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Abstract. We settle all problems concerning the additivity of the Gerlits–
Nagy property and related additivity numbers posed by Scheepers in his tribute
paper to Gerlits. We apply these results to compute the minimal number of
concentrated sets of reals (in the sense of Besicovitch) whose union, when
multiplied with a Gerlits–Nagy space, need not have Rothberger’s property.
We apply these methods to construct a large family of spaces whose product
with every Hurewicz space has Menger’s property. Our applications extend
earlier results of Babinkostova and Scheepers.

1. Introduction

We consider the preservation of several classic topological properties under
unions. These properties are best understood in the broader context of topological
selection principles. We thus provide, in the present section, a brief introduction.1

This framework was introduced by Scheepers in [14] to study, in a uniform manner,
a variety of properties introduced in different mathematical disciplines, since the
early 1920s, by Menger, Hurewicz, Rothberger, Gerlits and Nagy, and many others.

By space we mean an infinite topological space. Let X be a space. We say that
U is a cover of X if X =

⋃
U , but X /∈ U . Often, X is considered as a subspace

of another space Y , and in this case we always consider covers of X by subsets of
Y and require instead that no member of the cover contains X. Let O(X) be the
family of all countable open covers of X.2 Define the following subfamilies of O(X):
U ∈ Ω(X) if each finite subset of X is contained in some member of U , U ∈ Γ(X) if
U is infinite, and each element of X is contained in all but finitely many members
of U .

Some of the following statements may hold for families A and B of covers of X:
(
A
B

)
: Each member of A contains a member of B.

S1(A ,B): For each sequence 〈Un ∈ A : n ∈ N〉, there is a selection
〈Un ∈ Un : n ∈ N〉 such that {Un : n ∈ N} ∈ B.
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1This introduction is adopted from [11]. Extended introductions to this field are available in

[10,15,17].
2Our assumption that the considered covers are countable may be replaced by assuming that

all considered spaces are Lindelöf in all finite powers, e.g., subsets of the real line.
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Sfin(A ,B): For each sequence 〈Un ∈ A : n ∈ N〉, there is a selection of finite
sets 〈Fn ⊆ Un : n ∈ N〉 such that

⋃
n Fn ∈ B.

Ufin(A ,B): For each sequence 〈Un ∈ A : n ∈ N〉, where no Un contains a
finite subcover, there is a selection of finite sets 〈Fn ⊆ Un : n ∈ N〉 such
that {

⋃
Fn : n ∈ N} ∈ B.

We say, e.g., that X satisfies S1(O,O) if the statement S1(O(X),O(X)) holds.
This way, S1(O,O) is a property (or a class) of spaces, and similarly for all other
statements and families of covers. Each nontrivial property among these properties,
where A ,B range over O,Ω,Γ, is equivalent to one in Figure 1 [8, 14]. In this
diagram, an arrow denotes implication.
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b; b
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Figure 1. The Scheepers Diagram

The extremal properties in the Scheepers Diagram—
(
Ω
Γ

)
, S1(O,O), Ufin(O,Γ),

and Sfin(Ω,Ω)—where introduced (sometimes in another, equivalent form) in the
classic works of Gerlits and Nagy, Rothberger, Hurewicz, and Menger, respectively.
In addition, we indicate below each class P its critical cardinality non(P ) (the
minimal cardinality of a space not in the class), followed by its additivity number
add(P ) (the minimal number of spaces in the class with union outside the class).
When only upper and lower bounds are known, we write a lower bound. To save
space, we do not write the immediate upper bound, cf(non(P )). These cardinals are
all combinatorial cardinal characteristics of the continuum, details about which are
available in [5]. Here, M,N are the families of meager sets in R and Lebesgue null
sets in R, respectively. Complete computations of the mentioned additivity numbers
and bounds, with references, are available in [18]. That the additivity number of
S1(Γ,O) is ≥ add(N ) follows from Bartoszyński’s Theorem [18, Lemma 2.16] and
the first observation in [19, Appendix A].

