The discrete logarithm problem in Bergman's non-representable ring

Matan Banin and Boaz Tsaban

Communicated by Simon Blackburn

Abstract. Bergman's ring E_p , parameterized by a prime number p, is a ring with p^5 elements that cannot be embedded in a ring of matrices over any commutative ring. This ring was discovered in 1974. In 2011, Climent, Navarro and Tortosa described an efficient implementation of E_p using simple modular arithmetic, and suggested that this ring may be a useful source for intractable cryptographic problems. We present a deterministic polynomial time reduction of the discrete logarithm problem in E_p to the classical discrete logarithm problem in \mathbb{Z}_p , the *p*-element field. In particular, the discrete logarithm problem in E_p can be solved, by conventional computers, in sub-exponential time.

Keywords. Cryptanalysis, discrete logarithm problem, Bergman endomorphism ring, representation attacks.

2010 Mathematics Subject Classification. 11T71, 94A60.

1 Introduction

For discrete logarithm based cryptography, it is desirable to find efficiently implementable groups for which sub-exponential algorithms for the discrete logarithm problem are not available. Thus far, the only candidates for such groups seem to be (carefully chosen) groups of points on elliptic curves [5,7]. Groups of invertible matrices over a finite field, proposed in [8], where proved by Menezes and Wu [6] inadequate for this purpose. Consequently, any candidate for a platform group for discrete logarithm based cryptography must not be efficiently embeddable in a group of matrices.

In 1974, Bergman proved that the ring $\operatorname{End}(\mathbb{Z}_p \times \mathbb{Z}_{p^2})$ of endomorphisms of the group $\mathbb{Z}_p \times \mathbb{Z}_{p^2}$, where *p* is a prime parameter, admits no embedding in any ring of matrices over a commutative ring [1]. In 2011, Climent, Navarro and Tortosa [3] described an efficient implementation of E_p (reviewed below), proved that uniformly random elements of E_p are invertible with probability greater than 1 - 2/p, and supplied an efficient way to sample the invertible elements of E_p uniformly at random. Consequently, they proposed this ring as a potential source

for intractable cryptographic problems. Climent et al. proposed a Diffie–Hellman type key exchange protocol over E_p , but it was shown by Kamal and Youssef [4] not to be related to the discrete logarithm problem, and to be susceptible to a polynomial time attack.

We consider the discrete logarithm problem in E_p . Since E_p admits no embedding in any ring of matrices over a commutative ring, the Menezes–Wu reduction attack [6] is not directly applicable. We present, however, a deterministic polynomial time reduction of the discrete logarithm problem in E_p to the classical discrete logarithm problem in \mathbb{Z}_p , the *p*-element field. In particular, the discrete logarithm problem in E_p can be solved by conventional computers in sub-exponential time, and E_p offers no advantage, over \mathbb{Z}_p , for cryptography based on the discrete logarithm problem.

2 Computing discrete logarithms in $\operatorname{End}(\mathbb{Z}_p \times \mathbb{Z}_{p^2})$

Climent, Navarro and Tortosa [3] provide the following faithful representation of Bergman's ring. The elements of E_p are the matrices

$$g = \begin{pmatrix} a & b \\ cp & v + up \end{pmatrix}, \quad a, b, c, u, v \in \{0, \dots, p-1\}.$$

Addition (respectively, multiplication) is defined by first taking ordinary addition (respectively, multiplication) over the integers, and then reducing each element of the first row modulo p, and each element of the second row modulo p^2 . The ordinary zero and identity integer matrices are the additive and multiplicative neutral elements of E_p , respectively. The element g is invertible in E_p if and only if $a, v \neq 0$.

The group of invertible elements in a ring R is denoted R^* . For an element g in a group, |g| denotes the order of g in that group.

Definition 1. The *discrete logarithm problem* in a ring *R* is to find *x* given an element $g \in R^*$ and its power g^x , where $x \in \{0, 1, ..., |g| - 1\}$.

Another version of the discrete logarithm problem asks to find any \tilde{x} such that $g^{\tilde{x}} = g^{x}$. The reductions given below are applicable, with minor changes, to this version as well, but it is known that the two versions are essentially equivalent (see Appendix B).

