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Abstract

Given a system of equations in a “random” finitely generated subgroup of the braid group, we
how to find a small ordered list of elements in the subgroup, which contains a solution to the eq
with a significant probability. Moreover, with a significant probability, the solution will be the firs
the list. This gives a probabilistic solution to: the conjugacy problem, the group membership pro
the shortest presentation of an element, and other combinatorial group-theoretic problems in
subgroups of the braid group.

We use a memory-based extension of the standard length-based approach, which in princ
be applied to any group admitting an efficient, reasonably behaving length function.
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1. The general method

1.1. Systems of equations in a group

Fix a groupG. A pure equationin G with variablesXi , i ∈ N, is an expression of th
form

X
σ1
k1

X
σ2
k2

· · ·Xσn

kn
= b, (1)

wherek1, . . . , kn ∈ N, σ1, . . . , σn ∈ {1,−1}, andb is given. Aparametric equationis one
obtained from a pure equation by substituting some of the variables with given (kn
parameters. Byequationwe mean either a pure or a parametric one. Since any probab
method to solve a system of equations implies a probabilistic mean to check that a
system has a solution, we will confine attention to systems of equations which pos
solution.

Given a system of equations of the form (1), it is often possible to use algebrai
nipulations (taking inverses and multiplications of equations) in order to derive from
(possibly smaller) system of equations all of which share the same leading variabl
is, such that all equations have the form

XWi = bi, (2)

whereX is one of the variables appearing in the original system. The task is to fin
leading variableX in the system (2). Having achieved this, the process can be itera
recover all variables appearing in the original system (1). In the sequel we confin
attention to systems consisting of one or more equations of the form (2).

1.2. Solving equations in a finitely generated group

The following general scheme is an extension of one suggested by Hughes and T
baum [6] and examined in [2]. Our new scheme turns out dramatically more succ
(compare the results of Section 2 to those in [2]).

It is convenient to think of each of the variables as an unknown element of the groG.
Assume that the groupG is generated by the elementsa1, . . . , am, and that there exists
“reasonable” length function� :G → R

+, that is, such that the expected length tend
increase with the number of multiplied generators.

Assume that equations of the form (2),i = 1, . . . , k, are given. We propose the followin
algorithm: SinceX ∈ G, it has a (shortest) form

X = a
σ1
j1

a
σ2
j2

· · ·aσn

jn
.

The algorithm generates an ordered list ofM sequences of lengthn, such that with a
significant probability, the sequence

( )

(j1, σ1), (j2, σ2), . . . , (jn, σn)
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(which codesX) appears in the list, and tends to be itsfirst member. The algorithm work
with memory close toM ·n, thusM is usually chosen according to the memory limitatio
of the computer (see also Remark 1.4).

Step 1. For eachj = 1, . . . ,m andσ ∈ {1,−1}, compute

a−σ
j bi = a−σ

j XWi

for eachi = 1, . . . , k, and give(j, σ ) the score
∑k

i=1 �(a−σ
j bi). Keep in memory theM

elements(j, σ ) with the least scores.

Step s > 1. For each sequence((j1, σ1), . . . , (js−1, σs−1)) out of theM sequences store
in the memory, eachjs = 1, . . . ,m and eachσs ∈ {1,−1}, compute the sum of the length
of the elements

a
−σs

js

(
a

−σs−1
js−1

· · ·a−σ1
j1

bi

) = a
−σs

js
a

−σs−1
js−1

· · ·a−σ1
j1

XWi,

over i = 1, . . . , k, and assign the resulting score to the sequence((j1, σ1), . . . , (js, σs)).
Keep in memory only theM sequences with the least scores.

We still must describe thehaltingcondition for the algorithm. If it is known thatX can
be written as a product of at mostn generators, then the algorithm terminates after sten.
Otherwise, the halting decision is more complicated. In the most general case we c
cide to stop the process when the sum of theM scores increases rather than decrea
However, in many specific cases the halting decision can be made much more effe
see the examples below.

We describe several applications of the algorithm.

Example 1.1 (Parametric equations). If some of the wordsWi in Eq. (2) begin with a
known parameterPi , then the heuristic decision when to stop can be made much
effective: If at some stepX was completely peeled of the equation, then we know
wordsWi . To test this, for each of theM suggestions forX, we calculate the wordsWi

and check whether the sum of the lengths�(P −1
i Wi) is significantly smaller than that o

the lengths�(Wi). In fact, this allows us to determine, with significant probability, wh
of theM candidates forX is the correct one.

Example 1.2 (The conjugacy problem and its variants). The approach in Example 1.1 ca
also be applied in the case that the system of equations (2) consists of asingleequation.
This is the case, e.g., in theparametric conjugacy problem, whereXPX−1 and P are
given1 and we wish to findX. Note that in this case the algorithm can be modified
become much more successful if at each steps we peel off the generatoraσs

js
from both

sidesof the element (more precisely, we peel offa
σs

js
from the left anda−σs

js
from the right).
1 In fact, it is not necessary to knowP —see next paragraph.
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Observe, though, that ifn is known in advance (as in many applications, e.g., [1,7]), t
in principle the original algorithm works, which means that we can solve the conju
problemeven if we do not know the conjugated elementP .