Many additional—classic and new—properties are studied in relation to the
Scheepers Diagram. One of these is the Gerlits–Nagy property, to which we now
turn our attention.
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2. Additivity of the Gerlits–Nagy property

Definition 2.1. For classes P,Q of spaces, add(P,Q) is the minimal cardinal κ
such that some union of κ members of P is not in Q. add(P ) is add(P, P ).

A countable cover U of a space X is in (Γ)ג ,ג) read gimel, for brevity)3 if for each
(equivalently, some) bijective enumeration U = {Un : n ∈ N} there is an increasing
h ∈ NN such that, for each x ∈ X,

x ∈
h(n+1)−1⋃

k=h(n)

Uk

for all but finitely many n.
The property S1(Ω, (ג was introduced, in an equivalent form, by Gerlits and Nagy

in their seminal paper [7]. Building on results of Gerlits and Nagy and extending
them, Kočinac and Scheepers prove in [9] that

Ufin(O,Γ) ∩ S1(O,O) = S1(Ω, .(ג

This property is often referred to as the Gerlits–Nagy property [16].
The importance of the Gerlits–Nagy property S1(Ω, (ג in various contexts is

surveyed in Scheepers’s tribute to Gerlits [16]. In [16, § II.5], Scheepers poses
several problems concerning preservation of this property under unions. All these
problems of Scheepers are settled by the following two theorems.

Theorem 2.2.

add(S1(Ω, ,(ג S1(O,O)) = add(
(
Ω
Γ

)
, S1(O,O)) = cov(M).

Proof. Since
(
Ω
Γ

)
= S1(Ω,Γ) [7] implies S1(Ω, ,(ג

add(S1(Ω, ,(ג S1(O,O)) ≤ add(
(
Ω
Γ

)
, S1(O,O)) ≤ non(S1(O,O)) = cov(M).

It remains to prove that cov(M) ≤ add(S1(Ω, ,(ג S1(O,O)). We use the fact that
S1(O,O) = S1(Ω,O) [14].

Let κ < cov(M). Assume that, for each α < κ, Xα satisfies S1(Ω, ,(ג and
X =

⋃
α<κ Xα. Let Un ∈ Ω(X) for all n. Enumerate Un = {Un

m : m ∈ N}. For

each α, as Xα satisfies S1(Ω, ,(ג there are fα ∈ NN and an increasing hα ∈ NN such
that, for each x ∈ Xα,

x ∈
hα(n+1)−1⋃

k=hα(n)

Uk
fα(k)

for all but finitely many n.
Since κ < cov(M) ≤ d [5], there is an increasing h ∈ NN such that, for each

α < κ, the set

Iα = {n : [hα(n), hα(n+ 1)) ⊆ [h(n), h(n+ 1))}
is infinite [5]. For each α < κ, define

gα ∈
∏

n∈Iα

N
[h(n),h(n+1))

3In general, the gimel operator ג can be applied to any type of cover [13]. However, in the
present paper we apply it only to Γ, and omit the symbol Γ for brevity.
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by gα(n) = fα � [h(n), h(n+1)) for all n ∈ Iα. As κ < cov(M), by Lemma 2.4.2(3)
in [2], there is g ∈

∏
n N

[h(n),h(n+1)) guessing all functions gα; that is, for each α < κ,
g(n) = gα(n) for infinitely many n ∈ Iα [5]. Define f ∈ NN by f(k) = g(n)(k),
where n is the one with k ∈ [h(n), h(n+ 1)). Then {Un

f(n) : n ∈ N} ∈ O(X).

Indeed, let x ∈ X. Pick α < κ with x ∈ Xα. Pick m such that, for all n > m,

x ∈
⋃hα(n+1)−1

k=hα(n)
Uk
fα(k). Pick n ∈ Iα such that n > m and g(n) = gα(n). Then

x ∈
hα(n+1)−1⋃

k=hα(n)

Uk
fα(k) ⊆

h(n+1)−1⋃

k=h(n)

Uk
fα(k) =

h(n+1)−1⋃

k=h(n)

Uk
f(k). �

We can now compute the additivity number of the Gerlits–Nagy property.