By the standard amplification techniques, one can increase the success probability of any discrete logarithm algorithm with non-negligible success probability to become arbitrarily close to 1. Thus, for simplicity, we may restrict attention to algorithms that never fail. For ease of digestion, we present our solution to the discrete logarithm problem in E_p by starting with the easier cases, and gradually building up. Not all of the easier reductions are needed for the main ones, but they do contain some of the important ingredients of the main ones, and may also be of independent interest to some readers.

2.1 Basic reductions

Reduction 2. Computing the order of an element in R^* , using discrete logarithms in R.

Details. For $g \in R^*$, $g^{-1} = g^{|g|-1}$. Thus, $|g| = \log_g(g^{-1}) + 1$.

Reduction 3. *Computing discrete logarithms in a product of rings using discrete logarithms in each ring separately.*

Details. For rings $R, S, (R \times S)^* = R^* \times S^*$. Let $(g, h) \in R^* \times S^*$ and $(g, h)^x = (g^x, h^x)$, where $x \in \{1, \dots, |(g, h)|\}$, be given. Compute

$$x \mod |g| = \log_g(g^x);$$

 $x \mod |h| = \log_h(h^x).$

Use Reduction 2 to compute |g| and |h|. Compute, using the Chinese Remainder Algorithm,

$$x \mod \operatorname{lcm}(|g|, |h|) = x \mod |(g, h)| = x.$$

The Euler isomorphism is the function

$$\Phi_p: (\mathbb{Z}_p, +) \times (\mathbb{Z}_p^*, \cdot) \to \mathbb{Z}_{p^2}^*$$
$$(a, b) \mapsto (1 + ap) \cdot b^p \mod p^2.$$

The function Φ_p is easily seen to be an injective homomorphism between groups of equal cardinality, and thus an isomorphism of groups (cf. Paillier [9] in a slightly more involved context). The Euler isomorphism can be inverted efficiently: Given $c \in \mathbb{Z}_{p^2}^*$, let $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_p^*$ be such that $c = (1 + ap)b^p \mod p^2$. Then

$$c = (1 + ap) \cdot b^p = 1 \cdot b^p = b \pmod{p}$$

Compute $b = c \mod p$, then $b^p \mod p^2$, then $1 + ap = c \cdot (b^p)^{-1} \mod p^2$, where the inverse is in $\mathbb{Z}_{p^2}^*$. Since $1 + ap < p^2$, we can subtract 1 and divide by p to get a.

Reduction 4. Computing discrete logarithms in \mathbb{Z}_{p^2} using discrete logarithms in \mathbb{Z}_p .

Details. Use the Euler isomorphism to transform the problem into a computation of a discrete logarithm in $(\mathbb{Z}_p, +) \times (\mathbb{Z}_p^*, \cdot)$. Computing discrete logarithm in $(\mathbb{Z}_p, +)$ is trivial. Apply Reduction 3.

2.2 Algebraic lemmata

Definition 5. \overline{E}_p is the ring of matrices $\begin{pmatrix} a & b \\ pc & v \end{pmatrix}$, $a, b, c, v \in \{0, 1, \dots, p-1\}$, where addition and multiplication are carried out over \mathbb{Z} , and then entry (2, 1) is reduced modulo p^2 , and the other three entries are reduced modulo p.

Lemma 6. The map

$$E_p \to E_p$$

$$\begin{pmatrix} a & b \\ cp & v + up \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ cp & v \end{pmatrix}$$

is a ring homomorphism.

Proof. Since addition is component-wise, it remains to verify multiplicativity. Indeed, in E_p ,

$$\begin{pmatrix} a_1 & b_1 \\ c_1 p & v_1 + u_1 p \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 p & v_2 + u_2 p \end{pmatrix}$$
$$= \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 v_2 \\ (c_1 a_2 + v_1 c_2) p & v_1 v_2 + (c_1 b_2 + v_1 u_2 + u_1 v_2) p \end{pmatrix},$$

and in \overline{E}_p ,

$$\begin{pmatrix} a_1 & b_1 \\ c_1 p & v_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 p & v_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 v_2 \\ (c_1 a_2 + v_1 c_2) p & v_1 v_2 \end{pmatrix}.$$