Example 1.3 (Group membership and shortest presentation problems). Assume thatG is
a finitely generated subgroup of some larger groupL. Given g ∈ L, we wish to decide
whetherg ∈ G. In this case we simply run our algorithm ong using the generators ofG,
and after each step check whetherg is coded by one of ourM sequences. This also provid
(probabilistically) a way to write an elementg ∈ G as a product of the generators ofG,
and with a significant probability it will be the shortest way to write it this way.

Remark 1.4 (Complexity). Note that the parameterM determining the length of the fina
list also affects the running time of the algorithm. As stated, if it runsn steps then it
performs about

n∑
s=1

kM(s + 2m) = n(n + 4m + 1)kM/2

group multiplications and 2kmnM evaluations of the length function�. (Recall thatm
denotes the number of the generators of the group, andk denotes the number of equation
The running time can be improved at the cost of additional memory (e.g., one can
in memory theM elements of the forma−σs−1

js−1
· · ·a−σ1

j1
bi , which were computed at ste

s − 1, to reduce the number of multiplications in steps). Note further that the algorithm i
completely parallelable.

In the next section we give experimental evidence for this algorithm’s ability to s
with surprisingly significant probability, arbitrary equations in “random” finitely genera
subgroups of the braid groupBN with nontrivial parameters.

2. Experimental results in the braid group

In the following definition (only), we assume that the reader has some familiarity
the braid groupBN and its algorithms. Some references for these are [3,7] and refer
therein.

The Garside normal formof an elementw in the braid groupBN is a unique pre-
sentation ofw in the form�−r

N · p1 · · ·pm, wherer � 0 is minimal andp1, . . . , pm are
permutation braids in left canonical form. The following length function was introdu
in [2], where it was shown that it exhibits much better properties than the usual l

function associated with the Garside normal form.
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Definition 2.1 [2]. Let w = �−r
N ·p1 · · ·pm be the Garside normal form ofw. Thereduced

Garside lengthof w is defined by

�RG(w) = r

(
N

2

)
+

m∑
i=min{r,m}+1

|pi | −
min{r,m}∑

i=1

|pi |.

Our major experiment was made in subgroups ofBN with N = 8, which is large enoug
so thatBN is not trivial, but not too large so that we could perform a very large num
of experiments. The finitely generated subgroups in which we worked were random
sense that each generator was chosen as a product of 10 randomly2 chosen Artin genera
tors.3 In this experiment we checked the effectiveness of our algorithm for theparameters
list (m,n, k, l,M), where:

(1) m (the number of generators of the subgroup) was 2, 4, or 8,
(2) n (the number of generators multiplied to obtainX) was 16, 32, or 64,
(3) k (the number of given equations of the form (2)) was 1, 2, 4, or 8,
(4) l (the number of generators multiplied to obtain the wordsWi in Eq. (2)) was 4 or 8

and
(5) M (the available memory) was 2,4,8,16,32,64,128,256, or 512.

(See Section 1.2.) This makes a total of 3· 3 · 4 · 2 · 9 = 648 parameters lists, for each
which we repeated the experiment about 16 times.

X tends to be first
In about 83% of these experiments,X was a member in the resulting list ofM candi-

dates. A natural problem is: Assume that we increaseM . Then experiments show that th
probability of X appearing in the resulting list becomes larger,4 but now we have more
candidates forX, which is undesired when we cannot check which member in the listX.
However, it turns out that even for large values ofM , X tends to be among the first few
the list. In 71% of our experiments,X was actually the first in the list, and whenM = 512,
the probabilities forX ending in positioni = 1,2,3, . . . is decreasing withi, and the first
few probabilities are: 0.83, 0.08, 0.03, and 0.01.

Group membership is often solved correctly
The experiments corresponding to the group membership problem are those withk = 1:

In these cases we are given a single elementXW and find a presentation ofX using the
given generators; this generalizes the case that we are givenX and find its presentation

2 In this section,randomalways means with respect to the uniform distribution on the space in question.
ever, we believe that good results would be obtained for any nontrivial distribution.

3 In this section,generatormeans a generator or its inverse.
4 At first glance this seems a triviality, but observe that whenM is increased, the correct answer has m
competitors.
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when it is possible (see Section 1.3). Checking the experiments withk = 1, m = 4 or 8,
andM = 512, we get a success ratio of 0.98.

