak, we can extract by (1) a coverBn

mn
(n ∈ Ak). Taken

together,Bn
mn

(n ∈ N) form a large cover ofX. Recalling thatBn
mn

= Ψ−1[Un
mn

], we get
that the sequencemn witnesses thatΨ [X] is not dominating.

(4) ⇒ (1): With notation as in the proof of Theorem 1, we get that ifmn witnesses that
Ψ [X] is not dominating, then(Bn

mn
: n ∈ N) is a (large) cover ofX. ✷
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Corollary 7. For a set X of real numbers, the following are equivalent:
(1) X has property Ufin(BΓ ,B).
(2) Every Borel image of X in NN has property Ufin(Γ,O).

Proof. A Theorem of Hurewicz [7] asserts that a setX is Ufin(Γ,O) if, and only if, every
continuous image ofX in NN is not dominating. ✷
The classes S1(BΓ ,BΩ), Sfin(BΓ ,BΩ), and Ufin(BΓ ,BΩ)

The characterization of these classes is best stated in the language of filters. LetF be a
filter overN. An equivalence relation∼F is defined onNN by

f ∼F ⇐⇒ {
n: f (n)= g(n)

} ∈F .

The equivalence class off is denoted[f ]F , and the set of these equivalence classes is
denotedNN/F . Using this terminology,[f ]F < [g]F means

{
n: f (n) < g(n)

} ∈F .

The following combinatorial notion and the accompanying Lemma 8 will be to used get
a technical version of the filter-based characterization.

For a familyY ⊂ NN, define maxfin(Y ) to be the set of elementsf in NN for which
there is a finite setF ⊂ Y such that

f (n)= max
{
h(n): h ∈ F

}

for all n.

Lemma 8. Let Y ⊂ NN be such that for each n the set {h(n): h ∈ Y } is infinite. Then the
following are equivalent:

(1) maxfin(Y ) is not a dominating family.
(2) There is a non-principal filter F on N such that the subset {[f ]F : f ∈ Y } of the

reduced product NN/F is bounded.

Proof. (1) ⇒ (2): Choose anh ∈ NN which is strictly increasing, and which is not
eventually dominated by any element of maxfin(Y ). For any finite subsetF of Y , put
fF (n)= max{g(n): g ∈ F } for eachn, and then define the set

AF = {
n ∈ N: fF (n)� h(n)

}
.

Observe that for finite subsetsF andG of Y , if F ⊂G, thenAG ⊆ AF . Thus, the family
{AF : F ⊂ Y finite} is a basis for a filterF on N. By the hypothesis onY this filter is
non-principal. It is evident that[h]/F is an upper bound forY/F .

(2) ⇒ (1): LetF be a non-principal filter onN such thatY/F is bounded, and choose
a functionh in NN such that for eachf ∈ Y we have[f ]F < [h]F . Then for eachf ∈ Y

the set{n: f (n) � h(n)} is in F and is infinite (sinceF is non-principal). SinceF
has the finite intersection property it follows that for each finite subsetF of Y the set
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SF = {n: (∀f ∈ F)(f (n)� h(n))} is in F . But thenh is not eventually dominated by any
element of maxfin(Y ). ✷
Theorem 9. For a set X of real numbers, the following are equivalent:

(1) X has property S1(BΓ ,BΩ).
(2) X has property Sfin(BΓ ,BΩ).
(3) X has property Ufin(BΓ ,BΩ).
(4) For each Borel function Ψ from X to NN, maxfin(Ψ [X]) is not a dominating family.
(5) For each Borel function Ψ from X to NN, either there is a principal filter G for

which Ψ [X]/G is finite, or else there is a non-principal filter F on N such that the
subset Ψ [X]/F of the reduced product NN/F is bounded.

Proof. (1) ⇒ (2) ⇒ (3) are immediate. We will first show that (3)⇒ (4) ⇒ (1), and then
use Lemma 8 to establish the equivalence of (4) and (5). As in the previous proof, for any
finite subsetF of Y , putfF (n)= max{g(n): g ∈ F } for eachn.

(3)⇒ (4): LetY = Ψ [X]. By the upcoming Theorem 48,Y has propertyUfin(BΓ ,BΩ).
For eachn and eachk, defineUn

k := {f : f (n) < k}; then setUn := {Un
k : k ∈ N}. Each

Un is aγ -cover ofNN since for eachn and fork < j we haveUn
k ⊂ Un

j . Let Ak, k ∈ N,
be a partition ofN into infinitely many infinite sets. From each sequence ofγ -coversUn,
n ∈ Ak , we can use theUfin(BΓ ,BΩ) property ofY to extract anω-cover(Un

mn
: n ∈ Ak).

Then for each finiteF ⊆X, we have for eachk ∈ N ann ∈Ak such thatΨ [F ] ⊆Un
mn

, i.e.,
fΨ [F ](n) � mn. Thus, the sequencemn witnesses that maxfin(Ψ [X]) is not a dominating
family.

(4) ⇒ (1): Assume thatBn = {Bn
m: m ∈ N} are inBΓ for X. Define a Borel functionΨ

fromX to NN so that for eachx andn:

Ψ (x)(n)= min
{
k: (∀m� k) x ∈ Bn

m

}
.

Note that ifF ⊆ X is finite, then for allm � fΨ [F ](n), F ⊆ Bn
m. Let the sequencemn

witness that maxfin(Ψ [X]) is not dominating. Then for all finiteF ⊆X,F ⊆ Bn
mn

infinitely
many times. That is,(Bn

mn
: n ∈ N) is in BΩ for X.

(4)⇒ (5): There are two cases to consider:
Case 1. There is ann such that{Ψ (x)(n): x ∈ X} is finite. Then the principal filter

generated by{n} does the job.
Case 2. For eachn the set{Ψ (x)(n): x ∈X} is infinite. Apply Lemma 8.
(5)⇒ (4): Again consider two cases, and apply Lemma 8.✷

Remark 10. The implications (1)⇒ (2)⇒ (3)⇒ (4) and (4)⇒ (5) in Theorem 9 can be
proved for the open version of these properties in a similar manner. The implication (3)⇒
(2) in the open case is counter-exampled by the Cantor set [8]. We do not know whether
the open version of (4)⇒ (3) is true.
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This gives the following characterization ofd:

Corollary 11. For an infinite cardinal number κ the following are equivalent:
(1) κ < d.
(2) For each subset X of NN of cardinality at most κ , there is a non-principal filter F

on N such that in the reduced product NN/F the set X/F is bounded.

Proof. By Theorem 9, (2) implies (1). To see that (1) implies (2), consider an infiniteκ < d

and a subsetX of NN which is of cardinalityκ . We may assume thaty ∈X whenever there
is anx ∈X such thaty differs fromx in only finitely many points. Then maxfin(X) also
has cardinalityκ . By Lemma 8 there exists non-principal filterF on N such thatX/F is
bounded inNN/F . ✷
Theorem 12. For a set X of real numbers, the following are equivalent:

(1) X has property S1(BΓ ,BΩ).
(2) For each Borel mapping Ψ of X into NZ there is a non-principal filter F such that

the subring generated by Ψ [X]/F in the reduced power NZ/F is bounded below
and above.

