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The discrete logarithm problem
in Bergman’s non-representable ring
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Abstract. Bergman’s ring Ep , parameterized by a prime number p, is a ring with p5

elements that cannot be embedded in a ring of matrices over any commutative ring. This
ring was discovered in 1974. In 2011, Climent, Navarro and Tortosa described an efficient
implementation of Ep using simple modular arithmetic, and suggested that this ring may
be a useful source for intractable cryptographic problems. We present a deterministic
polynomial time reduction of the discrete logarithm problem in Ep to the classical discrete
logarithm problem in Zp , the p-element field. In particular, the discrete logarithm problem
in Ep can be solved, by conventional computers, in sub-exponential time.
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1 Introduction

For discrete logarithm based cryptography, it is desirable to find efficiently imple-
mentable groups for which sub-exponential algorithms for the discrete logarithm
problem are not available. Thus far, the only candidates for such groups seem to
be (carefully chosen) groups of points on elliptic curves [5, 7]. Groups of invert-
ible matrices over a finite field, proposed in [8], where proved by Menezes and Wu
[6] inadequate for this purpose. Consequently, any candidate for a platform group
for discrete logarithm based cryptography must not be efficiently embeddable in a
group of matrices.

In 1974, Bergman proved that the ring End.Zp � Zp2/ of endomorphisms of
the group Zp � Zp2 , where p is a prime parameter, admits no embedding in any
ring of matrices over a commutative ring [1]. In 2011, Climent, Navarro and
Tortosa [3] described an efficient implementation of Ep (reviewed below), proved
that uniformly random elements of Ep are invertible with probability greater than
1 � 2=p, and supplied an efficient way to sample the invertible elements of Ep

uniformly at random. Consequently, they proposed this ring as a potential source
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for intractable cryptographic problems. Climent et al. proposed a Diffie–Hellman
type key exchange protocol over Ep, but it was shown by Kamal and Youssef
[4] not to be related to the discrete logarithm problem, and to be susceptible to a
polynomial time attack.

We consider the discrete logarithm problem in Ep. Since Ep admits no embed-
ding in any ring of matrices over a commutative ring, the Menezes–Wu reduction
attack [6] is not directly applicable. We present, however, a deterministic polyno-
mial time reduction of the discrete logarithm problem in Ep to the classical dis-
crete logarithm problem in Zp, the p-element field. In particular, the discrete log-
arithm problem in Ep can be solved by conventional computers in sub-exponential
time, and Ep offers no advantage, over Zp, for cryptography based on the discrete
logarithm problem.

2 Computing discrete logarithms in End.Zp � Zp2/

Climent, Navarro and Tortosa [3] provide the following faithful representation of
Bergman’s ring. The elements of Ep are the matrices

g D

 
a b

cp v C up

!
; a; b; c; u; v 2 ¹0; : : : ; p � 1º:

Addition (respectively, multiplication) is defined by first taking ordinary addition
(respectively, multiplication) over the integers, and then reducing each element
of the first row modulo p, and each element of the second row modulo p2. The
ordinary zero and identity integer matrices are the additive and multiplicative neu-
tral elements of Ep, respectively. The element g is invertible in Ep if and only if
a; v ¤ 0.

The group of invertible elements in a ring R is denoted R�. For an element g

in a group, jgj denotes the order of g in that group.

Definition 1. The discrete logarithm problem in a ring R is to find x given an
element g 2 R� and its power gx , where x 2 ¹0; 1; : : : ; jgj � 1º.

Another version of the discrete logarithm problem asks to find any Qx such that
g Qx D gx . The reductions given below are applicable, with minor changes, to this
version as well, but it is known that the two versions are essentially equivalent (see
Appendix B).

By the standard amplification techniques, one can increase the success proba-
bility of any discrete logarithm algorithm with non-negligible success probability
to become arbitrarily close to 1. Thus, for simplicity, we may restrict attention to
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algorithms that never fail. For ease of digestion, we present our solution to the
discrete logarithm problem in Ep by starting with the easier cases, and gradually
building up. Not all of the easier reductions are needed for the main ones, but they
do contain some of the important ingredients of the main ones, and may also be of
independent interest to some readers.

2.1 Basic reductions

Reduction 2. Computing the order of an element in R�, using discrete logarithms
in R.

Details. For g 2 R�, g�1 D gjgj�1. Thus, jgj D logg.g�1/C 1.

Reduction 3. Computing discrete logarithms in a product of rings using discrete
logarithms in each ring separately.