Lemma 7. Let $\bar{g} = \begin{pmatrix} a & b \\ cp & v \end{pmatrix} \in \bar{E}_p^*$, and let x be a natural number. Define $d_x \in \mathbb{Z}_p$ by

$$d_x = \begin{cases} \frac{a^x - v^x}{a - v} & a \neq v, \\ xa^{x-1} & a = v. \end{cases}$$

Then

$$\bar{g}^x = \begin{pmatrix} a^x & bd_x \\ cd_x p & v^x \end{pmatrix}.$$

Proof. By induction on x. The statement is immediate when x = 1. Induction step: If $a \neq v$, then in \mathbb{Z}_p ,

$$a^{x} + d_{x}v = a^{x} + \frac{a^{x} - v^{x}}{a - v} \cdot v$$

= $\frac{a^{x}(a - v) + (a^{x} - v^{x})v}{a - v} = \frac{a^{x+1} - v^{x+1}}{a - v} = d_{x+1};$
 $ad_{x} + v^{x} = \frac{a(a^{x} - v^{x})}{a - v} + \frac{(a - v)v^{x}}{a - v} = \frac{a^{x+1} - v^{x+1}}{a - v} = d_{x+1}.$

If a = v, then

$$a^{x} + d_{x}v = a^{x} + xa^{x-1}v$$

= $a^{x} + xa^{x-1}a = a^{x} + xa^{x} = (x+1)a^{x} = d_{x+1};$
 $ad_{x} + v^{x} = xa^{x} + a^{x} = (x+1)a^{x} = d_{x+1}.$

Thus, in either case,

$$\bar{g}^{x+1} = \bar{g}^x \cdot \bar{g} = \begin{pmatrix} a^x & bd_x \\ cd_x p & v^x \end{pmatrix} \cdot \begin{pmatrix} a & b \\ cp & v \end{pmatrix}$$
$$= \begin{pmatrix} a^{x+1} & b(a^x + d_x v) \\ c(ad_x + v^x)p & v^{x+1} \end{pmatrix} = \begin{pmatrix} a^{x+1} & bd_{x+1} \\ cd_{x+1}p & v^{x+1} \end{pmatrix} . \Box$$

Lemma 8. Let $\bar{g} = \begin{pmatrix} a & b \\ cp & v \end{pmatrix} \in \bar{E}_p^*$.

- (1) If a = v and at least one of b, c is nonzero, then $|\bar{g}| = p \cdot |a|$.
- (2) In all other cases ($a \neq v$ or b = c = 0), $|\bar{g}| = \operatorname{lcm}(|a|, |v|)$.

Proof. Define d_x as in Lemma 7. By Lemma 7,

$$\begin{pmatrix} a^{|\bar{g}|} & * \\ * & v^{|\bar{g}|} \end{pmatrix} = \bar{g}^{|\bar{g}|} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thus, |a| and |v| divide $|\bar{g}|$, and therefore so does lcm(|a|, |v|).

We consider all possible cases.

If b = c = 0, then

$$\bar{g}^x = \begin{pmatrix} a^x & 0\\ 0 & v^x \end{pmatrix}$$

for all x, and thus $|\bar{g}| = \operatorname{lcm}(|a|, |v|)$, as claimed in (2).

Assume, henceforth, that at least one of b, c is nonzero, and let

 $l = \operatorname{lcm}(|a|, |v|).$

If $a \neq v$, then

$$d_l = \frac{a^l - v^l}{a - v} = \frac{1 - 1}{a - v} = 0 \mod p,$$

and thus, by Lemma 7, $\bar{g}^l = I$. Thus, $|\bar{g}|$ divides l, which we have seen to divide $|\bar{g}|$. It follows that $|\bar{g}| = l$, as claimed in (2).

Assume, henceforth, that a = v.

