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Abstract

Given a system of equations in a “random” finitely generated subgroup of the braid group, we show
how to find a small ordered list of elements in the subgroup, which contains a solution to the equations
with a significant probability. Moreover, with a significant probability, the solution will be the firstin
the list. This gives a probabilistic solution to: the conjugacy problem, the group membership problem,
the shortest presentation of an element, and other combinatorial group-theoretic problems in random
subgroups of the braid group.

We use a memory-based extension of the standard length-based approach, which in principle can
be applied to any group admitting an efficient, reasonably behaving length function.
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1. Thegeneral method
1.1. Systems of equations in a group

Fix a groupG. A pure equatiorin G with variablesX;, i € N, is an expression of the
form

01 O on __
Xkllxkzzu-an_b, (1)

whereks, ..., k, € N, o1, ...,0, € {1, —1}, andb is given. Aparametric equatioris one
obtained from a pure equation by substituting some of the variables with given (known)
parameters. Bgquationwe mean either a pure or a parametric one. Since any probabilistic
method to solve a system of equations implies a probabilistic mean to check that a given
system has a solution, we will confine attention to systems of equations which possess a
solution.

Given a system of equations of the form (1), it is often possible to use algebraic ma-
nipulations (taking inverses and multiplications of equations) in order to derive from it a
(possibly smaller) system of equations all of which share the same leading variable, that
is, such that all equations have the form

XW; =b;, (2)

where X is one of the variables appearing in the original system. The task is to find the
leading variableX in the system (2). Having achieved this, the process can be iterated to
recover all variables appearing in the original system (1). In the sequel we confine our
attention to systems consisting of one or more equations of the form (2).

1.2. Solving equations in a finitely generated group

The following general scheme is an extension of one suggested by Hughes and Tannen-
baum [6] and examined in [2]. Our new scheme turns out dramatically more successful
(compare the results of Section 2 to those in [2]).

It is convenient to think of each of the variables as an unknown element of the Group
Assume that the grou@ is generated by the elements ..., a,,, and that there exists a
“reasonable” length functiofi: G — R™, that is, such that the expected length tends to
increase with the number of multiplied generators.

Assume that equations of the form (2% 1, ..., k, are given. We propose the following
algorithm: SinceX € G, it has a (shortest) form

X =a%a%...qa°%".
a/laJZ Jn

The algorithm generates an ordered listMfsequences of length, such that with a
significant probability, the sequence

((jl’ 01)7 (.]27 02)7 ML) (jn7 Un))
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(which codesX) appears in the list, and tends to befitst member. The algorithm works
with memory close ta/ - n, thusM is usually chosen according to the memory limitations
of the computer (see also Remark 1.4).

Step 1. For eachj =1, ...,m ando € {1, —1}, compute
aj_“bi = aj_"XWi

for eachi =1,...,k, and give(j, o) the scorezlee(aj“’bi). Keep in memory the/
elementqj, o) with the least scores.

Step s > 1. For each sequendé&jy, o1), ..., (js—1,05—1)) out of theM sequences stored
in the memory, eachi, =1, ..., m and eachr; € {1, —1}, compute the sum of the lengths
of the elements
—0g —0s5-1 - —0y —O0s5-1 -
aj.ca (ajx—l o 'ajlalbi) = ajsa Gjq 'ajl(TlXWi’

overi =1,...,k, and assign the resulting score to the sequéngeol), ..., (Js, 0s)).
Keep in memory only thé/ sequences with the least scores.

We still must describe thiealting condition for the algorithm. If it is known that can
be written as a product of at mosigenerators, then the algorithm terminates after step
Otherwise, the halting decision is more complicated. In the most general case we can de-
cide to stop the process when the sum of Miescores increases rather than decreases.
However, in many specific cases the halting decision can be made much more effective—
see the examples below.

We describe several applications of the algorithm.

Example 1.1 (Parametric equations If some of the wordsW; in Eq. (2) begin with a
known paramete®;, then the heuristic decision when to stop can be made much more
effective: If at some stelX was completely peeled of the equation, then we know the
words W;. To test this, for each of th& suggestions fox, we calculate the word®;

and check whether the sum of the Iengtlos’i_lwi) is significantly smaller than that of
the lengthg(W;). In fact, this allows us to determine, with significant probability, which
of the M candidates foX is the correct one.