Details. For rings R; S , .R � S/� D R� � S�. Let .g; h/ 2 R� � S� and
.g; h/x D .gx; hx/, where x 2 ¹1; : : : ; j.g; h/jº, be given. Compute

x mod jgj D logg.gx/I

x mod jhj D logh.hx/:

Use Reduction 2 to compute jgj and jhj. Compute, using the Chinese Remainder
Algorithm,

x mod lcm.jgj; jhj/ D x mod j.g; h/j D x:

The Euler isomorphism is the function

p̂W .Zp;C/ � .Z�p; �/! Z�
p2

.a; b/ 7! .1C ap/ � bp mod p2:

The function p̂ is easily seen to be an injective homomorphism between groups
of equal cardinality, and thus an isomorphism of groups (cf. Paillier [9] in a slightly
more involved context). The Euler isomorphism can be inverted efficiently: Given
c 2 Z�

p2 , let a 2 Zp; b 2 Z�p be such that c D .1C ap/bp mod p2. Then

c D .1C ap/ � bp
D 1 � bp

D b .mod p/:

Compute b D c mod p, then bp mod p2, then 1 C ap D c � .bp/�1 mod p2,
where the inverse is in Z�

p2 . Since 1C ap < p2, we can subtract 1 and divide by
p to get a.
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Reduction 4. Computing discrete logarithms in Zp2 using discrete logarithms in
Zp.

Details. Use the Euler isomorphism to transform the problem into a computation
of a discrete logarithm in .Zp;C/ � .Z�p; �/. Computing discrete logarithm in
.Zp;C/ is trivial. Apply Reduction 3.

2.2 Algebraic lemmata

Definition 5. NEp is the ring of matrices
�

a b
pc v

�
, a; b; c; v 2 ¹0; 1; : : : ; p � 1º,

where addition and multiplication are carried out over Z, and then entry .2; 1/ is
reduced modulo p2, and the other three entries are reduced modulo p.

Lemma 6. The map

Ep ! NEp 
a b

cp v C up

!
7!

 
a b

cp v

!

is a ring homomorphism.

Proof. Since addition is component-wise, it remains to verify multiplicativity. In-
deed, in Ep,

 
a1 b1

c1p v1 C u1p

! 
a2 b2

c2p v2 C u2p

!

D

 
a1a2 a1b2 C b1v2

.c1a2 C v1c2/p v1v2 C .c1b2 C v1u2 C u1v2/p

!
;

and in NEp, 
a1 b1

c1p v1

! 
a2 b2

c2p v2

!
D

 
a1a2 a1b2 C b1v2

.c1a2 C v1c2/p v1v2

!
:

Lemma 7. Let Ng D
�

a b
cp v

�
2 NE�p , and let x be a natural number. Define dx 2 Zp

by

dx D

´
ax�vx

a�v
a ¤ v;

xax�1 a D v:
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Then

Ngx
D

 
ax bdx

cdxp vx

!
:

Proof. By induction on x. The statement is immediate when x D 1. Induction
step: If a ¤ v, then in Zp,

ax
C dxv D ax

C
ax � vx

a � v
� v

D
ax.a � v/C .ax � vx/v

a � v
D

axC1 � vxC1

a � v
D dxC1I

adx C vx
D

a.ax � vx/

a � v
C

.a � v/vx

a � v
D

axC1 � vxC1

a � v
D dxC1:

If a D v, then

ax
C dxv D ax

C xax�1v

D ax
C xax�1a D ax

C xax
D .x C 1/ax

D dxC1I

adx C vx
D xax

C ax
D .x C 1/ax

D dxC1:

Thus, in either case,

NgxC1
D Ngx

� Ng D

 
ax bdx

cdxp vx

!
�

 
a b

cp v

!

D

 
axC1 b.ax C dxv/

c.adx C vx/p vxC1

!
D

 
axC1 bdxC1

cdxC1p vxC1

!
:

Lemma 8. Let Ng D
�

a b
cp v

�
2 NE�p .

(1) If a D v and at least one of b; c is nonzero, then j Ngj D p � jaj.

(2) In all other cases (a ¤ v or b D c D 0), j Ngj D lcm.jaj; jvj/.

Proof. Define dx as in Lemma 7. By Lemma 7, 
aj Ngj �

� vj Ngj

!
D Ngj Ngj D

 
1 0

0 1

!
:

Thus, jaj and jvj divide j Ngj, and therefore so does lcm.jaj; jvj/.
We consider all possible cases.
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If b D c D 0, then

Ngx
D

 
ax 0

0 vx

!
for all x, and thus j Ngj D lcm.jaj; jvj/, as claimed in (2).