Since $d_p = pa^{p-1} = 0 \mod p$, we have by Lemma 7 that

$$\bar{g}^p = \begin{pmatrix} a^p & 0\\ 0 & a^p \end{pmatrix} = \begin{pmatrix} a & 0\\ 0 & a \end{pmatrix}.$$

It follows that $\bar{g}^{p \cdot |a|} = I$. Therefore, $|\bar{g}|$ divides $p \cdot |a|$. Recall that |a| divides $|\bar{g}|$. Now, $d_{|a|} = |a| \cdot a^{|a|-1} \mod p$. Since |a| < p, we have that $d_{|a|} \neq 0$. It follows that

$$\bar{g}^{|a|} = \begin{pmatrix} a^{|a|} & bd_{|a|} \\ cd_{|a|}p & a^{|a|} \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and thus $|\bar{g}| = p \cdot |a|$, as claimed in (1).

2.3 The main reductions

Reduction 9. Computing discrete logarithms in \overline{E}_p using discrete logarithms in \mathbb{Z}_p .

Details. Let $\bar{g} = \begin{pmatrix} a & b \\ cp & v \end{pmatrix} \in \bar{E}_p^*$, and let $x \in \{1, \dots, |\bar{g}|\}$. By Lemma 7,

$$\bar{g}^x = \begin{pmatrix} a^x & bd_x \\ cd_x p & v^x \end{pmatrix}.$$

If $a \neq v$ or b = c = 0, then by Lemma 8, $|\bar{g}| = \operatorname{lcm}(|a|, |v|)$. Compute

$$x \mod |a| = \log_a(a^x);$$

$$x \mod |v| = \log_v(v^x).$$

Since $x < |\bar{g}|$, we can use the Chinese Remainder Algorithm to compute x mod lcm(|a|, |v|) = x.

Thus, assume that a = v and one of b, c is nonzero. By Lemma 8, $|\bar{g}| = p \cdot |a|$. Compute

$$x_0 := x \mod |a| = \log_a(a^x).$$

Compute

$$\bar{g}^{x} \cdot \bar{g}^{-x_{0}} = \bar{g}^{x-x_{0}} = \begin{pmatrix} a^{x-x_{0}} & bd_{x-x_{0}} \\ cd_{x-x_{0}}p & a^{x-x_{0}} \end{pmatrix} = \begin{pmatrix} 1 & bd_{x-x_{0}} \\ cd_{x-x_{0}}p & 1 \end{pmatrix}.$$

Since b or c is nonzero, we can extract $d_{x-x_0} \mod p$. Compute

$$d_{x-x_0} \cdot a = (x - x_0)a^{x-x_0} = x - x_0 \mod p.$$

As $x - x_0 \le x < |\bar{g}| = p \cdot |a|$, we can use the Chinese Remainder Algorithm to compute

$$x - x_0 \mod \operatorname{lcm}(p, |a|) = x - x_0 \mod p \cdot |a| = x - x_0.$$

Add x_0 to obtain x.

Reduction 10. Computing discrete logarithms in E_p using discrete logarithms in \mathbb{Z}_p .

Details. Let $g = \begin{pmatrix} a & b \\ cp & v+up \end{pmatrix} \in E_p^*$, and let $x \in \{1, \dots, |g|\}$. Take $\bar{g} = \begin{pmatrix} a & b \\ cp & v \end{pmatrix} \in \bar{E}_p^*$. Use Lemma 8 and Reduction 2 to compute $|\bar{g}|$. By Lemma 6, $|\bar{g}|$ divides |g|. As $\bar{g}^{|\bar{g}|} = I$ is the image of $g^{|\bar{g}|}$ under the homomorphism of Lemma 6, we have that

$$g^{|\bar{g}|} = \begin{pmatrix} 1 & 0\\ 0 & 1 + sp \end{pmatrix}$$

for some $s \in \{0, ..., p-1\}$. Using Reduction 9, compute

$$x_0 := \log_{\bar{g}}(\bar{g}^x) = x \mod |\bar{g}|.$$

If s = 0 then $|g| = |\bar{g}|$, and thus $x_0 := \log_{\bar{g}}(\bar{g}^x) = \log_g(g^x) = x$, and we are done. If $s \neq 0$, let $q = (x - x_0)/|\bar{g}|$. Since the order of 1 + sp in \mathbb{Z}_{p^2} is p (in \mathbb{Z}_{p^2} , $(1 + sp)^e = 1 + esp$ for all e), the order of $g^{|\bar{g}|}$ is p, and thus $|g| = |\bar{g}| \cdot p$. Thus, $q \leq x/|\bar{g}| < |g|/|\bar{g}| = p$. Compute

$$g^{x}g^{-x_{0}} = g^{x-x_{0}} = (g^{|\bar{g}|})^{q}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1+sp \end{pmatrix}^{q} = \begin{pmatrix} 1 & 0 \\ 0 & (1+sp)^{q} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1+sqp \end{pmatrix}.$$