Theorem 2.3. add(S1(Ω, ((ג = add(M).

Proof. As S1(Ω, (ג = Ufin(O,Γ) ∩ S1(O,O),

add(S1(Ω, ((ג ≤ non(S1(Ω, ((ג

= min{non(Ufin(O,Γ)), non(S1(O,O))}
= min{b, cov(M)} = add(M).

It remains to prove the other inequality. Let X =
⋃

α<κ Xα, with each Xα in
S1(Ω, ,(ג and α < add(M). By Theorem 2.2, X satisfies S1(O,O). As κ < b =
add(Ufin(O,Γ)) [18], X satisfies Ufin(O,Γ), too. Thus, X satisfies S1(Ω, .(ג �

The following definition and corollary will be used in the next section.

Definition 2.4. Let P,Q be classes of spaces, each containing all one-element

spaces and closed under homeomorphic images.
(
P,Q

)×
is the class of all spaces

X such that, for each Y in P , X × Y is in Q.
(
P, P

)×
is denoted P×.

Lemma 2.5. Let P,Q be classes of spaces. Then:

(1) add(P,Q) ≤ non(
(
P,Q

)×
) ≤ non(Q).

(2) add(Q) ≤ add(
(
P,Q

)×
) ≤ non(Q). �

Corollary 2.6.

non(
(
S1(Ω, ,(ג S1(O,O)

)×
) = non(

((
Ω
Γ

)
, S1(O,O)

)×
) = cov(M).

Proof. Theorem 2.2 and Lemma 2.5. �

Remark 2.7. The above proofs, verbatim, show that the results of the present
section also apply in the case where countable Borel covers are considered instead
of countable open covers.

3. Unions of concentrated sets

According to Besicovitch [3,4], a space X is concentrated if there is a countable
D ⊆ X such that for each open U ⊇ D, X \ U is countable. More generally, for a
cardinal κ, a space X is κ-concentrated if there is a countable D ⊆ X such that for
each open U ⊇ D, |X \ U | < κ. The classic examples of concentrated spaces are
Luzin sets. Modern examples are constructed from scales, following and extending
methods of Rothberger (e.g., [20]).
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Babinkostova and Scheepers proved in [1] that every concentrated metric space

belongs to
(
S1(Ω, ,(ג S1(O,O)

)×
.4 In other words, for each concentrated metric

space C, if Y satisfies Ufin(O,Γ) and S1(O,O), then C × Y satisfies S1(O,O). We
generalize this result in several ways.

Theorem 3.1.

(1) Let λ be a regular uncountable cardinal ≤ cov(M). The minimal num-
ber of λ-concentrated spaces, whose union is a regular space not satisfying(
S1(Ω, ,(ג S1(O,O)

)×
, is cov(M).

(2) The minimal number of cov(M)-concentrated spaces, whose union is a reg-

ular space not satisfying
(
S1(Ω, ,(ג S1(O,O)

)×
, is cf(cov(M)).

Proof. We prove both statements simultaneously.
There is a set of real numbers, of cardinality cov(M), that does not satisfy

S1(O,O) [8]. Thus, the minimal number sought after is at most cov(M) for (1)
and at most cf(cov(M)) for (2).

Let λ be a regular cardinal ≤ cov(M) for (1), and cov(M) for (2). Let κ <
cov(M) for (1), and < cf(cov(M)) for (2).

Let C =
⋃

α<κ Cα be a regular space, with each Cα λ-concentrated on some
countable set Dα ⊆ Cα. Let Y be a space satisfying S1(Ω, .(ג We must prove that
C × Y satisfies S1(O,O).

Let K be a compact space containing C as a subspace. Let Un, n ∈ N, be
countable covers of C × Y by sets open in K × Y . Let D =

⋃
α<κ Dα. As |D| =

κ < cov(M), we have by Corollary 2.6 that D × Y satisfies S1(O,O). Thus, pick
Un ∈ Un, n ∈ N, such that D × Y ⊆ U :=

⋃
n Un.