Proof. That (2) implies (1) is proved as before. Regarding (1) implies (2): It is evident
that if we confine attention to the ringNZ with pointwise operations, then a subsetY of it
would have propertyS1(BΓ ,BΩ) if, and only if, there is a non-principal filterF such that
Y/F is bounded from below and from above inNZ. Let g be an element ofNN such that
Ψ [X]/F is bounded by[g]. Since the set{n ·g: n ∈ Z}∪ {gn: n ∈ N} is countable, we find
a singleh such that for alln h eventually dominates each ofn · g andgn. But then in the
reduced powerNZ/F the element[−h] is a lower bound and the element[h] is an upper
bound for the ring generated byΨ [X]/F . ✷
The class S1(B,B)

The classesS1(B,B) andS1(BΓ ,BΓ ) appear to be each other’s “duals”.

Theorem 13. For a set X of real numbers, the following are equivalent:
(1) X has property S1(B,B).
(2) Every subset of X has property S1(B,B).
(3) For each meager set M ⊂ R, X ∩M has property S1(B,B).

Proof. We must show that (1) implies (2), and that (3) implies (1).
(1)⇒ (2): This is immediate from the equivalence ofS1(B,B) with another notion (see

Section 5). However, we give a direct proof.
LetM be a subset ofX, and assume thatX has propertyS1(B,B). For eachn let Un be

a countable cover ofM by Borel subsets ofM. For eachU ∈ Un let BU be a Borel subset
of X such thatU =M ∩BU . ThenXn :=⋃{BU : U ∈ Un} is a Borel subset ofX sinceUn

is countable. In turn,̃X :=⋂
n∈N

Xn is a Borel subset ofX.
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For eachn let Ũn be {BU : U ∈ Un} ∪ {X\X̃}. Then (Un: n ∈ N) is a sequence of
countable Borel covers ofX. For eachn choose aVn ∈ Ũn such that{Vn: n ∈ N} is a
cover ofX. For eachn for whichVn �= X̃, chooseUn ∈ Un such thatVn = BUn ; for other
values ofn let Un be an arbitrary element ofUn. Then(Un: n ∈ N) coversM.

(3) ⇒ (1): Let (Bn: n ∈ N) be a sequence of countable Borel covers ofX; enumerate
eachBn as(Bn

m: m ∈ N).
Since Borel sets have the property of Baire we may choose for eachBn

m an open setOn
m

and a meager setMn
m such that

Bn
m = (

On
m\Mn

m

)∪ (
Mn

m\On
m

)
.

ThenA :=⋃
m,n∈N

Mn
m is a meager set and soA∩X has propertyS1(B,B). For eachn

such thatn mod 3= 0, choose aBn
mn

∈ Bn such thatA∩X is covered by these.
For eachn, On, defined to be{On

m: m ∈ N}, is an open cover ofX\A. Let Q be a
countable dense subset ofX\A, and choose for eachn with n mod 3= 1 anOn

mn
such that

these coverQ.
Then the setB :=X\⋃{On

mn
: n mod 3= 1} is meager, and so has propertyS1(B,B).

For eachn such thatn mod 3= 2, choose anOn
mn

∈On such that theseOn
mn

’s coverB.
Then the sequence(Bn

mn
: n ∈ N) coversX. ✷

Combining of a result from [1,11] with one from [2] yields the following characteriza-
tion:

Theorem 14. For a set X of real numbers, the following are equivalent:
(1) X has property S1(B,B).
(2) Each Borel image of X has the Rothberger property S1(O,O).

The selection propertyS1(O,O) manifests itself in several other interesting ways: these
analogues hold also forS1(B,B).

Theorem 15. For a set X of real numbers, the following are equivalent:
(1) S1(B,B) holds.
(2) ONE has no winning strategy in the game G1(B,B).

Proof. We must show that (1)⇒ (2): Let F be a strategy for ONE of the game
G1(B,B). Using it, define the following array of Borel subsets ofX: First, enumerate
F(∅), ONE’s first move, as(Un: n ∈ N). For each responseUn1 by TWO, enumerate
ONE’s corresponding moveF(Un1) as(Un1,n: n ∈N). If TWO responds now withUn1,n2,
enumerate ONE’s corresponding moveF(Un1,Un1,n2) as(Un1,n2,n: n ∈ N), and so on.

The family (Uτ : τ ∈ <ωN) has the property that for eachτ the set{Uτ+n: n ∈ N} is a
cover ofX by Borel subsets ofX. Moreover, for each functionf in NN, the sequence

F(∅),Uf (1),F (Uf (1)),Uf (1),f (2),F (Uf (1),Uf (1),f (2)), . . .
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is a play ofG1(B,B) during which ONE used the strategyF . For each suchf , define
Sf := ⋃

n∈N
Uf(1),...,f (n). (Thus,Sf is the set of points covered by TWO during a play

coded byf .) We must show that for some suchf we haveSf =X.
Define the subsetD of X× NN by

D := {
(x, f ): x /∈ Sf

}
.

ThenD is a Borel subset ofX× NN. Moreover, for eachx ∈X the setDx = {f : x /∈ Sf }
is nowhere dense. (To see this, let[(n1, . . . , nk)] be a basic open subset ofNN. Since
{Un1,...nk,m: m ∈ N} is a cover ofX there is annk+1 with x ∈ Un1,...,nk,nk+1. But then
[(n1, . . . , nk, nk+1)] ∩ Dx = ∅.) Now recall from [2] that asX has propertyS1(B,B) it
follows thatNN �= ⋃

x∈XDx (see Section 5). Letf be a function not in
⋃

x∈XDx . Then
X= Sf , and we have defeated ONE’s strategyF . ✷

We next show thatS1(B,B) is a Ramsey-theoretic property. First observe:

Lemma 16. For a set X of real numbers, the following are equivalent:
(1) X has property S1(B,B).
(2) X has property S1(BΩ,B).

Proof. The proof for this is like that of Theorem 17 of [18].✷
The virtue ofBΩ for Ramsey-theoretic purposes is that ifU is a member ofBΩ , and if

it is partitioned into finitely many pieces, then at least one of these pieces is a member of
BΩ . This statement is denoted by the abbreviation:

for eachk, BΩ → (BΩ)
1
k.

This is a special case of the more general notation

for all n andk A→ (C)nk,
which denotes the statement:

For eachn andk, for eachA ∈A, and for eachg : [A]n → {1, . . . , k}, there is aC ⊆ A

such thatC ∈ C andg is constant on[C]n.

Theorem 17. For a set X of real numbers, the following are equivalent:
(1) X has property S1(B,B).
(2) X has the property that for all k, BΩ → (B)2k .

Proof. The proof of this is like that of Theorem 4 of [19].✷
The class S1(BΩ,BΩ)

It is evident that unions of countably many spaces, each having propertyS1(B,B), have
propertyS1(B,B).

Theorem 18. If all finite powers of X have property S1(B,B), then X has property
S1(B,B).



M. Scheepers, B. Tsaban / Topology and its Applications 121 (2002) 357–382 367

Proof. The proof of this is a minor variation on the proof of (2)⇒ (1) of Theorem 3.9 of
[8]. ✷
Problem 19. Is it true that ifX has propertyS1(BΩ,BΩ), then it has propertyS1(B,B)
in all finite powers?