Assume, henceforth, that at least one of b; c is nonzero, and let

l D lcm.jaj; jvj/:

If a ¤ v, then

dl D
al � vl

a � v
D

1 � 1

a � v
D 0 mod p;

and thus, by Lemma 7, Ngl D I . Thus, j Ngj divides l , which we have seen to divide
j Ngj. It follows that j Ngj D l , as claimed in (2).

Assume, henceforth, that a D v.
Since dp D pap�1 D 0 mod p, we have by Lemma 7 that

Ngp
D

 
ap 0

0 ap

!
D

 
a 0

0 a

!
:

It follows that Ngp�jaj D I . Therefore, j Ngj divides p � jaj. Recall that jaj divides j Ngj.
Now, djaj D jaj � a

jaj�1 mod p. Since jaj < p, we have that djaj ¤ 0. It follows
that

Ngjaj D

 
ajaj bdjaj

cdjajp ajaj

!
¤

 
1 0

0 1

!
;

and thus j Ngj D p � jaj, as claimed in (1).

2.3 The main reductions

Reduction 9. Computing discrete logarithms in NEp using discrete logarithms in
Zp.

Details. Let Ng D
�

a b
cp v

�
2 NE�p , and let x 2 ¹1; : : : ; j Ngjº. By Lemma 7,

Ngx
D

 
ax bdx

cdxp vx

!
:

If a ¤ v or b D c D 0, then by Lemma 8, j Ngj D lcm.jaj; jvj/. Compute

x mod jaj D loga.ax/I

x mod jvj D logv.vx/:

Since x < j Ngj, we can use the Chinese Remainder Algorithm to compute x mod
lcm.jaj; jvj/ D x.
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Thus, assume that a D v and one of b; c is nonzero. By Lemma 8, j Ngj D p � jaj.
Compute

x0 WD x mod jaj D loga.ax/:

Compute

Ngx
� Ng�x0 D Ngx�x0 D

 
ax�x0 bdx�x0

cdx�x0
p ax�x0

!
D

 
1 bdx�x0

cdx�x0
p 1

!
:

Since b or c is nonzero, we can extract dx�x0
mod p. Compute

dx�x0
� a D .x � x0/ax�x0 D x � x0 mod p:

As x � x0 � x < j Ngj D p � jaj, we can use the Chinese Remainder Algorithm to
compute

x � x0 mod lcm.p; jaj/ D x � x0 mod p � jaj D x � x0:

Add x0 to obtain x.

Reduction 10. Computing discrete logarithms in Ep using discrete logarithms in
Zp.

Details. Let g D
�

a b
cp vCup

�
2 E�p , and let x 2 ¹1; : : : ; jgjº. Take Ng D

�
a b

cp v

�
2

NE�p . Use Lemma 8 and Reduction 2 to compute j Ngj. By Lemma 6, j Ngj divides jgj.
As Ngj Ngj D I is the image of gj Ngj under the homomorphism of Lemma 6, we have
that

gj Ngj D

 
1 0

0 1C sp

!
for some s 2 ¹0; : : : ; p � 1º. Using Reduction 9, compute

x0 WD log Ng. Ngx/ D x mod j Ngj:

If s D 0 then jgj D j Ngj, and thus x0 WD log Ng. Ngx/ D logg.gx/ D x, and we are
done. If s ¤ 0, let q D .x � x0/=j Ngj. Since the order of 1 C sp in Zp2 is p (in
Zp2 , .1C sp/e D 1C esp for all e), the order of gj Ngj is p, and thus jgj D j Ngj � p.
Thus, q � x=j Ngj < jgj=j Ngj D p. Compute

gxg�x0 D gx�x0 D .gj Ngj/q

D

 
1 0

0 1C sp

!q

D

 
1 0

0 .1C sp/q

!
D

 
1 0

0 1C sqp

!
:

Compute sq mod p D ..1 C sqp/ � 1/=p. In Zp, multiply by s�1 to obtain
q mod p D q. Multiply by j Ngj to get x � x0, and add x0.
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3 Summing up: Code

Following is a self-explanatory code (in Magma [2]) of our main reductions. This
code shows, in a concise manner, that the number of computations of discrete
logarithms in Zp needed to compute discrete logarithms in Bergman’s ring Ep is
at most 2. For completeness, we provide, in Appendix A, the basic routines.

