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Abstract

In this paper we extend previous studies of selection principles for families of open covers of sets
of real numbers to also include families of countable Borel covers. The main results of the paper
could be summarized as follows:

(1) Some of the classes which were different for open covers are equal for Borel covers—

Section 1.
(2) Some Borel classes coincide with classes that have been studied under a different guise by
other authors—Section 4.
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1. Introduction

Let X be a topological space. L& denote the collection of all countable open covers
of X. According to [5] an open coveéf of X is said to be am-cover if X is not a member
of U, but for each finite subsét of X thereis aJ € U such thatF C U. Itis shown in [5]
that everyw-cover of X has a countable subset which is@astover of X if, and only fif,
all finite powers ofX have the Lindel6f property. All finite powers of sets of real numbers
have the Lindelof property. The symh@l denotes the collection of atbuntable w-covers
of X. Acording to [8,18] an open cover dof is said to be g/-cover if it is infinite and
each element ok is a member of all but finitely many members of the cover. Since each
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infinite subset of g/-cover is ay-cover, each/-cover has a countable subset which is a
y-cover. The symbol™ denotes the collection of atbuntable y -covers ofX.

Let A and B be collections of subsets d&f. The following two selection hypotheses
have a long history for the case whghandB are collections of topologically significant
subsets of a space. Early instances of these can be found in [6,16]; many papers since then
have studied these selection hypotheses in one form or another.

S1(A, B): For each sequengd,: n € N) of members of4, there is a sequencg,: n
N) such that for each b, € A,, and{b,;: n € N} € B.

Siin(A, B): For each sequencéd,: n € N) of members ofA, there is a sequence
(B,: n € N) such that eaclB, is a finite subset ofd,,, and| J,,.x B € B.

These selection hypotheses are monotonic in the second variable and antimonotonic in
the first. Moreover, each has a naturally associated game:

In the gameG1(A, B) ONE chooses in thath inning an elemen0,, of A and then
TWO responds by choosinfj, € O,. They play an inning per natural number. A play
(01,T1,...,0,,T,,...) is won by TWO if{T,: n € N} is a member of3, otherwise,
ONE wins. If ONE does not have a winning strategyamn(A4, B), thenS; (A, B) holds.

The converse is not always true; when it is true, the game is a powerful tool for studying
the combinatorial properties of and5.

The gamessin(A, B) is played similarly. In the:ith inning ONE chooses an elemany
of A and TWO responds with a finite SEt C 0,. Aplay (01, T, ..., Oy, Ty, ...) iSwonN
by TWO if (J,cn Tn is in B, otherwise, ONE wins. As above: If ONE has no winning
strategy inGiin(A, B), thenS;in(A, B) holds; when the converse is also true the game is a
powerful tool for studying4 and’5.

A third selection hypothesis, introduced by Hurewicz in [6], is as follows:

Uiin(A, B): For each sequencéi,: n € N) of members ofA, there is a sequence
(Bn: n € N) such that for each B, is a finite subset ofi,,, and eithet ) B, = X
for all but finitely manyn, or else{| J B,: n € N}\{X} € B.

The three classes of open covers above are relateds2 € O. This and the properties
of the selection hypotheses lead to a complicated diagram depicting how the classes defined
this way interrelate. However, only a few of these classes are really distinct, as was shown
in [8,18]. Fig. 1 (borrowed from [8]) contains the distinct ones among these classes (it is not
known if the classSsin(I, §2) is Usin(I, §2), or if it containsUsin (I, I')). In this diagram,
as in the ones to follow, an arrow denotes implication.

Now we consider the following covers &f. The symbol5 denotes the family of all
countable covers of X by Borel sets; call elements of3 countable Borel covers of.
A countable Borel cover oX is said to be &8orel w-cover of X if X is not a member of it
but for each finite subset df there is a member of the cover which contains the finite set.
The symbolBg, denotes the collection of Borel-covers ofX. A countable Borel cover
of X is said to be @orel y-cover of X if it is infinite and each element of belongs to
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Utin(I", I')————Usin(I", 2) Usin(I", O)

.

S1(I°, I')——=S1([, 2) S1(I,0)

Stin(£2, £2)

S1(82, ') ———S1(£2, 2) S1(0,0)

Fig. 1. The open covers diagram.

all but finitely many members of the cover. The symBgl denotes the collection of Borel
y-covers ofX. It is evident that the following inclusions hold:

Br CBg CB; I CBr; Q2CBo and OCB.

On account of these inclusions and monotonicity properties of the selection principles
we have:Si1(B, B) € S1(0, 0); Siin(B, B) € Siin(O, O); Usin(Br, Br) <€ Usin(I, I');
S1(Bg, Br) € S1(£2, I'); and so on.

The methods of [8,18] can be used to show that a diagram obtained from Fig. 1 by
substituting all the open classes by their corresponding Borel versions summarizes all the
interrelationships among these.

But there are big differences about what is provable in these two situations. For example,
it has been shown in [8,20] that there always is an uncountable set of real numbers in the
classSy (I, I') and thus inUsn (I, I'). According to a result of [9] it is consistent that no
uncountable set of real numbers has propefty(Br, Br). Thus it is consistent that some
of the classes which provably do not coincide in the open covers diagram, do coincide in
the Borel covers diagram.

It must be checked which, if any, of the classes in the Borel covers diagram are provably
equal; this is our first task.

2. Characterizationsand equivalence of properties

In this section we give a number of characterizations for some of the Borel classes above.
In particular, we get that some of the new properties are equivalent, even though their
“open” versions are not provably equivalent.

Theclasses S1(Br, Br), Stin(Br, Br), and Usin(Br, Br)
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Theorem 1. For a set X of real numbers, the following are equivalent:
(1) X hasproperty S1(Br, Br).
(2) X has property Stin(Br, Br).
(3) X hasproperty Usin(Br, Br).
(4) Every Borel image of X in VN is bounded.

Proof. We must show that (3} (4) and (4)= (1).

(3)= (4): Thisis a theorem of [2]. In short, note that the collectiths= {U}}: m € N},
whereU,, ={f € NN: f(n) < m}, are openy-covers of'N. Assume that’ is a Borel
function from X to "N. Then the collection®, = (¢ ~[U"]: m € N} are inBr for X.
For all n, the sequencé#;, is monotonically increasing with respectsian Thus, we may
use (1) instead of (3) to get a sequem!cel[U,ﬁn] € B, which is in By for X. Then the
sequencez, bounds¥[X].

(4) = (1): Assume tha3, = {B}': k € N}, are inB for X. Define a function¥ from
X to VN so that for each andn:

¥ (x)(n) =min{k: (Ym > k) x € B}, }.

Then ¥ is a Borel map, and s@[X] is bounded, say by the sequengg. Then the
sequenceB,, :neN)isinBr for X. O

Corollary 2. For aset X of real numbers, the following are equivalent:
(1) X has property Usin(Br, Br).
(2) Every Borel image of X has property Usin(I, I').

Proof. An old theorem of Hurewicz [7] asserts th¥thas propertysin (I, I') if, and only
if, every continuous image of in "N is bounded. O

Theorem 3. For a set X of real numbersthe following are equivalent:
(1) X hasproperty S1(Br, Br).
(2) Each subset of X has property S1(Br, Br).
(3) For each measure zero set N of real numbers, X N N has property S1(Br, Br).

Proof. (1) = (2): This follows immediately from Theorem 1 and the fact that for sets
of real numbers a function on a subspace which is Borel on the subspace, extends to one
which is Borel on the whole space.

(3) = (1): Let X be as in (3), and le¥ be a Borel function fronX to NN. We may
assume thak is a subset of0, 1], the unit interval (as was shown in [20], the property
S1(I", I') is preserved by countable unions). letbe a Borel function froni0, 1] to NN
whose restriction t& is ¥.

