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POINT-COFINITE COVERS IN THE LAVER MODEL

ARNOLD W. MILLER AND BOAZ TSABAN

(Communicated by Julia Knight)

Abstract. Let S1(Γ,Γ) be the statement: For each sequence of point-cofinite
open covers, one can pick one element from each cover and obtain a point-
cofinite cover. b is the minimal cardinality of a set of reals not satisfying
S1(Γ,Γ). We prove the following assertions:
(1) If there is an unbounded tower, then there are sets of reals of cardinality

b satisfying S1(Γ,Γ).
(2) It is consistent that all sets of reals satisfying S1(Γ,Γ) have cardinality

smaller than b.
These results can also be formulated as dealing with Arhangel’skĭı’s property
α2 for spaces of continuous real-valued functions.

The main technical result is that in Laver’s model, each set of reals of
cardinality b has an unbounded Borel image in the Baire space ωω .

1. Background

Let P be a nontrivial property of sets of reals. The critical cardinality of P ,
denoted non(P ), is the minimal cardinality of a set of reals not satisfying P . A
natural question is whether there is a set of reals of cardinality at least non(P ),
which satisfies P , i.e., a nontrivial example.

We consider the following property. Let X be a set of reals. U is a point-cofinite
cover of X if U is infinite, and for each x ∈ X, {U ∈ U : x ∈ U} is a cofinite
subset of U .1 Having X fixed in the background, let Γ be the family of all point-
cofinite open covers of X. The following properties were introduced by Hurewicz
[8], Tsaban [19], and Scheepers [15], respectively.

Ufin(Γ,Γ): For all U0,U1, · · · ∈ Γ, none containing a finite subcover, there are
finite F0 ⊆ U0,F1 ⊆ U1, . . . such that {

⋃
Fn : n ∈ ω} ∈ Γ.

U2(Γ,Γ): For all U0,U1, · · · ∈ Γ, there are F0 ⊆ U0,F1 ⊆ U1, . . . such that
|Fn| = 2 for all n, and {

⋃
Fn : n ∈ ω} ∈ Γ.

S1(Γ,Γ): For all U0,U1, · · · ∈ Γ, there are U0 ∈ U0, U1 ∈ U1, . . . such that
{Un : n ∈ ω} ∈ Γ.
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1Historically, point-cofinite covers were named γ-covers, since they are related to a property

numbered γ in a list from α to ε in the seminal paper [7] of Gerlits and Nagy.
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Clearly, S1(Γ,Γ) implies U2(Γ,Γ), which in turn implies Ufin(Γ,Γ). None of these
implications is reversible in ZFC [19]. The critical cardinality of all three properties
is b [9].2

Bartoszyński and Shelah [1] proved that there are, provably in ZFC, totally
imperfect sets of reals of cardinality b satisfying the Hurewicz property Ufin(Γ,Γ).
Tsaban proved the same assertion for U2(Γ,Γ) [19]. These sets satisfy Ufin(Γ,Γ) in
all finite powers [2].

We show that in order to obtain similar results for S1(Γ,Γ), hypotheses beyond
ZFC are necessary.

2. Constructions

We show that certain weak (but not provable in ZFC) hypotheses suffice to have
nontrivial S1(Γ,Γ) sets, even ones which possess this property in all finite powers.

Definition 2.1. A tower of cardinality κ is a set T ⊆ [ω]ω which can be enumerated
bijectively as {xα : α < κ}, such that for all α < β < κ, xβ ⊆∗ xα.

A set T ⊆ [ω]ω is unbounded if the set of its enumeration functions is unbounded;
i.e., for any g ∈ ωω there is an x ∈ T such that for infinitely many n, g(n) is less
than the n-th element of x.

Scheepers [16] proved that if t = b, then there is a set of reals of cardinality b

satisfying S1(Γ,Γ). If t = b, then there is an unbounded tower of cardinality b, but
the latter assumption is weaker.

Lemma 2.2 (folklore). If b < d, then there is an unbounded tower of cardinality
b.