F := GaloisField(p);
Z := IntegerRing();
I := ScalarMatrix(2, 1); //identity matrix

function EpBarOrder(g) //Lemma 9
a := F!(g[1,1]);
v := F!(g[2,2]);
if (a ne v) or (IsZero(g[1,2]) and IsZero(g[2,1])) then

order := Lcm(Order(a),Order(v));
else

order := p*Order(a);
end if;
return order;

end function;

function EpBarLog(g,h) //Reduction 10
a := F!(g[1,1]);
b := F!(g[1,2]);
c := F!(g[2,1] div p);
v := F!(g[2,2]);
x0 := Log(a,F!(h[1,1]));
if (a ne v) or (IsZero(b) and IsZero(c)) then

xv := Log(v,F!(h[2,2]));
x := ChineseRemainderTheorem([x0,xv], [Order(a),Order(v)]);

else
ginv := EpBarInverse(g);
f := EpBarPower(ginv,x0);
f := EpBarProd(h,f);
if IsZero(c) then

d := b^-1 * F!(f[1,2]);
else

d := c^-1 * F!(f[2,1] div p);
end if;
delta := Z!(d*a);
truedelta := ChineseRemainderTheorem([0,delta],[Order(a),p]);
x := truedelta+x0;

end if;
return x;

end function;
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function EpLog(g,h) //Reduction 11
gbar := Bar(g); hbar := Bar(h);
gbarorder := EpBarOrder(gbar);
x0 := EpBarLog(gbar,hbar);
f := EpPower(g,gbarorder);
s := (f[2,2]-1) div p;
if IsZero(s) then

x := x0;
else

ginv := EpInverse(g);
f := EpPower(ginv,x0);
f := EpProd(h,f);
n := (f[2,2]-1) div p;
q := (F!s)^-1*F!n;
x := gbarorder*(Z!q)+x0;

end if;
return x;

end function;

We have tested these routines extensively: For random primes of size 4; 8; 16; 32; 64,
and 128 bits, and thousands of random pairs g; h D gx , EpLog(g,h) always returned x.

A Elementary routines

To remove any potential ambiguity, and help interested readers reproducing our experi-
ments, we provide here the basic routines for arithmetic in Bergman’s ring Ep .

function EpProd(A, B) //integer matrices
C := A*B;
C[1,1] mod:= p;
C[1,2] mod:= p;
C[2,1] mod:= p^2;
C[2,2] mod:= p^2;
return C;

end function;

function Bar(g)
h := g;
h[2,2] mod:= p;
return h;

end function;

function EpBarProd(A, B) //integer matrices
return Bar(EpProd(A,B));

end function;
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function EpInvertibleEpMatrix()
g := ZeroMatrix(Z, 2, 2);
g[1,1] := Random([1..p-1]);
g[1,2] := Random([0..p-1]);
g[2,1] := p*Random([0..p-1]);
g[2,2] := Random([1..p-1])+p*Random([1..p-1]);
return g;

end function;

function EpPower(g, n) //square and multiply
result := I;
while not IsZero(n) do

if ((n mod 2) eq 1) then
result := EpProd(result, g);
n -:= 1;

end if;
g := EpProd(g, g);
n div:= 2;

end while;
return result;

end function;

function EpBarPower(g, n)
return Bar(EpPower(g, n));

end function;

function EpInverse(g)
a := F!(g[1,1]);
b := F!(g[1,2]);
c := F!(g[2,1] div p);
u := F!(g[2,2] div p);
v := F!(g[2,2]);
ginv := ZeroMatrix(Z,2,2);
ginv[1,1] := Z!(a^-1);
ginv[1,2] := Z!(-a^-1*b*v^-1);
ginv[2,1] := p*Z!(-v^-1*c*a^-1);
ginv[2,2] := Z!(v^-1)+

p*Z!(c*a^-1*b*v^-2-u*v^-2-(F!(Z!v*Z!(v^-1) div p)*v^-1));
return ginv;

end function;

function EpBarInverse(g)
return Bar(EpInverse(g));

end function;
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B Equivalence of discrete logarithm problems

The result in this appendix should be well known to experts, but since we are not aware of
any reference for it, we include it for completeness. Consider the following two versions
of the discrete logarithm problem in a prescribed finite group G. We assume that jGj, or a
polynomial upper bound K on jGj, is known. We do not assume that G is cyclic.

DLP1 Find x, given an element g 2 G and its power gx , where x 2 ¹0; 1; : : : ; jgj � 1º.

DLP2 Given an element g 2 G and its power gx , find Qx with g Qx D gx .

DLP1 is harder than DLP2: A DLP1 oracle returns Qx WD x mod jgj on input g; gx .
On the other hand, DLP2 is probabilistically harder than DLP1: It suffices to show how
jgj can be computed using a DLP2 oracle. Indeed, for a large enough (but polynomial)
number of random elements r 2 ¹K; K C 1; : : : ; M º where M � K is fixed, let Qr be the
output of DLP2 on .g; gr /. Then jgj divides all numbers .r � Qr/ mod g, and the greatest
common divisor of these numbers is jgj, except for a negligible probability.
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