Example 1.2 (The conjugacy problem and its variaht$he approach in Example 1.1 can
also be applied in the case that the system of equations (2) consissngfl@equation.
This is the case, e.g., in thEarametric conjugacy problenwhere X PX ! and P are
givent and we wish to findX. Note that in this case the algorithm can be modified to
become much more successful if at each steye peel off the generater’ from both
sidesof the element (more precisely, we peela)ﬁ from the left an(izj:(’s from the right).

1 Infact, it is not necessary to knol—see next paragraph.
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Observe, though, thatifis known in advance (as in many applications, e.g., [1,7]), then
in principle the original algorithm works, which means that we can solve the conjugacy
problemeven if we do not know the conjugated elenm@nt

Example 1.3 (Group membership and shortest presentation probjeAssume that is

a finitely generated subgroup of some larger gréupGiven g € L, we wish to decide
whetherg € G. In this case we simply run our algorithm grusing the generators @f,
and after each step check whetjges coded by one of ou¥ sequences. This also provides
(probabilistically) a way to write an elemepte G as a product of the generators Gf
and with a significant probability it will be the shortest way to write it this way.

Remark 1.4 (Complexity. Note that the parametéd determining the length of the final
list also affects the running time of the algorithm. As stated, if it runsteps then it
performs about

> kM (s +2m) = n(n + 4m + 1)kM /2
s=1

group multiplications and @2nnM evaluations of the length functiofi (Recall thatm
denotes the number of the generators of the groupk alehotes the number of equations.)
The running time can be improved at the cost of additional memory (e.g., one can keep
in memory theM elements of the formz._s‘_"‘l‘1 . -a._l"lbi, which were computed at step

s — 1, to reduce the number of multiplications in stgpNote further that the algorithm is

completely parallelable.

In the next section we give experimental evidence for this algorithm’s ability to solve,
with surprisingly significant probability, arbitrary equations in “random” finitely generated
subgroups of the braid groupy with nontrivial parameters.

2. Experimental resultsin the braid group

In the following definition (only), we assume that the reader has some familiarity with
the braid groupBy and its algorithms. Some references for these are [3,7] and references
therein.

The Garside normal formof an elementw in the braid groupBy is a unique pre-
sentation ofw in the form A" - p1--- p,,, wherer > 0 is minimal andpy, ..., p, are
permutation braids in left canonical form. The following length function was introduced
in [2], where it was shown that it exhibits much better properties than the usual length
function associated with the Garside normal form.
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Definition 2.1[2]. Letw = A} - p1--- p,, be the Garside normal form af. Thereduced
Garside lengttof w is defined by

N m min{r,m}
ERG(w)=r(2)~I— > pl= ) Ipil

i=min{r,m}+1 i=1

Our major experiment was made in subgroupsgfwith N = 8, which is large enough
so thatBy is not trivial, but not too large so that we could perform a very large number
of experiments. The finitely generated subgroups in which we worked were random in the
sense that each generator was chosen as a product of 10 raRdtwéen Artin genera-
tors3 In this experiment we checked the effectiveness of our algorithm fqpahemeters
list m,n, k,l, M), where:

(1) m (the number of generators of the subgroup) was 2, 4, or 8,

(2) n (the number of generators multiplied to obtai) was 16, 32, or 64,

(3) k (the number of given equations of the form (2)) was 1, 2, 4, or 8,

(4) 1 (the number of generators multiplied to obtain the woligsin Eq. (2)) was 4 or 8;
and

(5) M (the available memory) was 2, 8, 16, 32, 64, 128 256, or 512.

(See Section 1.2.) This makes a total of33 4- 2. 9 = 648 parameters lists, for each of
which we repeated the experiment about 16 times.

X tends to be first

In about 83% of these experimeni§,was a member in the resulting list 8 candi-
dates. A natural problem is: Assume that we incredsé hen experiments show that the
probability of X appearing in the resulting list becomes laryjéyt now we have more
candidates foX, which is undesired when we cannot check which member in the It is
However, it turns out that even for large valuesibf X tends to be among the first few in
the list. In 71% of our experiment&; was actually the first in the list, and whéh =512,
the probabilities forX ending in position =1, 2, 3, ... is decreasing with, and the first
few probabilities are: 83, 008, 003, and Q01.

Group membership is often solved correctly

The experiments corresponding to the group membership problem are thoge=with
In these cases we are given a single elend&wt and find a presentation & using the
given generators; this generalizes the case that we are givemd find its presentation,

2 In this sectionrandomalways means with respect to the uniform distribution on the space in question. How-
ever, we believe that good results would be obtained for any nontrivial distribution.