The Hurewicz property Ufin(O,Γ) is preserved by products with compact spaces,
moving to closed subspaces, and continuous images [8]. Since Y satisfies Ufin(O,Γ)
and K is compact, K × Y satisfies Ufin(O,Γ). Thus, so does K × Y \ U . It follows
that the projection H of K×Y \U on the first coordinate satisfies Ufin(O,Γ). Note
that

(K \H)× Y ⊆ U.

The argument in the proof of [8, Theorem 5.7] generalizes to regular spaces, to
show that for H,F disjoint subspaces of a regular space K with H Ufin(O,Γ), and
F Fσ, there is a Gδ set G ⊆ K such that G ⊇ F and H ∩G = ∅.

For each α < κ, let Gα be a Gδ subset of K such that Dα ⊆ Gα and H∩Gα = ∅.
As Cα is λ-concentrated on Dα, Cα \Gα is a countable union of sets of cardinality
< λ.

As λ has uncountable cofinality, |Cα \Gα| < λ. Then

C ∩H ⊆ C \
⋃

α<κ

Gα ⊆
⋃

α<κ

Cα \Gα.

By splitting to cases λ < cov(M) and λ = cov(M), one sees that |C∩H| < cov(M)
in both scenarios (1) and (2). Thus, by Corollary 2.6 again, (C ∩H)× Y satisfies
S1(O,O), and there are Vn ∈ Un, n ∈ N, such that (C ∩ H) × Y ⊆

⋃
n Vn. In

summary,

C × Y ⊆ ((K \H)× Y ) ∪ ((C ∩H)× Y ) ⊆
⋃

n∈N

(Un ∪ Vn).

4This is a special case of their Theorem 11(3). Their general result will be explained and
generalized further in Theorem 3.3 and the discussion preceding it.
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We have picked two sets (instead of one) from each cover Un, but this is fine [6] (cf.
[19, Appendix A]). �

Definition 3.2. Let κ be an infinite cardinal number. Let C0(κ) be the family of
regular spaces of cardinality < κ. For successor ordinals α + 1, let C ∈ Cα+1(κ) if
C is regular, and:

(1) either there is a countable D ⊆ C with C \ U ∈ Cα(κ) for all open U ⊇ D
(2) or C is a union of less than cf(κ) members of Cα(κ).

For limit ordinals α, let Cα(κ) =
⋃

β<α Cβ(κ).

Modulo a metrizability assumption, the Babinkostova–Scheepers Theorem [1,

Theorem 11(3)] asserts that that every member of Cℵ0
(2) is in

(
S1(Ω, ,(ג S1(O,O)

)×
.

We use our methods to prove the following, stronger result.
For the following theorem, we recall from the Scheepers Diagram that

add(N ) ≤ add(S1(O,O)) ≤ cf(cov(M)).

Theorem 3.3. The product of each member of Cadd(N )(cov(M)) with every mem-
ber of S1(Ω, (ג satisfies S1(O,O).

Proof. We prove the stronger assertion, with add(S1(O,O)) instead of add(N ).
For brevity, let Cα := Cα(cov(M)) for all α. By induction on α ≤ add(S1(O,O)),

we prove that

Cα ⊆
(
S1(Ω, ,(ג S1(O,O)

)×
.

The proof is similar to that of Theorem 3.1, so we omit some of the explanations.
The case α = 0 is treated in Corollary 2.6. For limit α, there is nothing to prove.
α + 1: Let C ∈ Cα+1. Let K be a compact space containing C as a subspace.

Let Y be a space satisfying S1(Ω, .(ג
First case: There is a countable D ⊆ C with C \ U ∈ Cα for all open U ⊇ D.