The class Sfin(BΩ,BΩ)

It is evident that unions of countably many spaces, each having propertyS1(BΓ ,B),
have propertyS1(BΓ ,B).

Theorem 20. If all finite powers of X have property S1(BΓ ,B), then X has property
Sfin(BΩ,BΩ).

Proof. Let Y = ∑
k∈N

Xk . Then by the assumption,Y has propertyS1(BΓ ,B). Assume
thatBn = {Bn

m: m ∈ N} are inBΩ for X. Define a Borel functionΨ from Y to NN so that
for all k, x0, . . . , xk−1 ∈X, andn:

Ψ (x0, . . . , xk−1)(n)= min
{
k: (∀m� k) x0, . . . , xk−1 ∈ Bn

m

}
.

By Theorem 6, the image ofY underΨ is not dominating. Choose a sequencemn

witnessing this. For eachn, set Wn := {Bn
j : j � mn}. Then eachWn is finite, and⋃

n∈N
Wn is in BΩ for X. ✷

Problem 21. Is it true that ifX has propertySfin(BΩ,BΩ), then it has propertyS1(BΓ ,B)
in all finite powers?

The class S1(BΩ,BΓ )

A standard diagonalization trick gives the following.

Lemma 22. The following are equivalent:
(1) X has property S1(BΩ,BΓ ).
(2) Every Borel ω-cover of X contains a γ -cover of X.

Proof. The proof of this is like that of the corresponding result in [5].✷
For the next characterization we need some terminology and notation. Fora, b ⊆ N,

a ⊆∗ b if a\b is finite. Let [N]∞ denote the set of infinite sets of natural numbers.
X ⊆ [N]∞ is centered if every finite F ⊆ X has an infinite intersection.a ∈ [N]∞ is a
pseudo-intersection ofX if for all b ∈ X, a ⊆∗ b. X ⊆ [N]∞ is a power if it is centered,
but has no pseudo-intersection.

Every countable large Borel coverU = {Un: n ∈ N} of X is associated with a Borel
functionhU :X→[N]∞, defined byhU (x)= {n: x ∈ Un}.
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Lemma 23 [22]. Assume that U is a cover of X. Then:
(1) U is an ω-cover of X if, and only if, hU [X] is centered.
(2) U contains a γ -cover of X if, and only if, hU [X] has a pseudo-intersection.

Lemma 24. The following are equivalent:
(1) Every Borel ω-cover of X contains a γ -cover of X.
(2) No Borel image of X in [N]∞ is a power.

Proof. (2) ⇒ (1): Follows from the preceding lemma.
(1) ⇒ (2): Assume thatf :X → [N]∞ is Borel, such thatf [X] is centered. LetOn,

n ∈ N, denote the clopen sets{a: n ∈ a}. As f [X] is centered,{On: n ∈ N} is anω-cover
of f [X]. Thus,U = {f−1[On]: n ∈ N} is a Borelω-cover ofX. But f = hU , so we can
apply the preceding lemma.✷

We thus get the following characterization ofS1(BΩ,BΓ ).

Theorem 25. For a set X of real numbers, the following are equivalent:
(1) X has property S1(BΩ,BΓ ).
(2) No Borel image of X in [N]∞ is a power.

Corollary 26. For a set X of real numbers, the following are equivalent:
(1) X has property S1(BΩ,BΓ ).
(2) Every continuous image of X has property S1(Ω,Γ ).

Proof. This follows from a Theorem of Recław [14], asserting thatX has property
S1(Ω,Γ ) if, and only if, no continuous image ofX in [N]∞ is a power. ✷

Fig. 2 summarizes the equivalences proved in this section.

S1(BΓ ,BΓ ) S1(BΓ ,BΩ) S1(BΓ ,B)

Sfin(BΩ,BΩ)

S1(BΩ,BΓ ) S1(BΩ,BΩ) S1(B,B)

Fig. 2. The surviving Borel classes.
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3. Does Fig. 2 contain all the provable information about these classes?

We now consider the question whether we have proved all the equalities that can be
proved for these Borel cover classes. It will be seen that the answer is “Yes”; here is a brief
outline of how this follows from the results of the present section:

(1) According to Corollary 41 it is consistent that there is a set of real numbers with
propertyS1(BΩ,BΩ), but not propertyS1(BΓ ,BΓ ). This means hat none of the
arrows from the left of Fig. 2 to the middle is reversible.

(2) According to Theorem 32 it is consistent that there is a set of real numbers in
S1(B,B) which is not inS1(BΓ ,BΩ). This means that none of the arrows from
the middle of Fig. 2 to the right is reversible.

(3) According to Theorem 43 it is consistent that there is a set of real numbers in
S1(BΓ ,BΓ ) and not in either ofSfin(BΩ,BΩ) or S1(B,B). This implies that none
of the arrows from the bottom of Fig. 2 which terminates at the top is reversible.

(4) According to Theorem 27 the minimal cardinality of a set of real numbers not having
propertySfin(BΩ,BΩ) is d, while the minimal cardinality of a set of real numbers
not having propertyS1(B,B) is cov(M). Since it is consistent thatcov(M) < d, it
is consistent that none of the arrows starting at the bottom row of Fig. 2 is reversible.

For a collectionJ of separable metrizable spaces, letnon(J ) denote the minimal
cardinality for a separable metrizable space which is not a member ofJ .

We also callnon(J ) the critical cardinality for the classJ .

Theorem 27.
(1) non(S1(BΩ,BΓ ))= p.
(2) non(S1(BΓ ,BΓ ))= b.
(3) non(Sfin(BΩ,BΩ))= non(S1(BΓ ,BΩ))= non(S1(BΓ ,B))= d.
(4) non(S1(BΩ,BΩ))= non(S1(B,B))= cov(M).

Proof. (1) and (2) follow from Theorems 25 and 1, respectively. (3) follows from
Theorems 6 and 20.

For (4), we need the following lemma.

Lemma 28. Let J , S be collections of separable metrizable spaces, such that X ∈ J if,
and only if, every Borel image of X is in S . Then non(J )= non(S).

Proof. SinceJ ⊆ S, we havenon(J )� non(S). Now, letX witnessnon(J ). Then there
is a Borel functionΨ on X such thatΨ [X] /∈ S. As the cardinality ofΨ [X] cannot be
greater than the cardinality ofX, we get thatnon(J ) � non(S). ✷

Now, it is well known thatnon(S1(O,O)) = cov(M). Therefore, by Theorem 14,
non(S1(B,B)) = cov(M). Thus, by Theorem 18,non(S1(BΩ,BΩ)) = cov(M) as
well. ✷
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Since it is consistent thatp < cov(M), it is consistent thatS1(BΩ,BΓ ) is not equal to
S1(BΩ,BΩ). Similarly the consistency of the inequalityp< b implies thatS1(BΩ,BΓ ) is
not provably equal toS1(BΓ ,BΓ ).

It is consistent thatb< cov(M), and so it is consistent that there is a set of real numbers
which has propertyS1(BΩ,BΩ) but which does not have propertyS1(BΓ ,BΓ ).