Compute $sq \mod p = ((1 + sqp) - 1)/p$. In \mathbb{Z}_p , multiply by s^{-1} to obtain $q \mod p = q$. Multiply by $|\bar{g}|$ to get $x - x_0$, and add x_0 .

3 Summing up: Code

Following is a self-explanatory code (in Magma [2]) of our main reductions. This code shows, in a concise manner, that the number of computations of discrete logarithms in \mathbb{Z}_p needed to compute discrete logarithms in Bergman's ring E_p is *at most 2*. For completeness, we provide, in Appendix A, the basic routines.

```
F := GaloisField(p);
Z := IntegerRing();
I := ScalarMatrix(2, 1); //identity matrix
function EpBarOrder(g) //Lemma 9
   a := F!(g[1,1]);
   v := F!(g[2,2]);
   if (a ne v) or (IsZero(g[1,2]) and IsZero(g[2,1])) then
       order := Lcm(Order(a),Order(v));
   else
       order := p*Order(a);
   end if;
   return order;
end function;
function EpBarLog(g,h) //Reduction 10
   a := F!(g[1,1]);
   b := F!(g[1,2]);
   c := F!(g[2,1] div p);
   v := F!(g[2,2]);
   x0 := Log(a,F!(h[1,1]));
   if (a ne v) or (IsZero(b) and IsZero(c)) then
       xv := Log(v,F!(h[2,2]));
       x := ChineseRemainderTheorem([x0,xv], [Order(a),Order(v)]);
   else
       ginv := EpBarInverse(g);
       f := EpBarPower(ginv,x0);
       f := EpBarProd(h,f);
       if IsZero(c) then
           d := b^-1 * F!(f[1,2]);
       else
           d := c^-1 * F!(f[2,1] div p);
       end if;
       delta := Z!(d*a);
       truedelta := ChineseRemainderTheorem([0,delta],[Order(a),p]);
       x := truedelta+x0;
   end if;
  return x;
end function;
```

```
function EpLog(g,h) //Reduction 11
  gbar := Bar(g); hbar := Bar(h);
  gbarorder := EpBarOrder(gbar);
  x0 := EpBarLog(gbar,hbar);
  f := EpPower(g,gbarorder);
   s := (f[2,2]-1) div p;
   if IsZero(s) then
       x := x0;
  else
       ginv := EpInverse(g);
       f := EpPower(ginv,x0);
       f := EpProd(h,f);
       n := (f[2,2]-1) div p;
       q := (F!s)^{-1*F!n};
       x := gbarorder*(Z!q)+x0;
  end if:
  return x;
end function;
```

We have tested these routines extensively: For random primes of size 4, 8, 16, 32, 64, and 128 bits, and thousands of random pairs $g, h = g^x$, EpLog(g,h) always returned x.