3 In this sectiongeneratormeans a generator or its inverse.

4 At first glance this seems a triviality, but observe that whiéris increased, the correct answer has more
competitors.
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when it is possible (see Section 1.3). Checking the experimentskwitl, m = 4 or 8,
andM =512, we get a success ratio op8.

Logistic regression

In order to describe the dependence of the success ratio in the parameters involved,
we are applying the methods of logistic regression. Aset . ., x5 denote the logarithms
to base 2 of the parameters n, k, [, M, respectively. Since the probability of success
in each case is a number between 0 and 1, a standard linear model (expyessirag
linear combination of the variables) is not suitable. Instead, it is customary to express
the functionL = log(p/(1 — p)) as such a linear combination of the variahtegso that
p=el/(1+eb)). Thisis called théogistic model Note that under this transformation the
derivative ofp with respect ta_ is p(1 — p), so an addition oA L to L will increasep to
approximatelyp + p(1— p)AL. The best approximation in this model is

L ~7.0814— 1.7165¢1 — 0.754 7 + 0.1094x3 + 0.5437xs. 3

The quality of the approximation is measured by the variance of the error. Since we are tak-
ing the best linear approximation, addiagy variable (even a random independent one)
reduces the variance of the error. The significance level of a varialteighly measures
the probability that adding this variable to the others will have its reducing effect, assuming
it was random. The typical threshold i908: A significance level of @5 or below means
that the variable has a significant contribution to the approximdtiomhich could not be
attained by a variable independentZofin the approximation (3), all variables have signifi-
cance levek 0.0003, except for the variabla (corresponding té) which has significance
level 0.096, and is therefore not taken into consideration in the approximation (3).

We have verified that approximation (3) gives a fairly good estimation of the success
probabilities for the tried parameters.

Doubling the memory

Figure 1 shows the effect of doubling on the success probability, according to ap-
proximation (3). To create this figure, we fixed = 8 andk = 1, and for eachM =
21,22 ..., 219 we have drawn the graph of the success probabjlitwith respect to
log,(n).

Remark 2.2. According to approximation (3), in order to maintain the success probability
whenm is doubled M should be multiplied by 2716505437~ 8 92,
Another interpretation is as follows. Assume that we wish to decide what should the
value of M be to get success probabilitys) that is,L. = 0. From (3) it follows that
x5~ (—7.0814+ 1.7165¢1 + 0.7547x2 — 0.1094v3)/0.5437

and therefore

M = 25 ~0.00012- m318. n139/402,
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success prob

100 — =
095 — ~
0.90 —
0.85 —
0.80 —
075 —
0.70 —
0.65 —
0.60 —
0.55 —
050 —
045 —
040 —
035 —
030 —
025 —
020 —
015 —
0.10 —
005 —
0.00 —

I I \ I I L g2
0.00 2.00 4.00 6.00 8.00 10.00

Fig. 1. The effect of doubling/ on the success probability.

It seems that the prediction capabilities of approximation (3) for larger parameters are
not bad.

Example 2.3. Using approximation (3), the predicted success probability for parameters
list (16,128 8, 8,1024 is 0.668. An experiment for these parameters succeeded in 9 out
of 11 tries (about B2).

2.1. Identifying failures

Figure 2 describes the position of the correct prefixXofand the average score of
all M sequences in the memory during the steps of the algorithm (the graphs are nor-
malized for graphical clarity). Two typical examples are given, both for parameters list
(2,64, 8,8,128. An interesting observation is that when the correct prefix is not among
the first few, the average length decreases more slowly with the steps of the algorithms.

It turns out that in most of the cases where the correct prefiX dbes not survive a
certain step (that is, it is not ranked among the fllssequences), the average length after
several more steps almost does not decrease. Figure 3 illustrates two typical cases, with
parameters list2, 64, 8, 8, 16) (top) and(2, 64, 8, 8, 8) (bottom).