Since it is consistent thatcov(M) < d, it is also not provable thatSfin(BΩ,BΩ) is equal
to either ofS1(BΩ,BΩ) or S1(B,B).

What the cardinality results do not settle is whetherS1(BΩ,BΩ) provably coincides
with S1(B,B), or whether any of the three classes associated with the cardinal numberd

coincides with another. They also do not give any indication as to what the interrelation-
ships among two classes might be when their critical cardinals are equal. To treat these
questions we now consider specific examples which could be constructed on the basis of
a variety of axioms which are consistent. All of the axioms that we use have the form of
equality between certain well known cardinal invariants. Readers who are not familiar with
this type of axiom may assume the Continuum Hypothesis instead (in this case, all of the
cardinal invariants become equal toℵ1).

Special elements of S1(B,B)

A set of real numbers is aLusin set if it is uncountable, but its intersection with each
meager set of real numbers is countable. More generally, for a cardinalκ an uncountable
setX ⊆ R is said to be aκ-Lusin set if it has cardinality at leastκ , but its intersection with
each meager set is less thanκ . It is evident that the smaller the value ofκ , the harder it is
for a set to be aκ-Lusin set. Towards the goal of using as weak hypotheses as possible,
this means that we would be interested inκ-Lusin sets for as large a value ofκ that would
allow the conclusion we are aiming at. We now work in the groupNZ (which topologically
is homeomorphic to the set of irrational numbers), and construct from weak axioms special
elements ofS1(B,B).

Lemma 29. If cov(M) = cof(M), and if Y is a subset of NZ of cardinality at most
cof(M), then there is a cov(M)-Lusin set L⊂ NZ such that Y ⊆ L+L.

Proof. Let {yα: α < cov(M)} enumerateY . Let {Mα : α < cov(M)} enumerate a cofinal
family of meager sets, and constructL recursively as follows: At stageα setXα = {ai : i <
α}⋃{bi: i < α}∪⋃

i<α Mi . Then(yα−Xα)∪Xα is a union of fewer thancov(M) meager
sets. Choose anaα ∈ NZ\((yα −Xα) ∪Xα). Evidently,aα ∈ (yα − NZ\Xα) ∩ (NZ\Xα).
Thus, choosebα ∈ NZ\Xα for whichyα − bα = aα . Then we haveyα = aα + bα .

Finally, setL = {aα: α < cov(M)} ∪ {bα: α < cov(M)}. ThenL is a cov(M)-Lusin
set andL+L⊇ Y . ✷

The next result is used to show that forκ small enough,κ-Lusin sets are inS1(B,B).

Corollary 30. If X is a cov(M)-Lusin set, then it has property S1(B,B).
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Proof. If M is any meager set, thenM ∩X has cardinality less thancov(M), and thus is
in S1(B,B). Now apply Theorem 13. ✷

The notion of a Lusin set (i.e., anℵ1-Lusin set in our current notation) was characterized
as follows in [21]: For a topological spaceX let K denote the collection ofU such thatU
is a family of open subsets ofX, andX = ⋃{�U : U ∈ U}. ThenX is a Lusin set if, and
only if, it has propertyS1(K,K).

Thus we have:

Corollary 31. If a set of real numbers has property S1(K,K), then it has property
S1(B,B).

Theorem 32. If cov(M)= cof(M), then there is a cov(M)-Lusin set in S1(B,B) which
is not in Ufin(Γ,Ω).

Proof. From the cardinality hypothesis and the fact thatcov(M) � d � cof(M), we
see that there is inNZ a dominating family, sayY , of cardinality cov(M). Let L be
a cov(M)-Lusin set as in Lemma 29, such thatL + L ⊇ Y . As max{|f (n)|, |g(n)|} �
(|f (n)| + |g(n)|)/2, we see that for the identity mappingΨ , maxfin(Ψ [L]) is dominating.
Thus, by Remark 10,L does not have propertyUfin(Γ,Ω).

By Corollary 30L has propertyS1(B,B). ✷
This in particular implies thatS1(BΩ,BΩ) is not provably equivalent toS1(B,B).

Special elements of S1(BΩ,BΩ)

Now that we have clarified most of the interrelationships among the Borel classes, we
consider how the Borel classes are related to the classes in Fig. 1. We have just seen that
S1(B,B) need not be contained inUfin(Γ,Ω), even when the critical cardinalities for sets
not belonging to these classes are the same.

Next we treatS1(BΩ,BΩ) and Ufin(Γ,Γ ). We show how to use the Continuum
Hypothesis to construct a Lusin set which has propertyS1(BΩ,BΩ). Since it is a Lusin
set, it does not satisfyUfin(Γ,Γ ).

In our construction we use thead hoc concept of anω-fat collection of Borel sets.
A collectionU of Borel sets is said to befat if for each non-empty open intervalJ and for
each denseGδ-setG there is aB ∈ U such thatB ∩G∩ J �= ∅. It is said to beω-fat if: for
each denseGδ-setG and for every finite familyF of non-empty open sets there is aB ∈ U
such that for eachJ ∈F , B ∩ J ∩G is nonempty.

A number of facts about theseω-fat families of Borel sets will play a crucial role in
our construction. For ease of reference we state these as lemmas and give proofs where it
seems necessary.

Lemma 33. Let U be an ω-fat family consisting of countably many Borel sets.
(1) For each partition of U into two pieces, at least one of the pieces is ω-fat.



372 M. Scheepers, B. Tsaban / Topology and its Applications 121 (2002) 357–382

(2) If U is a Borel ω-cover of the set X and F is a finite subset of X, then {U ∈ U :
F ⊆U} is an ω-fat Borel ω-cover of X.

Lemma 34. If B is a countable fat Borel family, then there is a dense Gδ-set contained in⋃
B.

Proof. SinceB =⋃
B is a Borel set, it has the property of Baire. LetU be open set such

that(U\B)∪ (B\U) is meager. ThenU is dense, for letG be a denseGδ disjoint from that
meager set, and letJ be a non-empty open interval. ThenJ ∩G ∩ B is non-empty. But
B = (B\U) ∪ (B ∩U), so that(B ∩U)∩ J is non-empty.

Now R\U is nowhere dense, and we may assume thatG is also disjoint from this
nowhere dense set. But thenG⊆ B. ✷
Lemma 35. If U is a countable ω-fat family of Borel sets and F is a finite non-empty
family of non-empty open intervals, then there are a U ∈ U and for each J ∈ F a non-
empty open interval IJ ⊂ J such that the set U ∩ IJ is comeager in IJ .

Proof. Towards proving the contrapositive, take a countableω-fat familyU Borel sets, and
a finite non-empty familyF of non-empty open intervals such that:

For eachU ∈ U there is aJU ∈ F such that for each non-empty open intervalI ⊆ JU

the setU ∩ I is not comeager inI . Fix such aJU for eachU ∈ U .
SinceU ∩ JU is a Borel set, it has the property of Baire. Choose an open setV ⊂ JU

such that(V \(U ∩JU))∪ ((U ∩JU)\V ) is meager. IfV is non-empty, then the meagerness
of V \(U ∩JU) implies thatU ∩V is comeager inV , contradicting the choice ofU andJU .
Thus,V is empty, and we find thatU ∩ JU is meager. LetGU be a denseGδ-set disjoint
fromU ∩ JU .