Proof. Let B = {bα : α < b} ⊆ ωω be a b-scale; that is, each bα is increasing,
bα ≤∗ bβ for all α < β < b, and B is unbounded.

As |B| < d, B is not dominating. Let g ∈ ωω exemplify that. For each α < b, let
xα = {n : bα(n) ≤ g(n)}. Then T = {xα : α < b} is an unbounded tower: Clearly,
xβ ⊆∗ xα for α < β. Assume that T is bounded, and let f ∈ ωω exemplify that.
For each α, writing xα(n) for the n-th element of xα:

bα(n) ≤ bα(xα(n)) ≤ g(xα(n)) ≤ g(f(n))

for all but finitely many n. Thus, g◦f shows that B is bounded, a contradiction. �

Theorem 2.3. If there is an unbounded tower (of any cardinality), then there is a
set of reals X of cardinality b that satisfies S1(Γ,Γ).

Theorem 2.3 follows from Propositions 2.4 and 2.5.

Proposition 2.4. If there is an unbounded tower, then there is one of cardinality
b.

Proof. By Lemma 2.2, it remains to consider the case b = d. Let T be an unbounded
tower of cardinality κ. Let {fα : α < b} ⊆ ωω be dominating. For each α < b, pick
xα ∈ T which is not bounded by fα. {xα : α < b} is unbounded, being unbounded
in a dominating family. �

2Blass’s survey [4] is a good reference for the definitions and details of the special cardinals
mentioned in this paper.
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Define a topology on P (ω) by identifying P (ω) with the Cantor space 2ω, via
characteristic functions. Scheepers’s mentioned proof actually establishes the fol-
lowing result, to which we give an alternative proof.

Proposition 2.5 (essentially, Scheepers [16]). For each unbounded tower T of
cardinality b, T ∪ [ω]<ω satisfies S1(Γ,Γ).

Proof. Let T = {xα : α < b} be an unbounded tower of cardinality b. For each
α, let Xα = {xβ : β < α} ∪ [ω]<ω. Let U0,U1, . . . be point-cofinite open covers of
Xb = T ∪ [ω]<ω. We may assume that each Un is countable and that Ui ∩ Uj = ∅
whenever i 	= j.

By the proof of Lemma 1.2 of [6], for each k there are distinct Uk
0 , U

k
1 , · · · ∈ Uk,

and an increasing sequence mk
0 < mk

1 < . . . , such that for each n and k,

{x ⊆ ω : x ∩ (mk
n,m

k
n+1) = ∅} ⊆ Uk

n .

As T is unbounded, there is α < b such that for each k, Ik = {n : xα∩(mk
n,m

k
n+1) =

∅} is infinite.
For each k, {Uk

n : n ∈ ω} is an infinite subset of Uk, and thus a point-cofinite
cover of Xα. As |Xα| < b, there is f ∈ ωω such that

∀x ∈ Xα ∃k0 ∀k ≥ k0 ∀n > f(k) x ∈ Uk
n .

For each k, pick nk ∈ Ik such that nk > f(k).
We claim that {Uk

nk
: k ∈ ω} is a point-cofinite cover of Xb: If x ∈ Xα, then

x ∈ Uk
nk

for all but finitely many k, because nk > f(k) for all k. If x = xβ ,

β ≥ α, then x ⊆∗ xα. For each large enough k, mk
nk

is large enough, so that

x ∩ (mk
nk
,mk

nk+1) ⊆ xα ∩ (mk
nk
,mk

nk+1) = ∅, and thus x ∈ Uk
nk
. �

Remark 2.6. Zdomskyy points out that for the proof to go through, it suffices that
{xα : α < b} is such that there is an unbounded {yα : α < b} ⊆ [ω]ω such that for
each α, xα is a pseudointersection of {yβ : β < α}. We do not know whether the
assertion mentioned here is weaker than the existence of an unbounded tower.

We now turn to nontrivial examples of sets satisfying S1(Γ,Γ) in all finite powers.
In general, S1(Γ,Γ) is not preserved by taking finite powers [9], and we use a slightly
stronger hypothesis in our construction.