This allows us to identify failures within several steps after their occurrence. In such
cases one approach is to return a few steps backwards, indretmethe next (problem-
atic) few steps, and then decrease it again.
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I Tength-
1.00 — — position of X
095 — -
0.90 — -
0.85 — -
0.80 — -
075 — -
0.70 —
0.65 —
0.60 —
0.55 —
0.50 —
045 —
040 —
035 —
0.30 —

025 —
0.20 —
0.15 —
0.10 —

005 — %

000 — - . { . _
! step
0.00 10.00 20.00 30.00 40.00 50.00 60.00

I Tength”

1.00 — — position of X
0.95 — -

0.90 — -

0.85 — : -

0.80 — :
0.75 —
0.70 —
0.65 —
0.60 —
0.55 —
0.50 —
045 —
040 —
0.35 —

0.30 —

025 —
0.20 —
0.15 —
0.10 —

0.00 —1 I I I I I [ = e
0.00 10.00 20.00 30.00 40.00 50.00 60.00

Fig. 2. Position of the correct prefix in successful runs.

We must stress that these are only typical cases, and several pathological cases (where
the correlation between the decrease in the lengths and the position of the correct prefix
was not as expected) were also encountered. In these rare cases, we observed at least one of
the following phenomena: either the generatgreould be written as a product of very few
Artin generators, due to several cancellations in the product defining them (recall that each
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I Tength-
1.00 —
095 —
0.90 —
0.85 —
0.80 —
075 —
0.70 —
0.65 —
0.60 —
0.55 —
0.50 —
045 —
040 —
035 —
0.30 —
025 —
0.20 —
0.15 —
0.10 —

005 —
0.00 — | | | | | |
0.00 10.00 20,00 30.00 40.00 5000 60.00

step

1 length

1.00 —
0.95 —
0.90 —
085 —
0.80 —

075 —
070 — -
065 — -
0.60 — -
0.55 — -
0s0— ] -
045 — -
040— | -
035 — -

00s— -
1 | 1 | | | |

0.00 10.00 20.00 30.00 40.00 50.00 60.00

step

Fig. 3. Position of the correct prefix in unsuccessful runs.

generatow; is a product of 10 random Artin generatorsBg), or else some (but not all)

of the Artin generators multiplied to obtain were cancelled when multiplied with some

of the Artin generators defining; (or its inverse), so that the resulting elementould

be written using much fewer Artin generators than expected. This violates the required
monotonicity of the length function and makes the algorithm fail.
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success prob

0.85 — -
0.80 — -
0.75 — -
0.70 — -
0.65 — -
0.60 — -
0.55 — -
0.50 — -
045 — -
0.40 — -
0.35 — -
0.30 — -
0.25 — -
0.20 — -
0.15 — -
0.10 — —

0.05 — -

{ \ { [ [ \ | Jog2(N)
3.50 4.00 4.50 5.00 5.50 6.00 6.50

success prob

1.00 — -
0.95 — -
0.90 — -

0.85 — —

0.75 — -

0.70 — -

0.60 — —

0.50 — —
045 — -
0.40 — -
035 — —

0.30 — -

[ [ | [ | [ [ \ Jog2(N)
3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50

Fig. 4. Success probability fa®, 16, 8, 8, 2) (top) and for(8, 16, 8, 8, 128) (bottom).
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2.2. Working inBy whenN is larger

For the parameters list, 16, 8, 8, 2) and (8, 16, 8, 8, 128), we have checked the suc-
cess probabilities foiv = 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 50, 60, 70, 80, 96,
and 100. The results are shown in Fig. 4. While the success probability decreasas with
it does not become as negligible as one might expect. Moreover, it can be significantly
enlarged at the cost of increasin,

3. Concluding remarks

Our results suggest that whenevegis a finitely generated subgroup of the braid group,
which is obtained by a sufficiently “random” process, and the involved parameters are fea-
sible for handling the group elements in the computer, it is possible to solve equations in
the given group with significant success probabilities. This significantly extends similar re-
sults concerning the conjugacy problem (with known parameters) obtained in other works
(e.g., [5]).

This approach seems to imply the vulnerability of the key exchange protocols sug-
gested in [1,7], since their security is based on the difficulty of the Conjugacy Problem in
“random” subgroups of the braid group (see Example 1.2). It should be stressed that our
experiments were performed with a small amount of memory (paramgtexhich could,
in feasible settings, be increased by several orders of magnitude and therefore significantly
improve the success probability. Since even a small non-negligible success probability in
attacking the protocol implies that it is not secure, it seems that in order to immune the
current protocols against the attack implied by the results here, the working parameters
have to be increased so much that the system will become impractical.

However, in order to use our approach against newly proposed protocols based on the
braid group (see [4]), or against similar protocols based on other finitely generated groups,
one must first find a good length function for the specific problem.
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