The setG=⋂
U∈U GU is an intersection of countably many denseGδ-sets, so is a dense

Gδ-set. But thenG andF witness thatU is notω-fat. ✷
Lemma 36. Let S be a countably infinite set and let (Fn: n ∈ N) be an ascending sequence
of finite sets with union equal to S. If (Un: n ∈ N) is a sequence of Borel ω-covers of S such
that for each n the set {U ∈ Un: Fn ⊆ U} is ω-fat, then there is a sequence (Un: n ∈ N)

such that for each n Un ∈ Un, {Un: n ∈ N} is a Borel γ -cover of S, and {Un: n ∈ N} is
ω-fat.

Proof. Let S, theFn ’s, and theUn’s be as in the hypotheses. We may assume for eachn

that for allU ∈ Un we haveFn ⊆U . Let (Jn: n ∈ N) be an enumeration of the non-empty
open intervals with rational endpoints.

Considern. SinceUn is ω-fat, choose aUn ∈ Un and for eachi � n an open non-empty
intervalI in ⊂ Ji such thatI in ∩Un is comeager inI in.

Then the sequence(Un: n ∈ N) is as desired. To see this, letG be any denseGδ-set and
let R1, . . . ,Rn be non-empty open intervals. Choosem so large at for eachi � n there is
a j � m with Jj ⊂ Ri . When we choseUm it was done so that for some open non-empty
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intervalsIj , j � m we hadIj ⊂ Jj andUm ∩ Ij is comeager inIj , whenceUm ∩G ∩ Ij

is comeager inIj . But then forr � n, Um ∩G∩Rr is non-empty. ✷
Lemma 37. If (Un: n ∈ N) is a sequence of countable ω-fat families of Borel sets such
that for each n Un+1 ⊆ Un, then there is a countable ω-fat family {Un: n ∈ N} of Borel sets
such that for each n, Un ∈ Un.

Proof. Let J1, J2, . . . , Jn, . . . be a bijective enumeration of a basis for the topology ofR.
Recursively choose for eachn sequences(Ink : k ∈ N) of non-empty open intervals, and for
eachn aUn ∈ Un such that:

(1) Fork < n we haveInk = Jn.
(2) Fork � n we haveInk ⊂ Jn andUk ∩ Ink is comeager inInk .
This is possible on account of Lemma 35. We claim thatU := {Un: n ∈ N} isω-fat.
For letG be a denseGδ-set and letR1, . . . ,Rk be non-empty open intervals. Choose

from the basis intervalsJn1, . . . , Jnk such thatn1 < · · · < nk and for 1� i � k we have
Jni ⊂Ri . Letm be larger thannk . Then for 1� i � k we have:Um ∩ I

ni
m contains a dense

Gδ-subset ofInim and so has non-empty intersection with the denseGδ-setG. Since for
eachi we haveInim ⊂Ri we see thatU ∩Ri ∩G is non-empty. ✷
Lemma 38. Let G be a dense Gδ-set and let J be a non-empty open interval. If for each n

Un is a countable ω-fat family of Borel sets, then there is an x ∈ J ∩G such that for each
n the set {U ∈ Un: x ∈U} is ω-fat.

Proof. For eachn let Un be a countableω-fat family of Borel sets. LetJ be non-empty
open interval, and letG be a denseGδ-set.

Let (Jn: n ∈ N) bijectively enumerate a base for the topology ofR, and writeG =⋂
n∈N

V 1
n whereV 1

1 ⊇ V 1
2 ⊇ · · · are dense open sets. Also, writeR1 := J . We may assume

that the closure ofJ is compact.
Recursively construct four sequences((Ui

n: i � n): n ∈ N), ((I in: i � n): n ∈ N),
(Rn: n ∈ N) and((V i

n : n ∈ N): i ∈ N), such that the following requirements are satisfied
for eachn:

(1) For allk � n, Uk
n ∈ Uk \ {Ui

j : i, j < n}.
(2) For eachi � n, I in ⊂ Ji is a non-empty open interval such thatI in ∩ (

⋂
j�n U

j
n ) is

comeager inI in.
(3) Rn+1 is a nonempty open interval with closure contained in(

⋂
i�n V

i
n+1)∩Rn.

(4) Rn+1 ∩ (
⋂

i�n U
i
n) is comeager inRn+1.

(5) V n
m ⊂ V n

m+1 for all m are dense open subsets ofRn.
(6) Rn+1 ∩ (

⋂
i�n U

i
n)⊆

⋂
m∈N

V n+1
m .

To see that this recursion can be carried out, first considern= 1: Here we already have
R1 and eachV 1

n specified. ConsiderJ1 andR1, andU1. Apply Lemma 35 to choose
U1

1 ∈ U1 and intervalsI1
1 andR2 such thatR2 ⊂ R1 ∩ V 1

1 andU1
1 ∩ R2 is comeager in

R2 andU1
1 ∩ I1

1 is comeager inI1
1 . SinceU1

1 ∩R2 is comeager inR2, choose a descending
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sequence(V 2
n : n ∈ N) of open dense subsets ofR2 such thatR2 ∩U1

1 ⊆ ⋂
m∈N

V 2
m. Thus

for n= 1 sets as required by the five recursion specifications have been found.
Suppose now thatn � 1 and that the recursion has been carried through forn steps.

ConsiderRn, J1, . . . , Jn, andU1, . . . ,Un.
Choose fori � n + 1 setsUi

n+1 ∈ Ui \ {Uj
k : j, k � n} andRn+1 an open non-empty

interval with closure contained inRn ∩ (
⋂

i�n V
i
n+1), as well as open non-empty intervals

I in+1, i � n + 1, such that for eachi, I in+1 ⊆ Ji , and
⋂

k�n+1U
k
n+1 ∩ I in+1 is comeager

in I in+1, and
⋂

k�n+1U
k
n ∩ Rn+1 is comeager inRn+1. This can be done on account of

Lemma 35. Then let(V n+1
m : m ∈ N) be a descending sequence of sets open and dense in

Rn+1 such thatRn+1 ∩ (
⋂

k�n+1U
k
n+1)⊇

⋂
m∈N

V n+1
m .

This shows how to continue the recursion to the next step.
With the recursive procedure completed, for eachn put Vn = {Un

k : k � n}. By the
compactness ofR1, and by specification (3) of the recursion,

⋂
n∈N

Rn is non-empty. Let
x be an element of this intersection.

We claim that eachVn is anω-fat subset ofUn, and that for eachV ∈ Vn, we have
x ∈ V ∩ J ∩G.