Definition 2.7. Let b0 be the additivity number of S1(Γ,Γ), that is, the minimum
cardinality of a family F of sets of reals, each satisfying S1(Γ,Γ), such that the
union of all members of F does not satisfy S1(Γ,Γ).

t ≤ h, and Scheepers proved that h ≤ b0 ≤ b [17]. It follows from Theorem 3.6
that, consistently, h < b0 = b. It is open whether b0 = b is provable. If t = b or
h = b < d, then there is an unbounded tower of cardinality b0.

Theorem 2.8. For each unbounded tower T of cardinality b0, all finite powers of
T ∪ [ω]<ω satisfy S1(Γ,Γ).

Proof. We say that U is an ω-cover of X if no member of U contains X as a
subset, but each finite subset of X is contained in some member of U . We need a
multidimensional version of Lemma 1.2 of [6].

Lemma 2.9. Assume that [ω]<ω ⊆ X ⊆ P (ω), and let e ∈ ω. For each open
ω-cover U of Xe, there are m0 < m1 < . . . and U0, U1, · · · ∈ U , such that for all
x0, . . . , xe−1 ⊆ ω, (x0, . . . , xe−1) ∈ Un whenever xi ∩ (mn,mn+1) = ∅ for all i < e.
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Proof. As U is an open ω-cover of Xe, there is an open ω-cover V of X such that
{V e : V ∈ V} refines U [9].

Let m0 = 0. For each n ≥ 0: Assume that V0, . . . , Vn−1 ∈ V are given, and
U0, . . . , Un−1 ∈ U are such that V e

i ⊆ Ui for all i < n. Fix a finite F ⊆ X such
that F e is not contained in any of the sets U0, . . . , Un−1. As V is an ω-cover of
X, there is Vn ∈ V such that F ∪ P ({0, . . . ,mn}) ⊆ Vn. Take Un ∈ U such that
V e
n ⊆ Un. Then Un /∈ {U0, . . . , Un−1}. As Vn is open, for each s ⊆ {0, . . . ,mn}

there is ks such that for each x ∈ P (ω) with x ∩ {0, . . . , ks − 1} = s, x ∈ Vn. Let
mn+1 = max{ks : s ⊆ {0, . . . ,mn}}.

If xi ∩ (mn,mn+1) = ∅ for all i < e, then (x0, . . . , xe−1) ∈ V e
n ⊆ Un. �

The assumption in the theorem that there is an unbounded tower of cardinality
b0 implies that b0 = b. The proof is by induction on the power e of T ∪ [ω]<ω. The
case e = 1 follows from Theorem 2.5.

Let U0,U1, · · · ∈ Γ((T∪[ω]<ω)e). We may assume that these covers are countable.
As in the proof of Theorem 2.5 (this time using Lemma 2.9), there are for each k,
mk

0 < mk
1 < . . . and Uk

0 , U
k
1 , · · · ∈ Uk (so that {Uk

n : n ∈ ω} ∈ Γ((T ∪[ω]<ω)e)), such
that for all y0, . . . , ye−1 ⊆ ω, (y0, . . . , ye−1) ∈ Uk

n whenever yi ∩ (mk
n,m

k
n+1) = ∅ for

all i < e.
Let α0 be such that Xe

α0
is not contained in any member of

⋃
n Un. As T is

unbounded, there is α such that α0 ≤ α < b, and for each k, Ik = {n : xα ∩
(mk

n,m
k
n+1) = ∅} is infinite.