By Lusin’s Theorem choose for eagha closed subset, of the unit interval such that
w(Cy) >1— (%)", and such tha® is continuous orC,,. SinceC, is compact, the image
of ® onC, is bounded in'N, say byh,,. The setV = [0, 1]\ U,en Cn has measure zero,
and soX N N has propertys1 (B, Br). It follows that the image under of X N N is
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bounded, say by. Now let f be a function which eventually dominates edgh andh.
Then f eventually dominates each memberqgiX].

Since¥ was an arbitrary Borel function fro to NN, Theorem 1 implies thax has
propertyS1(Br, Br). O

Proposition 4. If aset X of real numbershasthe S1(B, 5;) property, thenitisa o-set.

Proof. We show that eacles-subset ofX is anF,-subset. Thus, leA be aGs-subset
of X, sayA =),y Us Where for alln U, 2 U,1 are open subsets &f. SinceX is
metrizable, eacly, is anF,-set. Write, for eacl,

un=Jci.
keN
where for allm, C;, € C,. ., are closed sets. Then for eact, := (C;,: m e N)isin B
for A. SinceS1(Br, Br) is hereditaryA has this property and we find for eagtanm,,
such thatCy, : n € N) is ay-cover ofA. For eachk define

Fo:=(Ch.

n>k

Then eachFy is closed andd = |,y Fk- O

According to Besicovitch [3] a set of real numbers isoncentrated on a setQ if for
every open selV containingQ, the setX\U is countable.

Corollary 5. If an uncountable set of real numbersis concentrated on a countable subset
of itself, then it does not have property S1(Br, Br).

The classes S1(Br, B), Stin(Br, B), and Usin(Br, B)

Theorem 6. The following are equivalent:
(1) X hasproperty S1(Br, B).
(2) X hasproperty Siin(Br, B).
(3) X has property Usin(Br, B).
(4) No Borel image of X in VN is dominating.

Proof. The proof is similar to that of Theorem 1.

(3) = (4): Given a Borel function¥ from X to NN, defineB, as in the proof of
Theorem 1. LetA, k € N, be a partition ofN into infinitely many infinite sets. From
each sequence of covelf, n € Ax, we can extract by (1) a covel;, (n € Ay). Taken
together,B;, (n € N) form alarge cover of X. Recalling thatB), = lI/‘l[U,’},n], we get
that the sequenoe,, withesses tha? [ X] is not dominating.

(4) = (1): With notation as in the proof of Theorem 1, we get that if withnesses that
¥[X] is not dominating, thenB,, : n € N) is a (large) coverok. 0O
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Corollary 7. For aset X of real numbers, the following are equivalent:
(1) X has property Usin(Br, B).
(2) Every Borel image of X in NN has property Usin(I", O).

Proof. A Theorem of Hurewicz [7] asserts that a dets Usn (I, O) if, and only if, every
continuous image ok in NN is not dominating. O

Theclasses S1(Br, Be), Stin(Br, Bg), and Usin(Br, Be)

The characterization of these classes is best stated in the language of filteFsbé et
filter overN. An equivalence relatior £ is defined on'N by

f~r &= |{n fm=gm)}eF.

The equivalence class qf is denoted f]r, and the set of these equivalence classes is
denoted'N/F. Using this terminology, f 17 < [g]F means

{n: f(n) < g(n)} eF.

The following combinatorial notion and the accompanying Lemma 8 will be to used get
a technical version of the filter-based characterization.

For a family Y c NN, define maxfinf) to be the set of elements in ¥N for which
there is a finite seF C Y such that

f(n)=max{h(n): h € F}

forall n.

Lemma 8. Let Y c NN be such that for each n the set {h(n): h € Y} isinfinite. Then the
following are equivalent:
(1) maxfinY) isnot a dominating family.
(2) Thereis a non-principal filter F on N such that the subset {[ f]£: f € Y} of the
reduced product NN/ F is bounded.

Proof. (1) = (2): Choose am € "N which is strictly increasing, and which is not
eventually dominated by any element of maxfip(For any finite subsef of Y, put
fr(n) =max{g(n): g € F} for eachn, and then define the set

Ap={neN: fr(n) <hm)}.

Observe that for finite subsetsandG of Y, if F C G, thenAg C Afr. Thus, the family
{Ap: F CY finite} is a basis for a filtetF on N. By the hypothesis oY this filter is
non-principal. It is evident thd#]/F is an upper bound for /F.

(2) = (1): Let F be a non-principal filter olN such thatr /F is bounded, and choose
a functionk in NN such that for eaclf € Y we have[ f]£ < [h]£. Then for eachf € Y
the set{n: f(n) < h(n)} is in F and is infinite (sinceF is non-principal). SinceF
has the finite intersection property it follows that for each finite subssetff ¥ the set
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SF=1{n: Vf € F)(f(n) <h(n))}isinF. But thenk is not eventually dominated by any
element of maxfinf). O

Theorem 9. For a set X of real numbers, the following are equivalent:

(1) X hasproperty S1(Br, Bge).

(2) X hasproperty Siin(Br, Bo).

(3) X has property Utin(Br, Be).

(4) For each Borel function ¥ from X to YN, maxfin® [X]) isnot a dominating family.

(5) For each Borel function ¥ from X to NN, either there is a principal filter G for
which [ X]/G isfinite, or else there is a non-principal filter 7 on N such that the
subset W[ X]/F of the reduced product NN/F is bounded.

Proof. (1) = (2) = (3) are immediate. We will first show that (3} (4) = (1), and then
use Lemma 8 to establish the equivalence of (4) and (5). As in the previous proof, for any
finite subsetF of Y, put fr(n) = maxXg(n): g € F} for eachn.

(3) = (4): LetY = ¥ [X]. By the upcoming Theorem 48, has propertWsin(Br, Be).
For eactw and eachk, defineU; :={f: f(n) < k}; then setd, := {U}': k € N}. Each
Uy, is ay-cover of "N since for eactn and fork < j we haveU}' C Uj. Let Ay, k€N,
be a partition ofN into infinitely many infinite sets. From each sequence afoversis,,
n € A, we can use th&in(Br, Bg) property ofY to extract ano-cover(U,, : n € Ay).
Then for each finit¢” C X, we have for each € N ann € Ay suchtha¥ [F]C U, ,i.e.,
Sferr(n) <my. Thus, the sequence, witnesses that maxfi@[X]) is not a dominating
family.

(4) = (1): Assume that3, = {B;.: m € N} are in3r for X. Define a Borel functionwr
from X to NN so that for eachr andn:

¥ (x)(n) =min{k: (Ym >k) x € B, }.

Note that if F € X is finite, then for allm > fy[r(n), F C B)}. Let the sequence:,
witness that maxfiaZ[ X]) is not dominating. Then for all finit€’ C X, F C By, infinitely
many times. Thatis(B,, : n € N) isin Bg, for X.

(4) = (5): There are two cases to consider:

Case 1. There is am such that{¥ (x)(n): x € X} is finite. Then the principal filter
generated byn} does the job.

Case 2. For each: the set{W (x)(n): x € X} is infinite. Apply Lemma 8.

(5) = (4): Again consider two cases, and apply Lemma 8.

Remark 10. The implications (1}= (2) = (3) = (4) and (4)= (5) in Theorem 9 can be
proved for the open version of these properties in a similar manner. The implicatien (3)

(2) in the open case is counter-exampled by the Cantor set [8]. We do not know whether
the open version of (4 (3) is true.
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This gives the following characterization of

Corollary 11. For aninfinite cardinal number « the following are equivalent:
1) « <.
(2) For each subset X of NN of cardinality at most «, there is a non-principal filter F
on N such that in the reduced product NN/ F the set X/ F is bounded.