To see thatVn is ω-fat, let a denseGδ-setH and a finite setF of non-empty open
intervals be given. Choosem> n so large that there is for eachF ∈ F a Ji with i � m

such thatJi ⊆ F . ThenUn
m was chosen so that for each of the non-empty open intervals

I im ⊂ Ji , we haveUn
M ∩ I im comeager inI im. But then asH is a comeager set of reals, we

have for eachi � m thatUn
m ∩ I im ∩ H is non-empty. This implies that for eachF ∈ F ,

Un
m ∩ F ∩H is non-empty.
To see thatx is a member of each element ofVn, consider aUn

m ∈ Vn. We have
Un
m ∩ Rm ⊇ ⋂

j∈N
Vm
j . But for eachj � m+ 1 we haveRj+1 ⊆ V m

j , and asx is in the
intersection of theRj ’s, it is in the intersection of theV m

j ’s, so inUn
m. ✷

Lemma 39. If add(M) = c, then there exists a family (Gα : α < C1) of dense Gδ-sets of
reals, such that:
• For each dense Gδ-set G there is an α with Gα ⊆G.
• For α < β < c we have Gβ ⊂Gα .

Proof. Let (Mα : α < c) be a cofinal family of meager sets. We define by induction on
α < c a monotonically increasing sequence(M̃α : α < c) of Fσ meager sets as follows: At
stageα, let M̂α = ⋃

i<α M̃i . As α < add(M), M̂α is meager, so let̃Mα be anFσ meager
set containinĝMα .

By the Baire category Theorem, complements of meager sets inR are dense. Thus,
setting for eachαGα = R\M̃α yields the desired sequence.✷
Theorem 40 (CH). There is a c-Lusin set which has property S1(BΩ,BΩ).

Proof. Let (Gα : α < c) be as in Lemma 39. Let((Uα
n : n ∈ N): α < c) list all ω-sequences

where each term is anω-fat countable family of Borel sets. We shall now recursively
construct the desired Lusin setX by choosing for eachα a countable dense setXα to
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satisfy certain requirements, and then settingX = ⋃
α<cXα ∪ Q. Together with eachXα

we shall choose a sequence(Uα
n : n ∈ N) of Borel sets and a sequence(Sγ (α): γ < c) of

infinite subsets ofN such that:

(1) Wheneverγ < β < c, thenSγ (β)= N.

(2) For eachβ < c, for γ < ν < c we haveSν(β)⊂∗ Sγ (β).
(3) For allβ andγ , {Uβ

n : n ∈ Sγ (β)} is anω-fat γ -cover ofQ∪ (
⋃

ν�γ Xν}.
(4) For anyα, if someUα

n is not anω-cover ofQ∪ (
⋃

ν<α Xν), then for eachn we have

Uα
n = R.

(5) If for eachn Uα
n is anω-cover ofQ∪ (

⋃
ν<α Xν}, then for eachn we haveUα

n ∈ Uα
n ,

and{Uα
n : n ∈ N} is anω-fat γ -cover ofQ∪ (

⋃
ν<α Xν).

(6) For eachα, Xα ⊂Gα \ (Q∪ (
⋃

ν<α Xν)) is dense inR.

Before showing that this can be accomplished, we show that constructingX to satisfy

these requirements is sufficient. Thus, letX be obtained like this. Let(Un: n ∈ N) be a

sequence of countable Borelω-covers ofX. Since eachXα is dense and contained inGα it

follows that for eachn Un is ω-fat. Thus, for someβ we have(Un: n ∈ N)= (Uβ
n : n ∈ N).

Since eachUβ
n is anω-cover ofX, it is anω-cover ofQ∪ (

⋃
γ<β Xγ ), and thus is as in (5).

Let F be a finite subset ofX and choose aβ > α such thatF ⊂ Q ∪ (
⋃

γ�β Xγ ). By (3)

{Uα
n : n ∈ Sβ(α)} is aγ -cover ofQ∪ (

⋃
γ�β Xγ ), whence for somen F ⊂Uα

n . It follows

that{Uα
n : n ∈ N} is anω-cover ofX, as desired.

Now the recursive construction: FixQ, the set of rational numbers, and ask: Is(U0
n : n ∈

N) a sequence ofω-covers ofQ?

No: Then for eachn setU0
n = R, chooseX0 ⊂G0 \ Q countable and dense, and put

S0(0)= N.

Yes: For eachn choose aU0
n ∈ U0

n such that{U0
n : n ∈ N) is anω-fat γ -cover ofQ.

Repeatedly apply Lemma 38 to recursively choose numbersx1 ∈ J1 ∩ G0 \ Q

and xn+1 ∈ Jn+1 ∩ G0 \ (Q ∪ {x1, . . . , xn}) such that:V1 := {U0
n : x1 ∈ U0

n } is

anω-fat family of Borel sets, and for eachn Vn+1 := {U0
m ∈ Vn: xn+1 ∈ U0

m} is

anω-fat family of Borel sets. In the end putX0 = {xn: n ∈ N}, and choose by

Lemma 37 aV ⊂ V1 such thatV isω-fat, and for eachn alsoV ⊆∗ Vn. Finally set

S0(0)= {n: U0
n ∈ V}. Observe that{U0

n : n ∈ S0(0)} is aγ -cover ofQ∪X0.

This shows that the six recursive requirements are satisfiable forα = 0. Assume now

that α > 0 is given, and for eachβ < α we already haveXβ as well as the sequence

(U
β
n : n ∈ N) and (Sγ (β): γ < α) such that the six recursive requirements are satisfied.

To verify that stageα can then be carried out, do the following. First, for allβ < α define

Sβ(α)= N. Also, using Lemma 37, choose for eachβ < α an infinite setSβ ⊂ N such that

for all γ < α we haveSβ ⊂∗ Sγ (β), and such that{Uβ
n : n ∈ Sβ} is anω-fat γ -cover of⋃

γ<α Xγ ∪Q.
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Consider(Uα
n : n ∈ N) and ask: Is eachUα

n anω-cover of
⋃

γ<α Xγ ∪Q?

No: Then for eachn put Uα
n = R, and declareSα(α) = N. Next we chooseXα

recursively as follows fromHα :=Gα \ (⋃γ<α Xγ ∪ Q): By Lemma 38 choose

anx1 ∈ J ∩Hα such that for eachβ < α the setVβ

1 = {Uβ
n : n ∈ Sβ andx1 ∈U

β
n }

is anω-fat family. For eachn choosexn+1 ∈ Jn+1 ∩Hα \ {x1, . . . , xn} such that
Vβ

n+1 := {Uβ
m ∈ Vβ

n : xn+1 ∈ U
β
m} is anω-fat family. Finally apply Lemma 37 to

choose for eachβ < α anω-fat family Vβ ⊆ Vβ

1 such that for eachn Vβ ⊂∗ Vβ
n ,

and setXα = {xn: n ∈ N}. Observe that eachVβ is aγ -cover of
⋃

γ�α Xγ ∪ Q,

andXα is a dense subset ofR. For eachβ < α defineSα(β) := {m: Uβ
m ∈ Vβ}.

Yes: Then first choose for eachn a Uα
n ∈ Uα

n such that{Uα
n : n ∈ N} is a γ -cover

of
⋃

γ<α Xγ ∪ Q. For eachβ < α set Sβ(α) = N. Next we constructXα .
For convenience, putHα = Gα \ (⋃γ<α Xγ ∪ Q). Applying Lemma 38 choose

x1 ∈ J1 ∩Hα such that for eachβ < α the setUβ
1 := {Uβ

n : n ∈ Sβ andx1 ∈ U
β
n }

is ω-fat, andUα
1 = {Uα

n : x1 ∈ Uα
n } is ω-fat. For eachn choosexn+1 ∈ Jn+1 ∩

Hα\{x1, . . . , xn} such that forβ � α we haveVβ
n+1 = {Uβ

m ∈ Vβ
n : xn+1 ∈ U

β
m} is

anω-fat family. Finally, by Lemma 37 choose for eachβ anω-fat familyVβ such
that for alln Vβ ⊆∗ Vβ

n . Observe that eachVβ is aγ -cover of
⋃

β�α Xβ ∪Q. For

β � α define:Sα(β)= {n: Uβ
n ∈ Vβ}.