Given Un ∈ O(C × Y ), pick Un ∈ Un, n ∈ N, such that D × Y ⊆ U :=
⋃

n Un. Let
H be the projection of K × Y \ U on the first coordinate. Let G be a Gδ subset
of K such that D ⊆ G and H ∩ G = ∅. C \G is a countable union of elements of

Cα. By the induction hypothesis and Corollary 2.6, C \G ∈
(
S1(Ω, ,(ג S1(O,O)

)×
.

Then (C \ G) × Y satisfies S1(O,O), and there are Vn ∈ Un, n ∈ N, such that
(C ∩H)× Y ⊆ (C \G)× Y ⊆

⋃
n Vn. In summary,

C × Y ⊆ ((K \H)× Y ) ∪ ((C ∩H)× Y ) ⊆
⋃

n∈N

(Un ∪ Vn).

Second case: There are κ < cf(cov(M)) and Cβ ∈ Cα, β < κ such that C =⋃
β<κ Cβ. For each β < κ with Cβ a union of less than cf(cov(M)) members of

C<α :=
⋃

γ<α

Cγ ,

we may take all elements in all of these unions instead of the original Cβ’s. Thus,
we may assume that for each Cβ there is a countable (possibly empty) Dβ ⊆ Cβ

with

Cβ \ U ∈ C<α

for all open U ⊇ Dβ . Let D =
⋃

β<κ Dβ . Then |D| < cov(M).
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Given Un ∈ O(C × Y ), pick Un ∈ Un, n ∈ N, such that D × Y ⊆ U :=
⋃

n Un.
Let H be the projection of K × Y \ U on the first coordinate. For each β < κ, let
Gβ be a Gδ subset of K such that Dβ ⊆ Gβ and H ∩Gβ = ∅. Let G =

⋃
β<κ Gβ.

Now,

C ∩H ⊆
⋃

β<κ

Cβ \Gβ,

where each Cβ \ Gβ is a countable union of elements of C<α. All in all, we arrive
at a union of a family F ⊆ C<α with |F| < cf(cov(M)), and we must show that⋃
F ∈

(
S1(Ω, ,(ג S1(O,O)

)×
. Indeed, for each γ < α,

Xγ :=
⋃

(F ∩ Cγ) ∈ Cγ+1 ⊆ Cα.

By the induction hypothesis, Xγ ∈
(
S1(Ω, ,(ג S1(O,O)

)×
. By Corollary 2.6, since

α < add(S1(O,O)),
⋃

F =
⋃

γ<α

Xγ ∈
(
S1(Ω, ,(ג S1(O,O)

)×
.

It follows that (C ∩H)× Y ⊆ (C \G)× Y ⊆
⋃

n Vn for some Vn ∈ Un, n ∈ N, and
C × Y ⊆

⋃
n∈N

(Un ∪ Vn). �

4. Spaces whose product with Hurewicz spaces are Menger

A space is σ-compact if it is a union of countably many compact spaces.

Definition 4.1. For a cardinal λ, Kλ is the family of all spaces that are unions of
less than λ compact spaces. A space X is Kλ-concentreted if there is a σ-compact
subset D ⊆ X such that X \ U ∈ Kλ for each open U ⊇ D.

Babinkostova and Scheepers proved in [1, Theorem 11(2)] that, for each con-
centrated metric space C, if Y has Hurewicz’s property Ufin(O,Γ), then C × Y
has Menger’s property Sfin(O,O).5 We use the methods of the previous section
to generalize this result. Since the proofs are almost a literal repetition of the
corresponding ones in the previous section, we omit some of the details.

The following is immediate from the definitions.

Lemma 4.2 (Folklore). add(Ufin(O,Γ), Sfin(O,O)) = d.

Lemma 4.3. Kd ⊆
(
Ufin(O,Γ), Sfin(O,O)

)×
.

Proof. Each compact space is in Ufin(O,Γ)×. Apply Lemma 4.2. �

Theorem 4.4.