Proof. By Theorem 9, (2) implies (1). To see that (1) implies (2), consider an infinite®
and a subseX of YN which is of cardinalityc. We may assume thate X whenever there
is anx € X such thaty differs fromx in only finitely many points. Then maxfii() also
has cardinalityc. By Lemma 8 there exists non-principal filtéf on N such thatX/F is
bounded if'N/F. O

Theorem 12. For aset X of real numbers, the following are equivalent:
(1) X hasproperty S1(5Br, Be).
(2) For each Borel mapping ¥ of X into NZ thereis a non-principal filter F such that
the subring generated by w[X]/F in the reduced power N7/ F is bounded below
and above.

Proof. That (2) implies (1) is proved as before. Regarding (1) implies (2): It is evident
that if we confine attention to the rindZ with pointwise operations, then a subgeof it
would have propertg1(Br, Be) if, and only if, there is a non-principal filteF such that
Y/F is bounded from below and from abovelliZ. Let g be an element ofN such that

Y [X]/F is bounded byg]. Since the sefn - g: n € Z} U{g": n € N} is countable, we find

a singlek such that for alk & eventually dominates each of g andg”. But then in the
reduced powelZ/F the elemenf—#] is a lower bound and the elemenf is an upper
bound for the ring generated Y[ X]/F. O

Theclass S1(B, B)
The classesi1(B, B) andS1 (B, Br) appear to be each other’s “duals”.

Theorem 13. For aset X of real numbers, the following are equivalent:
(1) X hasproperty S1(B, B).
(2) Every subset of X has property S1(B, B).
(3) For each meager set M Cc R, X N M has property S1(B, B).

Proof. We must show that (1) implies (2), and that (3) implies (1).

(1) = (2): This is immediate from the equivalencef(3, B) with another notion (see
Section 5). However, we give a direct proof.

Let M be a subset ok, and assume that has propertys1 (3, B). For each let, be
a countable cover o#f by Borel subsets o#f. For eachlU € U, let By be a Borel subset
of X suchthat/ = M N By. ThenX,, := | J{By: U € U,} is a Borel subset ok sincels,
is countable. In turny := (e X is @ Borel subset ok .
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For eachn let U, be {By: U €U,} U{X\X}. Then U,: n € N) is a sequence of
countable Borel covers of. For each: choose aV, € U, such that{V,: n e N} is a
cover of X. For each for which V,, # X, choosel, € U, such thatv,, = By, ; for other
values ofn let U, be an arbitrary element &f,. Then(U,,: n € N) coversM.

(3) = (1): Let (B,: n € N) be a sequence of countable Borel cover¥oenumerate
eachB, as(B)}: m € N).

Since Borel sets have the property of Baire we may choose for Baen open se0;,
and a meager séff;, such that

By, = (Op\Mj,) U (M) \Op).

ThenA :=J,, .y M;, is @ meager set and $oN X has property (3, B). For each
such thatz mod 3= 0, choose &,, € B, such thatA N X is covered by these.

For eachn, O,, defined to be(O},: m € N}, is an open cover ok\A. Let O be a
countable dense subsetXf A, and choose for eachwith » mod 3=1 an0y;, such that
these covep.

Then the seB := X\ (J{0;, : n mod 3= 1} is meager, and so has propesy(3, 3).
For eachn such thats mod 3= 2, choose a),, € O, such that these,, 's coverB.

Then the sequenad,, : n € N) coversX. O

Combining of a result from [1,11] with one from [2] yields the following characteriza-
tion:

Theorem 14. For aset X of real numbers, the following are equivalent:
(1) X hasproperty S1(B, B).
(2) Each Borel image of X hasthe Rothberger property S1(O, O).

The selection propert$1 (O, O) manifests itself in several other interesting ways: these
analogues hold also f&1(5, B).

Theorem 15. For a set X of real numbers, the following are equivalent:
(1) s1(B, B) holds.
(2) ONE has no winning strategy in the game G1(B, B).

Proof. We must show that (1= (2): Let F be a strategy for ONE of the game
G1(B, B). Using it, define the following array of Borel subsets Xf First, enumerate
F (), ONE's first move, agU,: n € N). For each respons¥,, by TWO, enumerate
ONE's corresponding movE(Uy,,) as(Uy,,,: n € N). If TWO responds now wit¥,, .,
enumerate ONE’s corresponding ma¥é€lU,,,, Up, »,) 8S(Upy.n,,nt 1 € N), and so on.

The family (U;: T € <“N) has the property that for eaehthe set{U; -,: n € N} is a
cover of X by Borel subsets ok. Moreover, for each functiort in NN, the sequence

F@),Ura), FWUrw) Ur,r2, FUr, Urw,r@)s---
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is a play ofG1(B, B) during which ONE used the stratedy. For each sucty, define
St =U,enUr@....rmy- (Thus, Sy is the set of points covered by TWO during a play
coded byf.) We must show that for some sughwe haveS; = X.

Define the subseb of X x NN by

D:={(x, f): x ¢S}
ThenD is a Borel subset ok x NN. Moreover, for each € X the setD, = {f: x ¢ Sr}
is nowhere dense. (To see this, [¢t1,...,n;)] be a basic open subset OUN. Since
{Uny,..ne.m- m € N} is a cover ofX there is amvigi1 With x € Uy, .. n.nipq- But then
[(n1,...,nk, nk1)1 N Dy = 0.) Now recall from [2] that as¥ has propertys: (3, B) it
follows that VN = U,cx Dx (see Section 5). Lef be a function not in_J, .y Dx. Then
X = Sy, and we have defeated ONE’s stratdgy O

xeX

We next show thas1 (5, B) is a Ramsey-theoretic property. First observe:

Lemma 16. For a set X of real numbers, the following are equivalent:
(1) X hasproperty S1(B, B).
(2) X hasproperty S1(Bg, B).

Proof. The proof for this is like that of Theorem 17 of [18]O

The virtue of B, for Ramsey-theoretic purposes is thalfiis a member o3, and if
it is partitioned into finitely many pieces, then at least one of these pieces is a member of
Bg. This statement is denoted by the abbreviation:

for eachk, Bo — (Bo)i.
This is a special case of the more general notation
foralln andk A — (O)y,

which denotes the statement:
For eachm andk, for eachA € A, and for eacly : [A]" — {1,...,k}, thereisaC C A
such thatC € C andg is constant onC]".

Theorem 17. For a set X of real numbers, the following are equivalent:
(1) X hasproperty S1(B, B).
(2) X hasthe property that for all k, Be — (B)2.

Proof. The proof of this is like that of Theorem 4 of [19].0
Theclass S1(Bg, Be)

It is evident that unions of countably many spaces, each having prapgity’5), have
propertyS1(B, B).

Theorem 18. If all finite powers of X have property S1(B, B), then X has property
S1(B, B).
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Proof. The proof of this is a minor variation on the proof of (2) (1) of Theorem 3.9 of
[8]. O

Problem 19. Is it true that if X has propertys1(Bg, Bg), then it has propertg1 (5, B)
in all finite powers?

Theclass Siin(Bga, Bo)

It is evident that unions of countably many spaces, each having propgi§f, B),
have propertys:1 (B, B).

Theorem 20. If all finite powers of X have property S1(Br, B), then X has property
Siin(Bg2, Bo).

Proof. LetY =) "y X*. Then by the assumptiol¥, has propertys1(Br, B). Assume
thatB, = {B,.: m € N} are inBg, for X. Define a Borel functiow fromY to NN so that
forall k, xo, ..., xx_1 € X, andn:

¥(xg,...,xk—1)(n) = min{k: Ym>k)xo,...,xk—1 € B,”n}

By Theorem 6, the image of under¥ is not dominating. Choose a sequengg
witnessing this. For each, set W, := {B}?: j < my}. Then eachy, is finite, and
UpexnWrisinBg for X. O

Problem 21. Isittrue thatifX has propert\ssin(Bg, Bg), then it has propertg1(B, B)
in all finite powers?