Let Y = {xβ : β ≥ α}. (T∪[ω]<ω)e\Y e is a union of fewer than b0 homeomorphic
copies of (T ∪ [ω]<ω)e−1. By the induction hypothesis, (T ∪ [ω]<ω)e−1 satisfies
S1(Γ,Γ), and therefore so does (T∪[ω]<ω)e\Y e. For each k, {Uk

n : n ∈ Ik} is a point-
cofinite cover of (T ∪ [ω]<ω)e \ Y e, and thus there are infinite J0 ⊆ I0, J1 ⊆ I1, . . . ,
such that {

⋂
n∈Jk

Uk
n : k ∈ ω} is a point-cofinite cover of (T ∪ [ω]<ω)e \ Y e.3 For

each k, pick nk ∈ Jk such that: mk
nk

> mk−1
nk−1+1, xα ∩ (mk

nk
,mk

nk+1) = ∅, and
Uk
nk

/∈ {U0
n0
, . . . , Uk−1

nk−1
}.

{Uk
nk

: k ∈ ω} ∈ Γ(T ∪ [ω]<ω): If x ∈ (T ∪ [ω]<ω)e \ Y e, then x ∈ Uk
nk

for
all but finitely many k. If x = (xβ0

, . . . , xβe−1
) ∈ Y , then β0, . . . , βe−1 ≥ α, and

thus xβ0
, . . . , xβe−1

⊆∗ xα. For each large enough k, mk
nk

is large enough, so that

xβi
∩ (mk

nk
,mk

nk+1) ⊆ xα ∩ (mk
nk
,mk

nk+1) = ∅ for all i < e, and thus x ∈ Uk
nk
. �

There is an additional way to obtain nontrivial S1(Γ,Γ) sets: The hypothesis b =
cov(N ) = cof(N ) provides b-Sierpiński sets, and b-Sierpiński sets satisfy S1(Γ,Γ),
even for Borel point-cofinite covers. Details are available in [18].

We record the following consequence of Theorem 2.3 for later use.

Corollary 2.10. For each unbounded tower T of cardinality b, T ∪ [ω]<ω satisfies
S1(Γ,Γ) for open covers, but not for Borel covers.

Proof. The latter property is hereditary for subsets [18]. By a theorem of Hurewicz,
a set of reals satisfies Ufin(Γ,Γ) if and only if each continuous image of X in ωω is
bounded. It follows that the set T ⊆ T ∪ [ω]<ω does not even satisfy Ufin(Γ,Γ). �

3Choosing infinitely many elements from each cover, instead of one, can be done by adding to
the given sequence of covers all cofinite subsets of the given covers.
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3. A consistency result

By the results of the previous section, we have the following.

Lemma 3.1. Assume that every set of reals with property S1(Γ,Γ) has cardinality
< b, and c = ℵ2. Then ℵ1 = t = cov(N ) < b = ℵ2.

Proof. As there is no unbounded tower, we have that t < b = d. As c = ℵ2,
ℵ1 = t < b = ℵ2. Since there are no b-Sierpiński sets and b = cof(N ) = c,
cov(N ) < b. �

In Laver’s model [11], ℵ1 = t = cov(N ) < b = ℵ2. We will show that, indeed,
S1(Γ,Γ) is trivial there. Laver’s model was constructed to realize Borel’s Conjec-
ture, asserting that “strong measure zero” is trivial. In some sense, S1(Γ,Γ) is a
dual of strong measure zero. For example, the canonical examples of S1(Γ,Γ) sets
are Sierpiński sets, a measure-theoretic object, whereas the canonical examples of
strong measure zero sets are Luzin sets, a Baire category theoretic object. More
about that can be seen in [18].

The main technical result of this paper is the following.

Theorem 3.2. In the Laver model, if X ⊆ 2ω has cardinality b, then there is a
Borel map f : 2ω → ωω such that f [X] is unbounded.

Proof. The notation in this proof is as in Laver [11]. We will use the following
slightly simplified version of Lemma 14 of [11].

Lemma 3.3 (Laver). Let Pω2
be the countable support iteration of Laver forcing,

p ∈ Pω2
, and let å be a Pω2

-name such that

p �̊a ∈ 2ω.

Then there are a condition q stronger than p and finite Us ⊆ 2ω for each s ∈ q(0)
extending the root of q(0) such that for all such s and all n:

q(0)t ˆ q � [1, ω2) � “ ∃u ∈ Ǔs u � n = å � n ”

for all but finitely many immediate successors t of s in q(0).