(1) Let λ be a regular uncountable cardinal ≤ d. The minimal number of Kλ-
concentrated spaces, whose union is a regular space not satisfying

(
Ufin(O,

Γ), Sfin(O,O)
)×

, is d.
(2) The minimal number of Kd-concentrated spaces, whose union is a regular

space not satisfying
(
Ufin(O,Γ), Sfin(O,O)

)×
, is cf(d).

5Here, too, the Babinkostova–Scheepers Theorem is more general. Their full result is general-
ized in our forthcoming Theorem 4.6.
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Proof. There is a set of real numbers of cardinality d that does not satisfy Sfin(O,O)
[8]. Thus, the minimal number sought after is at most d for (1) and at most cf(d)
for (2).

Let λ be a regular cardinal ≤ d for (1), and d for (2). Let κ < d for (1), and
< cf(d) for (2).

Let C =
⋃

α<κ Cα be a regular space, with each Cα Kλ-concentrated on some
σ-compact set Dα ⊆ Cα. Let Y be a space satisfying Ufin(O,Γ). We must prove
that C × Y satisfies Sfin(O,O).

Let K be a compact space containing C as a subspace. Let Un, n ∈ N, be
countable covers of C × Y by sets open in K × Y . Let D =

⋃
α<κ Dα. As D ∈ Kd,

we have by Lemma 4.3 that D × Y satisfies Sfin(O,O). Thus, pick finite Fn ∈ Un,
n ∈ N, such that D × Y ⊆ U :=

⋃
n

⋃
Fn.

Since Y satisfies Ufin(O,Γ) and K is compact, the projection H of K×Y \U on
the first coordinate satisfies Ufin(O,Γ). Note that

(K \H)× Y ⊆ U.

For each α < κ, let Gα be a Gδ subset of K such that Dα ⊆ Gα and H ∩Gα = ∅.
As Cα is Kλ-concentrated on Dα, Cα \Gα is a countable union of elements of Kλ.

As λ has uncountable cofinality, Cα \Gα ∈ Kλ. Then

C ∩H ⊆ C \
⋃

α<κ

Gα ⊆ C̃ :=
⋃

α<κ

Cα \Gα.

By splitting to cases λ < d and λ = d, one sees that C̃ ∈ Kd in both scenarios (1)

and (2). Thus, by Lemma 4.3 again, C̃ × Y satisfies Sfin(O,O), and there are finite

F̃n ∈ Un, n ∈ N, such that C̃ × Y ⊆
⋃

n

⋃
F̃n. Thus,

C × Y ⊆ ((K \H)× Y ) ∪ ((C ∩H)× Y )

⊆ ((K \H)× Y ) ∪ (C̃ × Y )

⊆
⋃

n∈N

⋃
(Fn ∪ F̃n). �

Definition 4.5. Let κ be an infinite cardinal number. Let K0(κ) be the family of
regular spaces in Kκ. For successor ordinals α+1, let C ∈ Kα+1(κ) if C is regular,
and:

(1) either there is a σ-compact D ⊆ C with C \U ∈ Kα(κ) for all open U ⊇ D
(2) or C is a union of less than cf(κ) members of Kα(κ).

For limit ordinals α, let Kα(κ) =
⋃

β<α Kβ .

For every α the class Kα(κ) is closed under products with compact regular spaces.
In particular, the classes Kα(κ) are much wider than Cα(κ). Babinkostova and
Scheepers prove, essentially, that every member of Cℵ0

(2) is in

(
Ufin(O,Γ), Sfin(O,O)

)×

(see [1]).

Theorem 4.6. The product of each member of Kmax{b,g}(d) with every member of
Ufin(O,Γ) satisfies Sfin(O,O).
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Proof. We recall from the Scheepers Diagram that max{b, g} ≤ add(Sfin(O,O)) ≤
cf(d). A combination of the arguments in the proofs of Theorems 4.4 and 3.3 show
that

Kadd(Sfin(O,O))(d) ⊆
(
Ufin(O,Γ), Sfin(O,O)

)×
.

Since we have already presented three proofs using these methods, we leave the
verification to the reader. �
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