Theclass S1(Bg, Br)
A standard diagonalization trick gives the following.

Lemma 22. The following are equivalent:
(1) X hasproperty S1(Bg, Br).
(2) Every Borel w-cover of X containsa y-cover of X.

Proof. The proof of this is like that of the corresponding result in [5f1

For the next characterization we need some terminology and notatiomn., BGE N,
a C* b if a\b is finite. Let [N]* denote the set of infinite sets of natural numbers.
X C [N]*° is centered if every finite F € X has an infinite intersectior. € [N]*° is a
pseudo-intersection of if for all b € X, a C* b. X C [N]* is apower if it is centered,
but has no pseudo-intersection.

Every countable large Borel covéf = {U,: n € N} of X is associated with a Borel
functionhy, : X — [N]*°, defined by, (x) = {n: x € U, }.
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Lemma 23 [22]. Assumethat I/ isa cover of X. Then:
(1) U isan w-cover of X if, and only if, k[ X] is centered.
(2) U containsa y-cover of X if, and only if, hz/[ X] has a pseudo-intersection.

Lemma 24. The following are equivalent:
(1) Every Borel w-cover of X containsa y-cover of X.
(2) No Borel image of X in [N]*° isa power.

Proof. (2) = (1): Follows from the preceding lemma.
(1) = (2): Assume thatf : X — [N]*° is Borel, such thatf[X] is centered. LeD,,
n € N, denote the clopen sefs: n € a}. As f[X] is centered{O,: n € N} is anw-cover

of f[X]. Thus, U = {f~1[0,]: n € N} is a Borelw-cover of X. But f = hy;, SO we can
apply the preceding lemma.co

We thus get the following characterization®f(Bg, Br).

Theorem 25. For aset X of real numbers, the following are equivalent:
(1) X hasproperty S1(Bg, Br).
(2) No Borel image of X in [N]*° isa power.

Corollary 26. For a set X of real numbers, the following are equivalent:
(1) X hasproperty S1(Bg, Br).
(2) Every continuousimage of X has property S1(£2, I').

Proof. This follows from a Theorem of Rectaw [14], asserting tléthas property
S1(£2, IN) if, and only if, no continuous image df in [N]* is a power. O

Fig. 2 summarizes the equivalences proved in this section.

S1(Br, Br) —=S1(Br, Be) —=S1(Br, B)

Stin(Be, Be)

S1(Bg, Br)——S1(Bg, Be) —S1(B, B)

Fig. 2. The surviving Borel classes.
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3. DoesFig. 2 contain all the provableinformation about these classes?

We now consider the question whether we have proved all the equalities that can be
proved for these Borel cover classes. It will be seen that the answer is “Yes”; here is a brief
outline of how this follows from the results of the present section:

(1) According to Corollary 41 it is consistent that there is a set of real numbers with
propertySi1(Bg, Bg), but not propertys1(5r, Br). This means hat none of the
arrows from the left of Fig. 2 to the middle is reversible.

(2) According to Theorem 32 it is consistent that there is a set of real humbers in
S1(B, B) which is not inS1(Br, Bg). This means that none of the arrows from
the middle of Fig. 2 to the right is reversible.

(3) According to Theorem 43 it is consistent that there is a set of real numbers in
S1(Br, Br) and not in either oB4in(Bg, Be) or S1(B, B). This implies that none
of the arrows from the bottom of Fig. 2 which terminates at the top is reversible.

(4) Accordingto Theorem 27 the minimal cardinality of a set of real numbers not having
propertySsin(Bg, Bg) is 0, while the minimal cardinality of a set of real numbers
not having propertys; (3, B) is cov(M). Since it is consistent thabv(M) < 0, it
is consistent that none of the arrows starting at the bottom row of Fig. 2 is reversible.

For a collection of separable metrizable spaces, heh(7) denote the minimal
cardinality for a separable metrizable space which is not a memlgér of

We also callhon(7) the critical cardinality for the class7.

Theorem 27.
(1) non(S1(Bg, Br)) =».
(2) non(S1(Br, Br)) =b.
(3) non(Siin(Bg, Be)) = non(S1(Br, Be)) = non(S1(Br, B)) = 0.
(4) non(S1(Bg, Bg)) =non(S1(B, B)) = cov(M).

Proof. (1) and (2) follow from Theorems 25 and 1, respectively. (3) follows from
Theorems 6 and 20.
For (4), we need the following lemma.

Lemma 28. Let 7, S be collections of separable metrizable spaces, such that X € 7 if,
and only if, every Borel image of X isin S. Then non(7) = non(S).

Proof. SinceJ C S, we havenon(7) < non(S). Now, let X witnessnon(7). Then there
is a Borel function& on X such that¥[X] ¢ S. As the cardinality o[ X] cannot be
greater than the cardinality &f, we get thahon(7) > non(S). O

Now, it is well known thatnon(S1(O, O)) = cov(M). Therefore, by Theorem 14,
non(S1(B, B)) = cov(M). Thus, by Theorem 18non(S1(Bg, Be)) = cov(M) as
well. O
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Since it is consistent that < cov(M), it is consistent thas1(Bg, Br) is not equal to
S1(Bg, Bg). Similarly the consistency of the inequaliiy< b implies thatS1(Bg, Br) is
not provably equal t&1 (B, Br).

Itis consistent thal < cov(M), and so it is consistent that there is a set of real numbers
which has propert$1(Bg, Bg) but which does not have prope®y (B, Br).

Since it is consistent thabv(M) < 0, it is also not provable th&;in (B, By) is equal
to either ofS1(Bg, By) or S1(B, B).

What the cardinality results do not settle is whetBe(By;, By;) provably coincides
with S1(B, B), or whether any of the three classes associated with the cardinal namber
coincides with another. They also do not give any indication as to what the interrelation-
ships among two classes might be when their critical cardinals are equal. To treat these
guestions we now consider specific examples which could be constructed on the basis of
a variety of axioms which are consistent. All of the axioms that we use have the form of
equality between certain well known cardinal invariants. Readers who are not familiar with
this type of axiom may assume the Continuum Hypothesis instead (in this case, all of the
cardinal invariants become equalig).

Special elements of S1(B, B)

A set of real numbers is Busin set if it is uncountable, but its intersection with each
meager set of real numbers is countable. More generally, for a cakdaraluncountable
setX C R is said to be &-Lusin set if it has cardinality at least, but its intersection with
each meager set is less thant is evident that the smaller the valueofthe harder it is
for a set to be &-Lusin set. Towards the goal of using as weak hypotheses as possible,
this means that we would be interested Hhusin sets for as large a value othat would
allow the conclusion we are aiming at. We now work in the grdzwhichtopologically
is homeomorphic to the set of irrational numbers), and construct from weak axioms special
elements o51(B5, B).

Lemma 29. If cov(M) = cof(M), and if Y is a subset of NZ of cardinality at most
cof(M), then thereisa cov(M)-Lusinset L ¢ NZ suchthat Y € L + L.

Proof. Let{y,: a < cov(M)} enumerate’. Let{M,: o« < cov(M)} enumerate a cofinal
family of meager sets, and constructecursively as follows: At stage setX, = {a;: i <
oy bt i <a}UlY;_, Mi. Then(y, — Xo) U X, is a union of fewer thanov(M) meager
sets. Choose am, € NZ\((vq — Xo) U Xy). Evidently,a, € (yo — VZ\Xo) N (NZ\ X).
Thus, choosé, € N7\ X, for which y, — by = ay. Then we have, = ay + by.

Finally, setL = {ay: o < cov(M)} U {by: a < cov(M)}. ThenL is acov(M)-Lusin
setandL+LDY. O

The next result is used to show that fosmall enoughx-Lusin sets are i1$1(8, B).