Assume that X ⊆ 2ω has no unbounded Borel image in M[Gω2
], i.e., Laver’s

model. For every code u ∈ 2ω for a Borel function f : 2ω → ωω there exists g ∈ ωω

such that for every x ∈ X we have that f(x) ≤∗ g.
By a standard Löwenheim-Skolem argument (see Theorem 4.5 on page 281 of

[3] or section 4 on page 580 of [12]), we may find α < ω2 such that for every code
u ∈ M[Gα] there is an upper bound g ∈ M[Gα]. By the arguments employed by
Laver [11, Lemmata 10 and 11], we may assume that M[Gα] is the ground model
M.

Since the continuum hypothesis holds in M and |X| = b = ℵ2, there are p ∈ Gω2

and å such that
p �å ∈ X̊ and å /∈ M.

Work in the ground model M.
Let q ≤ p be as in Lemma 3.3. Define

Q = {s ∈ q(0) : root(q(0)) ⊆ s}
and let Us, s ∈ Q, be the finite sets from the lemma. Let U =

⋃
s∈Q Us. Define

a Borel map f : 2ω → ωQ so that for every x ∈ 2ω \ U and for each s ∈ Q: If
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f(x)(s) = n, then x � n 	= u � n for each u ∈ Us. For x ∈ U , f(x) may be arbitrary.
There must be a g ∈ ωQ ∩M and r ≤ q such that

r �f (̊a) ≤∗ ǧ.

Since p forced that a is not in the ground model, it cannot be that a is in U . We
may extend r(0) if necessary so that if s = root(r(0)), then

r �f (̊a)(s) ≤ ǧ(s).

But this is a contradiction to Lemma 3.3, since for all but finitely many t ∈ r(0)
which are immediate extensions of s:

r(0)t ˆ q � [1, ω2) �f (̊a)(s) > ǧ(s). �
In [20], Tsaban and Zdomskyy prove that S1(Γ,Γ) for Borel covers is equivalent

to the Kočinac property Scof(Γ,Γ) [10], asserting that for all U0,U1, · · · ∈ Γ, there
are cofinite subsets V0 ⊆ U0,V1 ⊆ U1, . . . such that

⋃
n Vn ∈ Γ. The main result of

[5] can be reformulated as follows.

Theorem 3.4 (Dow [5]). In Laver’s model, S1(Γ,Γ) implies Scof(Γ,Γ).

For the reader’s convenience, we give Dow’s proof, adapted to the present nota-
tion.

Proof. A family H ⊆ [ω]ω is ω-splitting if for each countable A ⊆ [ω]ω, there is
H ∈ H which splits each element of A, i.e.,

|A ∩H| = |A \H| = ω for all A ∈ A.

The main technical result in [5] is the following.

Lemma 3.5 (Dow). In Laver’s model, each ω-splitting family contains an ω-
splitting family of cardinality < b.

Assume that X satisfies S1(Γ,Γ). Let U0,U1, . . . be open point-cofinite countable
covers of X. We may assume4 that Ui ∩Uj = ∅ whenever i 	= j. Put U =

⋃
n<ω Un.

We identify U with ω, its cardinality.
Define H ⊆ [U ]ω as follows. For H ∈ [U ]ω, put H ∈ H if and only if there exists

V ∈ [U ]ω, a point-cofinite cover of X, such that H ∩ Un ⊆∗ V for all n. We claim
that H is an ω-splitting family. As H is closed under taking infinite subsets, it
suffices to show that it is ω-hitting ; i.e., for any countable A ⊆ [U ]ω there exists
H ∈ H which intersects each A ∈ A. (It is enough to intersect each A ∈ A, since
we may assume that A is closed under taking cofinite subsets.)

Let A ⊆ [U ]ω be countable. For each n, choose sets Un,m ∈ [Un]
ω, m ∈ ω, such

that for each A ∈ A, if A ∩ Un is infinite, then Un,m ⊆ A for some m. Apply the
S1(Γ,Γ) to the family {Un,m : n,m ∈ ω} to obtain a point-cofinite V ⊆ U such that
V ∩ Un,m is nonempty for all n,m.