In either case we succeeded in extending the satisfiability of the recursive requirements
before stageα, to stageα. ✷
Corollary 41. (CH) There is a set of real numbers with property S1(BΩ,BΩ) which does
not have property Ufin(Γ,Γ ).

Proof. We may think of having carried out the preceding construction inNN; here, every
set with propertyUfin(Γ,Γ ) is bounded, and so meager. But a Lusin set is non-meager.✷
Special elements of S1(BΓ ,BΓ )

Our next task is to determine the relationship of the top row of Fig. 2 to the bottom rest
of Fig. 1. For this we compareS1(BΓ ,BΓ ) with S1(O,O) and withSfin(Ω,Ω). A setX
of real numbers is said to be aSierpiński set if it is uncountable, and its intersection with
each Lebesgue measure zero set is countable. More generally, for an uncountable cardinal
numberκ a set of real numbers is aκ-Sierpínski set if it has cardinality at leastκ , but its
intersection with each set of Lebesgue measure zero is less thanκ .

In Theorem 2.9 of [8] it was shown that all Sierpiński sets have the property
Ufin(BΓ ,BΓ ). This also follows easily from our characterization ofS1(BΓ ,BΓ ) (Theorem
3), since each countable set has this property. Indeed, our characterization and the fact
that every set of real numbers of cardinality less thanb has propertyS1(BΓ ,BΓ ) gives
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that everyb-Sierpínski set has propertyS1(BΓ ,BΓ ). Since sets of real numbers having
propertyS1(O,O) have measure zero, nob-Sierpínski set has propertyS1(O,O).

Let P denote the set of irrational numbers.

Lemma 42. If cov(N )= cof(N ), and if Y ⊆ P has cardinality at most cof(N ), then there
is a cov(N )-Sierpiński set S ⊆ P such that Y ⊆ S + S ⊆ P.

Proof. Let {yα: α < cov(N )} enumerateY . Let {Nα : α < cov(N )} enumerate a cofinal
family of measure zero sets, and constructS recursively as follows: At stageα set

Xα =
⋃
i<α

({ai, bi} ∪ (Q− ai)∪ (Q− bi)∪Ni

)
.

Note that for eachx ∈ P \Xα andi < α, x + ai andx + bi are irrational.
Xα is a union of fewer thancov(N ) measure zero sets. As in Lemma 29, we can choose

aα, bα ∈ P\Xα such thataα + bα = yα . (Note thatyα ∈ P.)
Finally, setS = {aα: α < cov(N )} ∪ {bα: α < cov(N )}. ThenS is acov(N )-Sierpínski

set andY ⊆ S + S ⊆ P. ✷
Theorem 43. If b = cov(N )= cof(N ), then there is a b-Sierpiński set of real numbers S
such that:

(1) S has property S1(BΓ ,BΓ ).
(2) S does not have property S1(O,O).
(3) S × S does not have property Ufin(Γ,O).
(4) S does not have property Sfin(Ω,Ω).

Proof. Note that the hypothesisb = cof(N ) implies thatb = d. Let Ψ be a homeo-
morphism from the irrationals ontoNN. Let D ⊆ NN be a dominating family of sized,
and setY = Ψ−1[D]. Use Lemma 42 to construct ab-Sierpínski setS ⊆ P such that
Y ⊆ S + S ⊆ P. Now, definef :S × S :→ NN by f (x, y) = Ψ (x + y). Thenf is con-
tinuous, andf [S × S] = Ψ [S + S] ⊇ Ψ [X] =D is dominating. This makes (1), (2), and
(3).

Now, in [8] it is proved thatSfin(Ω,Ω) is closed under taking finite powers. Thus, (4)
follows from (3). ✷

Thus, we have thatS1(BΓ ,BΓ ) is not provably contained inSfin(Ω,Ω). It follows that
Fig. 2 gives all the provable relations among the Borel covering classes.

In light of Theorem 6, the following Theorem of Recław [15] implies that none of the
properties involving open classes implies any of the properties involving Borel classes.
Recław’s proof assumes Martin’s axiom, but the partial order used isσ -centered so that in
factp = c is enough.

Theorem 44. (p = c) There is a set having the S1(Ω,Γ ) property which can be mapped
onto NN by a Borel function.
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Ufin(Γ,Γ ) Ufin(Γ,Ω) Ufin(Γ,O)

Sfin(Γ,Ω)

S1(Γ,Γ ) S1(Γ,Ω) S1(Γ,O)

S1(BΓ ,BΓ ) S1(BΓ ,BΩ) S1(BΓ ,B)

Sfin(BΩ,BΩ) Sfin(Ω,Ω)

S1(Ω,Γ ) S1(Ω,Ω) S1(O,O)

S1(BΩ,BΓ ) S1(BΩ,BΩ) S1(B,B)

Fig. 3. The combined diagram.

Fig. 3 summarizes the relationships among the various classes considered so far in this
paper and in [8], including the Borel classes. In this diagram there must also be a vector
pointing fromSfin(BΩ,BΩ) to Sfin(Ω,Ω); we omitted this one for “aesthetic” reasons.

With this we have now shown that in Fig. 3, no arrows can be added to, or removed
from, the layer of Borel classes.

At present it is not known if there always is an uncountable set of real numbers which
belongs to some class in Fig. 2. In light of what we know about this diagram, the most
modest form of this question is

Problem 45. Is there always an uncountable set of reals with propertyS1(BΓ ,B)?

While the boldest form would be:

Problem 46. Is there always an uncountable set of real numbers with propertySfin(BΩ,

BΩ)?

Special elements of S1(BΩ,BΓ )

It might be wondered whether any of our Borel notions trivializes to contain only sets of
size smaller than the critical cardinality of that notion. With the knowledge obtained thus
far, the only candidate to trivialize isS1(BΩ,BΓ ). A Theorem of Brendle [4] shows that
this is not the case.

Theorem 47. (CH) There is a set of reals X of size c (= ℵ1) which has property
S1(BΩ,BΓ ).
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4. Preservation of properties

The selection properties for open covers are preserved when taking continuous images
or closed subsets [8]. We have the following analogue.

Theorem 48. Let Π be one of S1, Sfin, or Ufin and let U and V range over the set
{B,BΩ,BΛ,BΓ }. Assume that X has property Π(U,V). Then:

(1) If Y is a Borel subset of X, then Y has property Π(U,V).
(2) If f :X→ Y is Borel and onto, then Y has property Π(U,V).