Corollary 30. If X isa cov(M)-Lusin set, then it has property S1(5, B).
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Proof. If M is any meager set, the N X has cardinality less thatov(M), and thus is
in S1(B, B). Now apply Theorem 13. O

The notion of a Lusin set (i.e., ay-Lusin set in our current notation) was characterized
as follows in [21]: For a topological spaceélet K denote the collection dff such that/
is a family of open subsets df, andX = | J{U: U € U4}. ThenX is a Lusin set if, and
only if, it has propertys1 (IC, K).

Thus we have:

Corollary 31. If a set of real numbers has property S1(K, K), then it has property
S1(B, B).

Theorem 32. If cov(M) = cof(M), then thereis a cov(M)-Lusin set in S (B, B) which
isnot in Usin(I, £2).

Proof. From the cardinality hypothesis and the fact teat(M) < o < cof(M), we
see that there is iRZ a dominating family, say, of cardinality cov(M). Let L be
a cov(M)-Lusin set as in Lemma 29, such that+ L 2 Y. As maX|f(n)|, |g(n)|} >
(Ifm)|+1gm)))/2, we see that for the identity mappigg maxfinw[L]) is dominating.
Thus, by Remark 1@, does not have propert¥in(I, £2).

By Corollary 30L has propertys1(B, B). O

This in particular implies tha$1(Bg,, Bg) is not provably equivalent t81(5, B).
Special elements of S1(Bg, Be)

Now that we have clarified most of the interrelationships among the Borel classes, we
consider how the Borel classes are related to the classes in Fig. 1. We have just seen that
S1(B, B) need not be contained s (I, §2), even when the critical cardinalities for sets
not belonging to these classes are the same.

Next we treatS1(Bg, Be) and Usn(I", I'). We show how to use the Continuum
Hypothesis to construct a Lusin set which has propsity5.;, Be). Since it is a Lusin
set, it does not satistysin (I, I').

In our construction we use thad hoc concept of anw-fat collection of Borel sets.

A collectionl{ of Borel sets is said to bt if for each non-empty open intervdland for
each dens6;-setG there is aB € U such thatB N G N J # (. It is said to beo-fat if: for
each dense;-setG and for every finite familyF of non-empty open sets there iBas U
such that for eacll € 7, BN J N G is nonempty.

A number of facts about these-fat families of Borel sets will play a crucial role in
our construction. For ease of reference we state these as lemmas and give proofs where it
seems necessary.

Lemma 33. Let U be an w-fat family consisting of countably many Borel sets.
(1) For each partition of I/ into two pieces, at least one of the piecesis w-fat.
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(2) If U isaBorel w-cover of the set X and F is a finite subset of X, then {U € U:
F C U} isan w-fat Borel w-cover of X.

Lemma 34. If B isa countable fat Borel family, then thereis a dense Gs-set contained in

UB.

Proof. SinceB =| B is a Borel set, it has the property of Baire. LL&tbe open set such
that(U\B) U(B\U) is meager. TheW is dense, for leG be a dens&; disjoint from that
meager set, and let be a non-empty open interval. Thdm G N B is non-empty. But
B=(B\U)U(BNU),sothattBNU)NJ ishon-empty.

Now R\U is nowhere dense, and we may assume thas also disjoint from this
nowhere dense set. ButthénC B. 0O

Lemma 35. If U is a countable w-fat family of Borel sets and F is a finite non-empty
family of non-empty open intervals, then there are a U € U and for each J € F a non-
empty openinterval /; C J suchthattheset U N I; iscomeager in I;.

Proof. Towards proving the contrapositive, take a countalfat family ¢/ Borel sets, and
a finite non-empty familyF of non-empty open intervals such that:

For eachU € U there is aJy € F such that for each non-empty open intervat Jy
the setU N I is not comeager id. Fix such aJy for eachU € U.

SinceU N Jy is a Borel set, it has the property of Baire. Choose an opel set/y
such thatV\(U N Jy))U (U NJy)\V) is meager. IV is non-empty, then the meagerness
of V\(U N Jy) implies thatU NV is comeager irV, contradicting the choice @f andJy .
Thus,V is empty, and we find thdll N Jy is meager. LeGy be a dens&;-set disjoint
fromUNJy.

The setG = (1,4 Gu is an intersection of countably many dei@esets, so is a dense
Gs-set. But therG and.F witness that/ is notw-fat. 0O

Lemma36. Let S beacountablyinfiniteset andlet (F,: n € N) bean ascending sequence
of finite setswith union equal to S. If (U,: n € N) isa sequence of Borel w-coversof S such
that for each n the set {U e U,,: F,, C U} is w-fat, then there is a sequence (U,: n € N)
such that for each n U, € U,, {U,: n € N} is a Borel y-cover of S, and {U,: n € N} is
w-fat.

Proof. Let S, the F,,’s, and theU,’s be as in the hypotheses. We may assume for each
that for allU € U, we haveF, C U. Let (J,: n € N) be an enumeration of the non-empty
open intervals with rational endpoints.

Considem. Sinceld, is w-fat, choose &/,, € U,, and for eachi <n» an open non-empty
interval I{ C J; such that/; N U, is comeager ir;.

Then the sequendd/,,: n € N) is as desired. To see this, [6tbe any dense;-set and
let R1, ..., R, be non-empty open intervals. Chooseso large at for each< n there is
a j <m with J; C R;. When we chos#&/,, it was done so that for some open non-empty
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intervals/;, j <m we hadl; C J; andU,, N I; is comeager in;, whenceU,, NG N I;
is comeager if;. But then forr <n, U, NG N R, is non-empty. O

Lemma 37. If (U,: n € N) is a sequence of countable w-fat families of Borel sets such
that for each n U,,+1 C U, then thereis a countable w-fat family {U,,: n € N} of Borel sets
such that for each n, U, € U,.

Proof. Let J1, J2, ..., Ju, ... be a bijective enumeration of a basis for the topologRof
Recursively choose for eaahsequencegl;’: k € N) of non-empty open intervals, and for
eachn aU, € U, such that:

(1) Fork <n we havel}’ = J,.

(2) Fork > n we havel;! C J, andU N I} is comeager ir}’.

This is possible on account of Lemma 35. We claim that {U,,: n € N} is w-fat.

For let G be a dense&;s-set and letR1, ..., Ry be non-empty open intervals. Choose
from the basis intervald,,, ..., J,, such thati; < --- < n; and for 1< i < k we have
Jn; C R;. Letm be larger thamy. Then for 1< i < k we haveU, N I contains a dense
Gs-subset ofl,’ and so has non-empty intersection with the deBseset G. Since for
eachi we havel,) C R; we see that/ N R; N G is non-empty. O

Lemma 38. Let G beadense Gs-set and let J be a non-empty open interval. If for each n
U, is a countable w-fat family of Borel sets, then thereisan x € J N G such that for each
ntheset {U elU,: x € U} isw-fat.

Proof. For eachn let U, be a countable-fat family of Borel sets. Let/ be non-empty
open interval, and le be a densé& s-set.

Let (J,: n € N) bijectively enumerate a base for the topologyRafand writeG =
Nuen Vik whereVe D V1 D ... are dense open sets. Also, write := J. We may assume
that the closure of is compact.

Recursively construct four sequenc@(ﬁ],’;: i <n). neN), ((I,;': i <n). neN),
(Ry: neN) and((V,f: n € N): i € N), such that the following requirements are satisfied
for eachn:

(1) Forallk <n, Uk ety \ (Ui, j <n}.

(2) For each <n, Il C J; is a non-empty open interval such thiat (ﬂjgn U,{) is

comeager irn;.

(3) R,+1is a nonempty open interval with closure containe(mkn V;H) N Ry.

(4) Rur1N(Nig, Up) is comeager irR, 1.

(5) V cV,,, forallm are dense open subsetsiof.