Next, choose finite subsets Fn ⊆ Un, n ∈ ω, such that for each A ∈ A with
A ∩ Un finite for all n, then A ⊆∗ ⋃

n Fn. Take H = V ∪
⋃

n Fn. Then H is in H
and meets each A ∈ A. This shows that H is an ω-splitting family.

By Lemma 3.5, there is an ω-splitting H′ ⊆ H of cardinality < b. For each
H ∈ H′, let VH witness that H is in H; i.e., VH ⊆ U is a point-cofinite cover of X
and H ∩ Un ⊆∗ VH for all n.

4To see why, replace each Un by Un \
⋃

i<n Ui and discard the finite ones. It suffices to show

that Scof (Γ,Γ) applies to those that are left.
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By the definition of b, we may find finite Fn ⊆ Un, n ∈ ω, such that for each
H ∈ H′,

H ∩ Un ⊆ VH ∪ Fn

for all but finitely many n. We claim that W =
⋃

n Un \ Fn is point-cofinite.
Suppose it is not. Then there is x ∈ X such that for infinitely many n, there is
Un ∈ Un \ Fn with x /∈ Un. Let H ∈ H′ contain infinitely many of these Un. By
the above inclusion, all but finitely many of these Un are in VH . This contradicts
the fact that VH is point-cofinite. �

We therefore have the following.

Theorem 3.6. In Laver’s model, each set of reals X satisfying S1(Γ,Γ) has cardi-
nality less than b.

Proof. By Dow’s Theorem, S1(Γ,Γ) implies Scof(Γ,Γ), which in turn implies
S1(Γ,Γ) for Borel covers [20]. The latter property is equivalent to having all Borel
images in ωω bounded [18]. Apply Theorem 3.2. �

Thus, it is consistent that strong measure zero and S1(Γ,Γ) are both trivial.
The proof of Dow’s Theorem 3.4 becomes more natural after replacing, in

Lemma 3.5 “ω-splitting” by “ω-hitting”. This is possible, due to the following
fact (cf. Remark 4 of [5]).

Proposition 3.7. For each infinite cardinal κ, the following are equivalent:

(1) Each ω-splitting family contains an ω-splitting family of cardinality < κ.
(2) Each ω-hitting family contains an ω-hitting family of cardinality < κ.

Proof. (1 ⇒ 2) Suppose A is an ω-hitting family. Let B =
⋃

A∈A[A]ω. Then B
is ω-splitting. By (1) there exists C ⊆ B of size < κ which is ω-splitting. Choose
D ⊆ A of size < κ such that for every C ∈ C there exists D ∈ D with C ⊆ D. Then
D is ω-hitting.

(2 ⇒ 1) Suppose A is an ω-splitting family. For each A ⊆ ω define

A∗ = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ A}.
Then the family A∗ = {A∗ : A ∈ A} is ω-hitting. To see this, suppose that B is
countable. Without loss we may assume that B = B0 ∪ B1, where each element
of B0 is a subset of the evens and each element of B1 is a subset of the odds. For
B ∈ B0 let CB = {n : 2n ∈ B} and for B ∈ B1 let CB = {n : 2n+1 ∈ B}. Now put

C = {CB : B ∈ B}.
Since A is ω-splitting there is A ∈ A which splits C. If B ∈ B0, then A∩CB infinite
implies B ∩ A∗ infinite. If B ∈ B1, then A ∩ CB infinite implies B ∩ A∗ infinite.