A Elementary routines

To remove any potential ambiguity, and help interested readers reproducing our experiments, we provide here the basic routines for arithmetic in Bergman's ring E_p .

```
function EpProd(A, B) //integer matrices
   C := A*B;
  C[1,1] mod:= p;
  C[1,2] mod:= p;
  C[2,1] \mod := p^2;
   C[2,2] mod:= p^2;
  return C;
end function;
function Bar(g)
  h := g;
  h[2,2] mod:= p;
  return h;
end function;
function EpBarProd(A, B) //integer matrices
   return Bar(EpProd(A,B));
end function;
```

```
function EpInvertibleEpMatrix()
   g := ZeroMatrix(Z, 2, 2);
   g[1,1] := Random([1..p-1]);
   g[1,2] := Random([0..p-1]);
   g[2,1] := p*Random([0..p-1]);
   g[2,2] := Random([1..p-1])+p*Random([1..p-1]);
  return g;
end function;
function EpPower(g, n) //square and multiply
    result := I;
    while not IsZero(n) do
       if ((n \mod 2) eq 1) then
           result := EpProd(result, g);
           n -:= 1;
       end if;
       g := EpProd(g, g);
       n div:= 2;
    end while;
    return result;
end function;
function EpBarPower(g, n)
   return Bar(EpPower(g, n));
end function;
function EpInverse(g)
   a := F!(g[1,1]);
   b := F!(g[1,2]);
   c := F!(g[2,1] div p);
   u := F!(g[2,2] div p);
   v := F!(g[2,2]);
   ginv := ZeroMatrix(Z,2,2);
   ginv[1,1] := Z!(a^-1);
   ginv[1,2] := Z!(-a^-1*b*v^-1);
   ginv[2,1] := p*Z!(-v^-1*c*a^-1);
   ginv[2,2] := Z!(v^-1)+
           p*Z!(c*a^-1*b*v^-2-u*v^-2-(F!(Z!v*Z!(v^-1) div p)*v^-1));
  return ginv;
end function;
function EpBarInverse(g)
   return Bar(EpInverse(g));
end function;
```

B Equivalence of discrete logarithm problems

The result in this appendix should be well known to experts, but since we are not aware of any reference for it, we include it for completeness. Consider the following two versions of the discrete logarithm problem in a prescribed finite group G. We assume that |G|, or a polynomial upper bound K on |G|, is known. We do not assume that G is cyclic.

DLP1 Find x, given an element $g \in G$ and its power g^x , where $x \in \{0, 1, \dots, |g| - 1\}$.

DLP2 Given an element $g \in G$ and its power g^x , find \tilde{x} with $g^{\tilde{x}} = g^x$.

DLP1 is harder than DLP2: A DLP1 oracle returns $\tilde{x} := x \mod |g|$ on input g, g^x . On the other hand, DLP2 is probabilistically harder than DLP1: It suffices to show how |g| can be computed using a DLP2 oracle. Indeed, for a large enough (but polynomial) number of random elements $r \in \{K, K + 1, ..., M\}$ where $M \gg K$ is fixed, let \tilde{r} be the output of DLP2 on (g, g^r) . Then |g| divides all numbers $(r - \tilde{r}) \mod g$, and the greatest common divisor of these numbers is |g|, except for a negligible probability.

Bibliography

- [1] G. Bergman, Examples in PI ring theory, Israel J. Math. 18 (1974), 257–277.
- [2] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system, I: The user language, J. Symbolic Comput. 24 (1997), 235–265.
- [3] J. Climent, P. Navarro and L. Tortosa, On the arithmetic of the endomorphisms ring End(Z_p × Z_p²), Appl. Algebra Engrg. Comm. Comput. 22 (2011), 91–108.
- [4] A. Kamal and A. Youssef, Cryptanalysis of a key exchange protocol based on the endomorphisms ring $\operatorname{End}(\mathbb{Z}_p \times \mathbb{Z}_{p^2})$, *Appl. Algebra Engrg. Comm. Comput.*, to appear.
- [5] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203–209.
- [6] A. Menezes and Y. Wu, The discrete logarithm problem in GL(n,q), Ars Combin. 47 (1998), 23–32.
- [7] V. Miller, Uses of elliptic curves in cryptography, in: Advances in Cryptology Proceedings of Crypto '85, Lecture Notes in Comput. Sci. 218, Springer (1986), 417–426.
- [8] R. Odoni, R. Sanders and V. Varadharajan, Public key distribution in matrix rings, *Electronic Letters* 20 (1984), 386–387.
- [9] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Advances in Cryptology – EUROCRYPT'99, Lecture Notes in Comput. Sci. 1592, Springer (1999), 223–238.

Received June 16, 2012; revised August 21, 2012; accepted August 28, 2012.

Author information

Matan Banin, Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel. E-mail: baninmmm@gmail.com

Boaz Tsaban, Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel. E-mail:tsaban@math.biu.ac.il Copyright of Journal of Mathematical Cryptology is the property of De Gruyter and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.