(6) Rut1 N (Nign U S Nyeny Vit

To see that this recursion can be carried out, first congided.: Here we already have
Ry and eachV! specified. Consider; and Ry, and4;. Apply Lemma 35 to choose
Ul e 4y and intervalsi! and R, such thatR> C Ry N Vi and UL N R, is comeager in
R andU; N I} is comeager it} SinceU7 N R, is comeager irk2, choose a descending
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sequencéV,2: n € N) of open dense subsets B such thatR, N UL € ),y V,2. Thus
for n = 1 sets as required by the five recursion specifications have been found.
Suppose now that > 1 and that the recursion has been carried through feteps.
Considerr,,, J1, ..., J,, andifq, ..., U,. .
Choose fori <n+1 setsUliJr1 el \ {U,f: j,k < n} and R,41 an open non-empty
interval with closure contained iR,, N (ﬂi@ V.1, aswellas open non-empty intervals

L4101 <n+1, such that for each, I, C Ji, and(N;<,1 Ur,y N1}, is comeager
in I;Hrl, and(Nycpi1 U* N R,4+1 is comeager ink,+1. This can be done on account of

Lemma 35. Then le¢v”*1: m e N) be a descending sequence of sets open and dense in
Ryp1 such thatR, 10 (Mycpr1 Ury 1) 2 Nipen V™.

This shows how to continue the recursion to the next step.

With the recursive procedure completed, for eacput V, = {(U[: k > n}. By the
compactness oR1, and by specification (3) of the recursign,,. R, is non-empty. Let
x be an element of this intersection.

We claim that each), is anw-fat subset of/,, and that for eactV € V,, we have
xeVnNnJngG.

To see that), is w-fat, let a densess-set H and a finite setF of non-empty open
intervals be given. Choose > n so large that there is for eadhe F a J; with i <m
such that/; € F. ThenU,, was chosen so that for each of the non-empty open intervals
Ii C J;, we havelUy, N I comeager inl! . But then asH is a comeager set of reals, we
have for eachi <m that U NI} N H is non-empty. This implies that for eadhe F,
U N F N H is non-empty.

To see thatr is a member of each element df,, consider aU;, € V,. We have
U O R 2 (jen V)" But for eachj > m + 1 we haveRr;,1 C V", and asx is in the
intersection of thek;’s, it is in the intersection of th&"’s, so inU,;. O

Lemma 39. If add(M) = ¢, then there exists a family (G,: o < €1) of dense Gs-sets of
reals, such that:

e For each dense Gs-set G thereisan o with G, € G.

o Fora <p <cwehaveGg C Gg.

Proof. Let (M,: a < ¢) be a cofinal family of meager sets. We define by induction on
a<ca monotonlcally mcreasmg sequer(M o <c) of Fy meager sets as follows: At
stagew, let Ma =, M;. Asa < add(M), My is meager, so led, be anF, meager
set containing¥/,,.

By the Baire category Theorem, complements of meager seéks ane dense. Thus,
setting for eacleG, = R\Mu yields the desired sequence

i<a

Theorem 40 (CH). Thereisa c-Lusin set which has property S1(Bg, B).

Proof. Let(Gy: o < ¢) be asin Lemma 39. L&tl(": n € N): « < ¢) list all w-sequences
where each term is aw-fat countable family of Borel sets. We shall now recursively
construct the desired Lusin s&t by choosing for eacle a countable dense séf, to
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satisfy certain requirements, and then settihe- |, .. Xo U Q. Together with eactx,,
we shall choose a sequen@é’: n € N) of Borel sets and a sequenc$, («): y < ¢) of
infinite subsets oN such that:

(1) Whenever < g < ¢, thenS, (8) =N.

(2) ForeachB <¢, fory <v < cwe havesS,(B) C* S, (8).

(3) Forallg andy, {U,f: n € S,(B)} is anw-fat y-cover ofQ U (ngy X}

(4) Foranyw, if somel(? is not anw-cover ofQU (| J, ., X»), then for eaclt we have

U%=R.
(5) Iffor eachn Uy is anw-cover ofQU (|, ,, X}, then for eaclh we haveU? € Uy,
and{U: n € N} is anw-fat y-cover of QU (|, -, Xv).

(6) Foreachwr, X, C Go \ (QU (U, ., X1)) is dense irR.

Before showing that this can be accomplished, we show that constru¢tingsatisfy
these requirements is sufficient. Thus, Jetbe obtained like this. Le@4,: n € N) be a
sequence of countable Borelcovers ofX . Since eaclX,, is dense and contained @, it
follows that for each: U, is w-fat. Thus, for some we have(ld,;: n € N) = (Z/lf: n eN).
Since eacwf is anw-cover of X, it is anw-cover ofQ U (Uy<ﬁ X,),and thusis asin (5).
Let F be a finite subset aX and choose & > « such thatF c QU (Uygﬁ X,).By (3)
{UY: n e Sg(a)} is ay-cover ofQU (Uygﬂ X,), whence for some F C Uy. It follows
that{U*: n € N} is anw-cover ofX, as desired.

Now the recursive construction: Fg, the set of rational numbers, and ask(ué’: ne
N) a sequence ab-covers ofQ?

No: Then for eachn setU,? =R, chooseXg C Go \ Q countable and dense, and put
So(0) = N.

Yes.  For eachn choose a/? € U0 such that{U?: n € N) is anw-fat y-cover of Q.
Repeatedly apply Lemma 38 to recursively choose nhumbgesJ; N Go \ Q
andx, 11 € Ju41 N Go \ (QU {x1, ..., x,}) such thatV; := {U% x; € U% is
an w-fat family of Borel sets, and for eachV,, 11 := (U2 € V,: x,41 € U%} is
an w-fat family of Borel sets. In the end pXo = {x,: n € N}, and choose by
Lemma 37 & C V1 such thal is w-fat, and for each alsoV C* V,. Finally set
So(0) = {n: U? € V}. Observe thatU?: n € So(0)} is ay-cover ofQ U Xj.

This shows that the six recursive requirements are satisfiable fo0. Assume now
thatoe > O is given, and for eaclf < « we already haveXg as well as the sequence
(U,f: n € N) and (S, (8): y < a) such that the six recursive requirements are satisfied.
To verify that stager can then be carried out, do the following. First, for @k « define
Sg(a) = N. Also, using Lemma 37, choose for egthk: « an infinite setSg C N such that
for all y <o we haveSg C* S, (8), and such thatU,’?: n € Sg} is anw-fat y-cover of

Uy<a X}’ UQ'
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Considen/?: n € N) and ask: Is eac? anw-cover ofJ X, uQ?

Yy <o
No: Then for eachn put &Y = R, and declareS, («) = N. Next we chooseX,
recursively as follows fronH, := G, \ (Uy<a X, UQ): By Lemma 38 choose

anxi1 € J N H, such that for eac < « the setvf = {U,f: ne Sgandxy € U,f}
is anw-fat family. For each: choosex, 1 € J,,+1 N Hy \ {x1, ..., x,} such that
Vf+1 = {U,ﬁ € V,‘f: Xn+1 € U,ﬁ} is anw-fat family. Finally apply Lemma 37 to
choose for eacls < o anw-fat family Vg C Vf such that for each V# c* V!,

and setX, = {x,: n € N}. Observe that each? is ay-cover ony@ X, uQ,
andX, is a dense subset &. For each < « defineS, (8) := {m: U,ﬁ e VP,

Yes.  Then first choose for each a Uy € U7 such that{Uy: n € N} is a y-cover
of U, Xy U Q. For eachp < a set Sg(a) = N. Next we constructX,.
For convenience, putly = G \ (U, -, Xy U Q). Applying Lemma 38 choose
x1 € J1 N Hy such that for eacly < o the setl/li3 = {Uf: n € Sg andxy € U,f}
is w-fat, andif = {U: x1 € Uy} is w-fat. For eachn choosex,+1 € J,+1 N
Hy\{x1, ..., x,} such that for8 < a we haverJr1 = {U,fi € V,’?: Xn4l € U,,f} is
anw-fat family. Finally, by Lemma 37 choose for eaghano-fat family V# such
that for alln VA * V. Observe that each? is ay -cover ofUs<, Xp UQ. For

B < a define:S, (B) = (n: UP e VE).