By (2) there exists A0 ⊆ A of cardinality < κ such that A∗
0 is ω-hitting. We

claim that A0 is ω-splitting. Given any B ⊆ ω let B′ = {2n : n ∈ B} and let
B′′ = {2n + 1 : n ∈ B}. Given B ⊆ [ω]ω countable, there exists A ∈ A0 such that
A∗ hits each B′ and B′′ for B ∈ B. But this implies that A splits B. �

4. Applications to Arhangel’skĭı’s αi spaces

Let Y be a general (not necessarily metrizable) topological space. We say that
a countably infinite set A ⊆ Y converges to a point y ∈ Y if each (equivalently,
some) bijective enumeration of A converges to y. The following concepts are due
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to Arhangel’skĭı. Y is an α1 space if for each y ∈ Y and each sequence A0, A1, . . .
of countably infinite sets, each converging to y, there are cofinite B0 ⊆ A0, B1 ⊆
A1, . . . , such that

⋃
n Bn converges to y. Replacing “cofinite” by “singletons” (or

equivalently, by “infinite”), we obtain the definition of an α2 space.
We first consider countable spaces.

Definition 4.1. Let X be a set of reals, and let U0,U1, . . . be countable point-
cofinite covers of X. For each n, enumerate bijectively Un = {Un

m : m ∈ ω}. We
associate to X a (new) topology τ on the fan Sω = ω × ω ∪ {∞} as follows: ∞ is
the only nonisolated point of Sω, and a neighborhood base at ∞ is given by the
sets

[∞]F = {(n,m) : F ⊆ Un
m}

for each finite F ⊆ X.

Lemma 4.2. In the notation of Definition 4.1: A converges to ∞ in τ if and only
if U(A) = {Un

m : (n,m) ∈ A} is a point-cofinite cover of X. �

Assume that there is an unbounded tower. By Corollary 2.10, there is a set of
reals X satisfying S1(Γ,Γ) but not Scof(Γ,Γ). Let U0,U1, . . . be countable open
point-cofinite covers of X witnessing the failure of Scof(Γ,Γ). Then, by Lemma 4.2,
(Sω, τ ) is α2 but not α1. In particular, we reproduce the following.

Corollary 4.3 (Nyikos [13]). If there is an unbounded tower of cardinality b, then
there is a countable α2 space which is not an α1 space. �

Recall that by Proposition 2.4, it suffices to assume in Corollary 4.3 the existence
of any unbounded tower.

Next, we consider spaces of continuous functions. Consider C(X), the family
of continuous real-valued functions, as a subspace of the Tychonoff product RX ,
i.e., with the topology of pointwise convergence. Sakai [14] proved that X satisfies
S1(Γ,Γ) for clopen covers if and only if C(X) is an α2 space. The main result of [20]
is that C(X) is α1 if and only if X satisfies S1(Γ,Γ) for Borel covers (equivalently,
each Borel image of X in ωω is bounded).

The Scheepers Conjecture is that for subsets of R \Q, S1(Γ,Γ) for clopen covers
implies S1(Γ,Γ) for open covers. Dow [5] proved that in Laver’s model, every α2

space is α1. By Theorem 3.2, we can add the last item in the following list.

Corollary 4.4. In Laver’s model, the following are equivalent for sets of reals X:

(1) C(X) is an α2 space;
(2) C(X) is an α1 space;
(3) X satisfies S1(Γ,Γ) for clopen covers;
(4) X satisfies S1(Γ,Γ) for open covers;
(5) X satisfies S1(Γ,Γ) for Borel covers;
(6) |X| < b. �

On the other hand, Corollary 2.10 implies the following.

Corollary 4.5. If there is an unbounded tower, then there is a set of reals X such
that C(X) is α2 but not α1. �

Essentially, Corollary 4.3 is a special case of Corollary 2.10, whereas Corollary 4.5
is equivalent to Corollary 2.10.
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[13] P. Nyikos, Subsets of ωω and the Fréchet-Urysohn and αi-properties, Topology and its Ap-
plications 48 (1992), 91–116. MR1195504 (93k:54011)

[14] M. Sakai, The sequence selection properties of Cp(X), Topology and its Applications 154
(2007), 552–560. MR2280899 (2007k:54007)

[15] M. Scheepers, Combinatorics of open covers. I: Ramsey theory, Topology and its Applications
69 (1996), 31–62. MR1378387 (97h:90123)
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