Logistic regression
In order to describe the dependence of the success ratio in the parameters in

we are applying the methods of logistic regression. Letx1, . . . , x5 denote the logarithm
to base 2 of the parametersm,n, k, l,M , respectively. Since the probability of successp

in each case is a number between 0 and 1, a standard linear model (expressingp as a
linear combination of the variablesxi ) is not suitable. Instead, it is customary to expr
the functionL = log(p/(1 − p)) as such a linear combination of the variablesxi (so that
p = eL/(1+ eL)). This is called thelogistic model. Note that under this transformation t
derivative ofp with respect toL is p(1− p), so an addition of�L to L will increasep to
approximatelyp + p(1− p)�L. The best approximation in this model is

L ≈ 7.0814− 1.7165x1 − 0.7547x2 + 0.1094x3 + 0.5437x5. (3)

The quality of the approximation is measured by the variance of the error. Since we a
ing the best linear approximation, addingany variable (even a random independent o
reduces the variance of the error. The significance level of a variablexi roughly measure
the probability that adding this variable to the others will have its reducing effect, assu
it was random. The typical threshold is 0.05: A significance level of 0.05 or below means
that the variable has a significant contribution to the approximationL, which could not be
attained by a variable independent ofL. In the approximation (3), all variables have sign
cance level< 0.0003, except for the variablex4 (corresponding tol) which has significance
level 0.096, and is therefore not taken into consideration in the approximation (3).

We have verified that approximation (3) gives a fairly good estimation of the su
probabilities for the tried parameters.

Doubling the memory
Figure 1 shows the effect of doublingM on the success probability, according to a

proximation (3). To create this figure, we fixedm = 8 and k = 1, and for eachM =
21,22, . . . ,210 we have drawn the graph of the success probabilityp with respect to
log2(n).

Remark 2.2. According to approximation (3), in order to maintain the success proba
whenm is doubled,M should be multiplied by 21.7165/0.5437≈ 8.92.

Another interpretation is as follows. Assume that we wish to decide what shou
value ofM be to get success probability 0.5, that is,L = 0. From (3) it follows that

x5 ≈ (−7.0814+ 1.7165x1 + 0.7547x2 − 0.1094x3)/0.5437

and therefore

x 3.16 1.39 0.2
M = 2 5 ≈ 0.00012· m · n /k .
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Fig. 1. The effect of doublingM on the success probability.

It seems that the prediction capabilities of approximation (3) for larger paramete
not bad.

Example 2.3. Using approximation (3), the predicted success probability for param
list (16,128,8,8,1024) is 0.668. An experiment for these parameters succeeded in
of 11 tries (about 0.82).

2.1. Identifying failures

Figure 2 describes the position of the correct prefix ofX and the average score
all M sequences in the memory during the steps of the algorithm (the graphs ar
malized for graphical clarity). Two typical examples are given, both for parameter
(2,64,8,8,128). An interesting observation is that when the correct prefix is not am
the first few, the average length decreases more slowly with the steps of the algorith

It turns out that in most of the cases where the correct prefix ofX does not survive a
certain step (that is, it is not ranked among the firstM sequences), the average length a
several more steps almost does not decrease. Figure 3 illustrates two typical case
parameters list(2,64,8,8,16) (top) and(2,64,8,8,8) (bottom).

This allows us to identify failures within several steps after their occurrence. In
cases one approach is to return a few steps backwards, increaseM for the next (problem-

atic) few steps, and then decrease it again.
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Fig. 2. Position of the correct prefix in successful runs.

We must stress that these are only typical cases, and several pathological cases
the correlation between the decrease in the lengths and the position of the correc
was not as expected) were also encountered. In these rare cases, we observed at le
the following phenomena: either the generatorsai could be written as a product of very fe

Artin generators, due to several cancellations in the product defining them (recall that each
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Fig. 3. Position of the correct prefix in unsuccessful runs.

generatorai is a product of 10 random Artin generators inB8), or else some (but not al
of the Artin generators multiplied to obtainai were cancelled when multiplied with som
of the Artin generators definingaj (or its inverse), so that the resulting elementx could
be written using much fewer Artin generators than expected. This violates the re

monotonicity of the length function and makes the algorithm fail.
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Fig. 4. Success probability for(2,16,8,8,2) (top) and for(8,16,8,8,128) (bottom).
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2.2. Working inBN whenN is larger

For the parameters lists(2,16,8,8,2) and(8,16,8,8,128), we have checked the su
cess probabilities forN = 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 50, 60, 70, 80,
and 100. The results are shown in Fig. 4. While the success probability decreases wN ,
it does not become as negligible as one might expect. Moreover, it can be signifi
enlarged at the cost of increasingM .

3. Concluding remarks

Our results suggest that wheneverG is a finitely generated subgroup of the braid gro
which is obtained by a sufficiently “random” process, and the involved parameters a
sible for handling the group elements in the computer, it is possible to solve equati
the given group with significant success probabilities. This significantly extends simil
sults concerning the conjugacy problem (with known parameters) obtained in other
(e.g., [5]).

This approach seems to imply the vulnerability of the key exchange protocols
gested in [1,7], since their security is based on the difficulty of the Conjugacy Probl
“random” subgroups of the braid group (see Example 1.2). It should be stressed th
experiments were performed with a small amount of memory (parameterM), which could,
in feasible settings, be increased by several orders of magnitude and therefore signi
improve the success probability. Since even a small non-negligible success probab
attacking the protocol implies that it is not secure, it seems that in order to immun
current protocols against the attack implied by the results here, the working para
have to be increased so much that the system will become impractical.

However, in order to use our approach against newly proposed protocols based
braid group (see [4]), or against similar protocols based on other finitely generated g
one must first find a good length function for the specific problem.
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