In either case we succeeded in extending the satisfiability of the recursive requirements
before stager, to stagex. O

Corollary 41. (CH) Thereisa set of real numberswith property S1(5g, Bg;) which does
not have property Usin(I", I).

Proof. We may think of having carried out the preceding constructioiNip here, every
set with propertWsin(I, I') is bounded, and so meager. But a Lusin set is non-meager.

Special elementsof S1(Br, Br)

Our next task is to determine the relationship of the top row of Fig. 2 to the bottom rest
of Fig. 1. For this we comparey (B, Br) with S1(O, O) and with S5in(£2, §2). A setX
of real numbers is said to beSkerpinski set if it is uncountable, and its intersection with
each Lebesgue measure zero set is countable. More generally, for an uncountable cardinal
numberk a set of real numbers isiaSierpiski set if it has cardinality at least but its
intersection with each set of Lebesgue measure zero is less than

In Theorem 2.9 of [8] it was shown that all Siempki sets have the property
Usin(Br, Br). This also follows easily from our characterizatiorsa{ B, B;) (Theorem
3), since each countable set has this property. Indeed, our characterization and the fact
that every set of real numbers of cardinality less thamas propertys1(5r, Br) gives
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that everyb-Sierpihski set has propert$1(Br, Br). Since sets of real numbers having
propertyS1(O, ©) have measure zero, meSierphski set has property1 (0, O).
Let P denote the set of irrational numbers.

Lemma42. If cov(N) = cof(N), andif Y C IP has cardinality at most cof(\), then there
isacov(N)-Serpinski set S CPsuchthat Y € S+ S CP.

Proof. Let {y,: a < cov(N)} enumerater. Let {N,: a < cov(N)} enumerate a cofinal
family of measure zero sets, and constificecursively as follows: At stage set

Xo = J({ai, bi} U (@Q—a) U(@Q— b)) UN;).
<o
Note that for eachh € P\ X, andi < «, x + a; andx + b; are irrational.
X, is a union of fewer thanov(N) measure zero sets. As in Lemma 29, we can choose
ag, by € P\ X, such thati, + by = y,. (Note thaty, € P.)
Finally, setS = {aqy: a < cov(N)} U {by: o < cov(N)}. ThensS is acov(N)-Sierpiski
setandr CS+SCP. O

Theorem 43. If b = cov(N) = cof(N), then there is a b-Serpinski set of real numbers S
such that:

(1) S hasproperty S1(Br, Br).

(2) S does not have property S1(0, O).

(8) S x S does not have property Usin(I", O).

(4) S doesnot have property Siin(£2, £2).

Proof. Note that the hypothesis = cof(N) implies thatb = 0. Let ¥ be a homeo-
morphism from the irrationals ontdN. Let D € NN be a dominating family of size,
and setY = ¢ 1[D]. Use Lemma 42 to construct &Sierpihski setS € P such that
Y € S+ S CP. Now, definef:S x S:— NN by f(x,y) =¥ (x + y). Then f is con-
tinuous, andf[S x S]=W¥[S + S] 2 ¥[X] = D is dominating. This makes (1), (2), and
3).

Now, in [8] it is proved thatSiin($2, £2) is closed under taking finite powers. Thus, (4)
follows from (3). O

Thus, we have theg1 (B, Br) is not provably contained if§;in(£2, £2). It follows that
Fig. 2 gives all the provable relations among the Borel covering classes.

In light of Theorem 6, the following Theorem of Rectaw [15] implies that none of the
properties involving open classes implies any of the properties involving Borel classes.
Rectaw’s proof assumes Martin's axiom, but the partial order useecisntered so that in
factp = ¢ is enough.

Theorem 44. (p = ¢) Thereisa set having the S1(£2, I') property which can be mapped
onto NN by a Borel function.
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Utin(I", I')———=Usin(I', £2) Usin(I", O)

Stin(17, £2)

S1(I', I')——=S1(I', 2)

d d

S1(Br, Br) ——S1(Br, Bg) ——=S1(Br, B)

S1(I7, 0)

Siin(Be, Be) Stin(£2, £2)

d

S1(2, ') ——— |>S1(2,2) ——— | —=S1(0,0)

S1(Ba, Br)————=S1(Bo, Be) ———=S1(B, B)

Fig. 3. The combined diagram.

Fig. 3 summarizes the relationships among the various classes considered so far in this
paper and in [8], including the Borel classes. In this diagram there must also be a vector
pointing fromSiin(Bg, Be) to Siin(£2, £2); we omitted this one for “aesthetic” reasons.

With this we have now shown that in Fig. 3, no arrows can be added to, or removed
from, the layer of Borel classes.

At present it is not known if there always is an uncountable set of real numbers which
belongs to some class in Fig. 2. In light of what we know about this diagram, the most
modest form of this question is

Problem 45. Is there always an uncountable set of reals with properti-, B)?
While the boldest form would be:

Problem 46. Is there always an uncountable set of real numbers with proggstyB.,
Bo)?

Special elements of S1(Bg, Br)

It might be wondered whether any of our Borel notions trivializes to contain only sets of
size smaller than the critical cardinality of that notion. With the knowledge obtained thus
far, the only candidate to trivialize 81(Bg, Br). A Theorem of Brendle [4] shows that
this is not the case.

Theorem 47. (CH) There is a set of reals X of size ¢ (= N1) which has property
S1(Bga, Br).
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4. Preservation of properties

The selection properties for open covers are preserved when taking continuous images
or closed subsets [8]. We have the following analogue.

Theorem 48. Let IT be one of S1, Sfin, OF Usin and let &/ and V range over the set
{B, B, Ba, Br}. Assumethat X has property I7(U, V). Then:

(1) If Y isaBorel subset of X, thenY has property IT(U, V).

(2) If f:X — Y isBorel and onto, then Y has property IT(U, V).

Proof. This proof is similar to the proof of Theorem 3.1 in [8]O

In particular, ift/ andy are amondO, 2, A, I'} for X, andX has property1 (5,4, By)
for somell, then every Borel image of has propertyl7 (4, V). This gives rise to the
following question: Using the above notation, assume that every Borel imagehafs
propertyI1 (U4, V). DoesX necessarily have thE (B3, By,) property? For the following
classes, a positive answer was given:
e S1(0, ®)—Theorem 14.
e Usin(I", ')—Theorem 2.
e S1(I7, I')—this one follows from the preceding one, sirg& ", I') impliesUsin(I, I'),
andS1(Br, Br) is equivalent tdJsin(Br, Br) (Theorem 1).

e Usin(I", O)—Theorem 7.

e S1(I", O)—this one too follows from the preceding one, sirgg(l", O) implies
Uiin(I", O), andS1(Br, B) is equivalent tdJsin(Br, B) (Theorem 6).

e S1(£2, I'—Theorem 26.

For the following classes, the problem remains open:

e S1(I, 2), Siin(I, £2), andUsn (I, £2)—if (4) implies (3) were true in Remark 10, we

could have added these classes to the positive list.

e S1(£2, 2).

® Siin($2, £2).

Finite powers

S1(B, B) is not provably closed under taking finite powers.

Theorem 49. If cov(M) = cof(M), then there exists a set of reals X such that X has
property S1(B, B), and X x X does not have the property Usin(I", O).