Proof. This proof is similar to the proof of Theorem 3.1 in [8].✷
In particular, ifU andV are among{O,Ω,Λ,Γ } for X, andX has propertyΠ(BU ,BV)

for someΠ , then every Borel image ofX has propertyΠ(U,V). This gives rise to the
following question: Using the above notation, assume that every Borel image ofX has
propertyΠ(U,V). DoesX necessarily have theΠ(BU ,BV) property? For the following
classes, a positive answer was given:
• S1(O,O)—Theorem 14.
• Ufin(Γ,Γ )—Theorem 2.
• S1(Γ,Γ )—this one follows from the preceding one, sinceS1(Γ,Γ ) impliesUfin(Γ,Γ ),

andS1(BΓ ,BΓ ) is equivalent toUfin(BΓ ,BΓ ) (Theorem 1).
• Ufin(Γ,O)—Theorem 7.
• S1(Γ,O)—this one too follows from the preceding one, sinceS1(Γ,O) implies

Ufin(Γ,O), andS1(BΓ ,B) is equivalent toUfin(BΓ ,B) (Theorem 6).
• S1(Ω,Γ )—Theorem 26.
For the following classes, the problem remains open:
• S1(Γ,Ω), Sfin(Γ,Ω), andUfin(Γ,Ω)—if (4) implies (3) were true in Remark 10, we

could have added these classes to the positive list.
• S1(Ω,Ω).
• Sfin(Ω,Ω).

Finite powers

S1(B,B) is not provably closed under taking finite powers.

Theorem 49. If cov(M) = cof(M), then there exists a set of reals X such that X has
property S1(B,B), and X×X does not have the property Ufin(Γ,O).

Proof. The cov(M)-Lusin setL from Theorem 32 has the property thatL + L, a
continuous image ofL × L, is dominating. Thus,L × L does not have the property
Ufin(Γ,O). ✷
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Dually, Theorem 43 shows thatS1(BΓ ,BΓ ) is not provably closed under taking finite
powers.

Problem 50. Is any of the classesS1(BΩ,BΓ ), S1(BΩ,BΩ), andSfin(BΩ,BΩ) closed
under taking finite powers?

Note that a positive answer to Problem 19 would imply thatS1(BΩ,BΩ) is closed
under taking finite powers. Similarly, a positive answer to Problem 21 would imply that
Sfin(BΩ,BΩ) is closed under taking finite powers.

5. Connections with other approaches to smallness properties

Three schemas for describing smallness of sets of real numbers have been developed
over recent years. These have their roots in classical literature and can be described, broadly
speaking, by:
• properties of the vertical sections of a sufficiently describable planar set;
• properties of the image inNN under a sufficiently describable function;
• selection properties for sequences of sufficiently describable topologically significant

families of subsets.
The vertical sections schema has been inspired by the papers [12–14], and is as follows:
Let H be a subset ofR × R and letJ be a collection of subsets ofR. Forx andy real

numbers, define

Hx =
{
y ∈ R: (x, y) ∈H

};
Hy = {

x ∈ R: (x, y) ∈H
}
.

A Borel setH is said to be aJ -set if for eachx Hx ∈J .
The following three collections of subsets of the real line have been defined in terms of

properties of vertical sections, see [11]:
• ADD(J ): The set ofX ⊆ R such that for eachJ -setH ,

⋃
x∈X Hx ∈J .

• COV(J ): The set ofX ⊆ R such that for eachJ -setH ,
⋃

x∈X Hx �= R.
• COF(J ): The set ofX ⊆ R such that{Hx : x ∈X} is not a cofinal subset ofJ .
The sets inCOV(M) have also been calledRM-sets in [1]; in that paper it was shown

thatX is anRM-set if, and only if, every Borel image ofX in NN has propertyS1(O,O).
It was shown in [2] that this class is also characterized byS1(B,B).

The sets inADD(M) have also been calledSRM-sets, and it has been shown in [1] thatX

is in ADD(M) if, and only if, every Borel image ofX in NN has both propertiesS1(O,O)

and Ufin(Γ,Γ ). Due to a result in [10], a setX of real numbers has both properties
S1(O,O) andUfin(Γ,Γ ) if, and only if, it has the property(∗) which was introduced in
[5]. Using our results here and results of [10] one can show that a set of reals has property
ADD(M) if, and only if, it is a member ofS1(B,B) andS1(BΓ ,BΓ ).

The “properties of the image” schema takes inspiration from three papers [7,14] and
[17, Lemma 3]. In each of these papers it is proven that a set of real numbers has a certain
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property of interest if, and only if, each of its continuous images (in some cases into a
specific range space) has another property of interest.

The following four classes of sets were introduced in [11]:
• NON(J ): The set ofX ⊆ R such that for every Borel functionf from R to R, f [X]

is a member ofJ .
• P: The set ofX ⊆ R such that for no Borel functionf from R to [N]∞, f [X] is a

power.
• B: The set ofX ⊆ R such that for every Borel functionf from R to NN, f [X] is

bounded under eventual domination.
• D: The set ofX ⊆ R such that for every Borel functionf from R to NN, f [X] is not

a dominating family.
The classes of sets defined by these two schemas are related for the special case where

J is M, the collection of meager sets of real numbers, orN , the collection of measure
zero subsets of the real line. The results from [11] regarding the interrelationships of these
classes of sets are summarized in Fig. 4.

The relationship between Fig. 4 and the well-known Cichoń diagram that expresses
provable relationships among certain cardinal numbers is that a cardinal number in a
particular position in Cichón’s diagram is actually the minimal cardinality for a set of
real numbers not belonging to the class in the corresponding position in Fig. 4.

Our results imply the following.

Corollary 51. COF(M) contains a set of reals whose size is cov(M).

Proof. If cov(M) < cof(M)(= non(COF(M))), then any set of sizecov(M) will do.
Otherwise by Theorem 32 there exists acov(M)-Lusin set in S1(B,B), which is in
COV(M). ✷

In [7] Hurewicz characterized the covering propertiesUfin(Γ,Γ ) andSfin(O,O) in terms
of properties of the continuous images inNN. In particular, Hurewicz showed thatX has
propertyUfin(Γ,Γ ) if, and only if, each continuous image ofX in NN is bounded. He also
showed thatX has propertySfin(O,O) if, and only if, each continuous image ofX into
NN is not a dominating family. The sets inB have also been calledA-sets in [2]; where
they show that thatB = Ufin(BΓ ,BΓ ), andD = Sfin(B,B). By our results here we know
B = S1(BΓ ,BΓ ), andD = S1(BΓ ,B).

COV(N ) NON(M) COF(M) COF(N )

B D

ADD(N ) ADD(M) COV(M) NON(N )

Fig. 4. Cichón-like diagram.
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Note added in proof

As stated, item (2) of Lemma 33 is wrong: LetU = {R \Z} ∪ [Z]<ω. ThenU is anω-fat
ω-cover ofZ. But for any nonempty finite subsetF of Z, the collection{U ∈ U : F ⊂ U}
is notω-fat. However, ifX is a Lusin set such that for each nonempty basic open setG,
X ∩G is uncountable, then item (2) of this lemma holds. As the special setX which we
will construct is a Lusin set, we can easily make sure that it has the required property and
the proof works. This idea is extended and explained further in: T. Bartoszynski, S. Shelah
and B. Tsaban,Additivity properties of topological diagonalizations (preprint).
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