Proof. The cov(M)-Lusin setL from Theorem 32 has the property that+ L, a
continuous image of. x L, is dominating. ThusL x L does not have the property
Uin(I',O0). O
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Dually, Theorem 43 shows th&y (5, Br) is not provably closed under taking finite
powers.

Problem 50. Is any of the classeS1(Bg, Br), S1(Bg, Be), andSin(Bg, Be) closed
under taking finite powers?

Note that a positive answer to Problem 19 would imply tBatB;, Be,;) is closed
under taking finite powers. Similarly, a positive answer to Problem 21 would imply that
Siin(Bg, Bg) is closed under taking finite powers.

5. Connectionswith other approachesto smallness properties

Three schemas for describing smallness of sets of real numbers have been developed
overrecentyears. These have their roots in classical literature and can be described, broadly
speaking, by:

e properties of the vertical sections of a sufficiently describable planar set;

o properties of the image MN under a sufficiently describable function;

e selection properties for sequences of sufficiently describable topologically significant

families of subsets.

The vertical sections schema has been inspired by the papers [12—-14], and is as follows:

Let H be a subset dR x R and let7 be a collection of subsets &. Forx andy real
numbers, define

Hx:{yeR: (x,y)eH};
H”={xeR: (x,y) e H}.

A Borel setH is said to be g7-set if for eachx H, € 7.

The following three collections of subsets of the real line have been defined in terms of
properties of vertical sections, see [11]:

e ADD(J): The set ofX C R such that for eacty-setH, | J, .y H: € J.

e COV(J): The set ofX C R such that for eacty-setH, |, .y H: #R.

e COF(J): The set ofX C R such thaf H,: x € X} is not a cofinal subset qf .

The sets inCOV(M) have also been calle@-sets in [1]; in that paper it was shown
thatX is an R -set if, and only if, every Borel image of in NN has propertys1(O, ©).
It was shown in [2] that this class is also characterize$HyB, B).

The sets ilADD(M) have also been call&@RM -sets, and it has been shown in [1] tikat
is in ADD(M) if, and only if, every Borel image of in N has both properties; (O, O)
and Usn(I", I'). Due to a result in [10], a seX of real numbers has both properties
S1(0, O) andUsin(I, I') if, and only if, it has the property«) which was introduced in
[5]. Using our results here and results of [10] one can show that a set of reals has property
ADD(M) if, and only if, it is a member 0§61 (B, B) andS1(Br, Br).

The “properties of the image” schema takes inspiration from three papers [7,14] and
[17, Lemma 3]. In each of these papers it is proven that a set of real numbers has a certain
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property of interest if, and only if, each of its continuous images (in some cases into a
specific range space) has another property of interest.

The following four classes of sets were introduced in [11]:

e NON(J): The set ofX C R such that for every Borel functiofi fromR to R, f[X]

is a member of7 .

e P: The set ofX C R such that for no Borel functiorf from R to [N]*°, f[X] is a

power.

e B: The set ofX C R such that for every Borel functiogi from R to NN, f[X] is

bounded under eventual domination.

e D: The set of C R such that for every Borel functiofi from R to NN, f[X] is not

a dominating family.

The classes of sets defined by these two schemas are related for the special case where
J is M, the collection of meager sets of real numbers\arthe collection of measure
zero subsets of the real line. The results from [11] regarding the interrelationships of these
classes of sets are summarized in Fig. 4.

The relationship between Fig. 4 and the well-known Citliiagram that expresses
provable relationships among certain cardinal numbers is that a cardinal number in a
particular position in Cichio's diagram is actually the minimal cardinality for a set of
real numbers not belonging to the class in the corresponding position in Fig. 4.

Our results imply the following.

Corollary 51. COF(M) containsa set of realswhose size is cov(M).

Proof. If cov(M) < cof(M)(= non(COF(M))), then any set of sizeov(M) will do.
Otherwise by Theorem 32 there existscav(M)-Lusin set inS1(B, B), which is in
Cov(M). O

In [7] Hurewicz characterized the covering propertigs(I”, I') andSsin (O, O) interms
of properties of the continuous imagesii. In particular, Hurewicz showed that has
propertyUsin(I", I') if, and only if, each continuous image &fin YN is bounded. He also
showed thatX has propertysiin(O, O) if, and only if, each continuous image @&f into
NN is not a dominating family. The sets Bhave also been called-sets in [2]; where
they show that thaB = Usin(B, Br), andD = Ssn(B, B). By our results here we know
B=S1(Br, Br), andD = S1(Br, B).

COV(N) — NON(M) —— COF(M) ——= COF(N)

]

B D

]

ADD(N') — ADD(M) — COV(M) —= NON(N)

Fig. 4. Cicha-like diagram.
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Note added in proof

As stated, item (2) of Lemma 33 is wrong: lZét= {R \ Z} U [Z]<“. Thenl/ is anw-fat
w-cover ofZ. But for any nonempty finite subsét of Z, the collection{U e U4: F C U}
is notw-fat. However, ifX is a Lusin set such that for each nonempty basic opegset
X N G is uncountable, then item (2) of this lemma holds. As the special sehich we
will construct is a Lusin set, we can easily make sure that it has the required property and
the proof works. This idea is extended and explained further in: T. Bartoszynski, S. Shelah
and B. TsabanAdditivity properties of topological diagonalizations (preprint).

References

[1] T. Bartoszyrski, H. Judah, Borel images of sets of reals, Real Anal. Exchange 20 (1994/1995)
536-558.
[2] T. Bartoszyiski, M. Scheepersi-sets, Real Anal. Exchange 19 (2) (1993/1994) 521-528.
[3] A.S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1934) 289-300.
[4] J. Brendle, Generic constructions of small sets of reals, Topology Appl. 71 (1996) 125-147.
[5] J. Gerlits, Zs. Nagy, Some properties©fX), I, Topology Appl. 14 (1982) 151-161.
[6] W. Hurewicz, Uber eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925) 401—
421.
[7] W. Hurewicz, Uber Folgen stetiger Funktionen, Fund. Math. 9 (1927) 193-204.
[8] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II,
Topology Appl. 73 (1996) 241-266.
[9] A.W. Miller, On the length of Borel hierarchies, Ann. Math. Logic 16 (1979) 233—-267.
[10] A. Nowik, M. Scheepers, T. Weiss, The algebraic sum of sets of real numbers with strong
measure zero sets, J. Symb. Logic 63 (1998) 301-324.
[11] J. Pawlikowski, I. Reclaw, Parametrized Cichon’s diagram and small sets, Fund. Math. 147
(1995) 135-155.
[12] J. Pawlikowski, Every Sierpiki set is strongly meager, Arch. Math. Logic 35 (1996) 281-285.
[13] J. Raisonnier, A mathematical proof of S. Shelah’s Theorem on the measure problem and related
results, Israel J. Math. 48 (1984) 48-56.
[14] 1. Reclaw, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994)
43-54.
[15] 1. Reclaw, On small sets in the sense of measure and category, Fund. Math. 133 (1989) 255—-260.
[16] F. Rothberger, Eine Verschéarfung der Eigensctiaffund. Math. 30 (1938) 50-55.
[17] F. Rothberger, Sur les families indénombrables de suites de nombres naturels et les problemes
concernant la propriété, Proc. Cambridge Philos. Soc. 37 (1941) 109-126.
[18] M. Scheepers, Combinatorics of open covers |: Ramsey theory, Topology Appl. 69 (1996) 31—
62.
[19] M. Scheepers, Open covers and partition relations, Proc. Amer. Math. Soc. 127 (1999) 577-581.
[20] M. Scheepers, Sequential convergencé€ ji{X) and a covering property, East-West J. Math. 1
(1999) 207-214.
[21] M. Scheepers, Lusin sets, Proc. Amer. Math. Soc. 127 (1999) 251-257.
[22] B. Tsaban, A topological interpretation ofReal Anal. Exchange 25 (1999/2000) 391-404.



