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9. 12.01.06

Definition 9.1. We say that a topological space 〈X,O〉 satisfies S1(A,B) iff for every se-

quence 〈Un ∈ A | n ∈ N〉, there are 〈Un ∈ Un | n ∈ N〉 such that {Un | n ∈ N} ∈ B.

Definition 9.2. We say that a topological space 〈X,O〉 satisfies Sfin(A,B) iff for every

sequence 〈Un ∈ A | n ∈ N〉, there are 〈Fn ∈ [Un]<ω | n ∈ N〉 such that
⋃

n∈N
Fn ∈ B.

Definition 9.3. We say that a topological space 〈X,O〉 satisfies Ufin(A,B) iff for every

sequence 〈Un ∈ A | n ∈ N〉 such that Un does not contain a finite cover for all n ∈ N, there

are 〈Fn ∈ [Un]<ω | n ∈ N〉 such that {
⋃
Fn | n ∈ N} ∈ B.

We will only be interested in A,B with A,B ⊆ P(O) and
⋃

U = X for all U ∈ A ∪ B.

Observation 9.4. Suppose 〈X,O〉 is a topological space, and O denotes the family of all

open covers of X.

Then X |= Sfin(A,O) iff X |= Ufin(A,O).

Proof. Same proof as in Observation 5.15. �

Observation 9.5 (monotonicity). If A1 ⊆ A2 and B1 ⊆ B2 then π(A2,B1) ⇒ π(A1,B1)

and π(A2,B1) ⇒ π(A2,B2), where π ∈ {S1, Sfin, Ufin}.

Lemma 9.6. Suppose 〈X,O〉 is a Lindelöf topological space, B ⊆ P(O), and let Γ := ΓX

denote the family of all γ-covers of X.29

Then X |= Ufin(Γ,B) iff for all A, a family of open covers of X, X |= Ufin(A,B).

Proof. We would like to prove:

∀A.X |= Ufin(A,B) ⇒ X |= Ufin(Γ,B) ⇒ X |= Ufin(O,B) ⇒ ∀A.X |= Ufin(A,B).

But the only non-trivial implication is X |= Ufin(Γ,B) ⇒ X |= Ufin(O,B).

Assume 〈Un ∈ O | n ∈ N〉 are given and no Un contains a finite cover. Fix n ∈ N. By

Lindelöfness, we may assume an enumeration Un = {Uk
n | k ∈ N}. Let Vn := {V k

n | k ∈ N}

where V k
n :=

⋃
m≤k Um

n for all k ∈ N. Since Un contains no finite cover, we know that Vn ∈ Γ.

By X |= Ufin(Γ,B), there exists f : N → [N]<ω such that if we let Fn := {V k
n | k ∈ f(n)}

for all n ∈ N, then {
⋃
Fn | n ∈ N} ∈ B.

Define g : N → [N]<ω by letting g(n) := {m ∈ N | ∃k ∈ f(n).m ≤ k} for all n ∈ N. It is

evident that
⋃
Gn =

⋃
Fn whenever n ∈ N and Gn := {Uk

n | k ∈ g(n)} ∈ [Un]<ω. �

Corollary 9.7. Suppose 〈X,O〉 is a Lindelöf topological space. Let Γ := ΓX .

Then X |= Sfin(O,O) iff X |= Ufin(O,O) iff X |= Ufin(Γ,O)

29Recall Definition 5.8.
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Corollary 9.8. Suppose 〈X,O〉 is a Lindelöf topological space. Let Γ := ΓX .

Then X |= Ufin(O, Γ) iff X |= Ufin(Γ, Γ).

Proposition 9.9. S1(O, Γ) is trivial

Proof. Because it implies Sfin(O, Γ). Now recall Observation 5.14. �

The same trick of the proof of Theorem 9.6 will prove that S1(Γ, Γ) implies Ufin(O, Γ) and

that S1(Γ,O) implies Sfin(O,O), thus we obtain the following diagram of implications:

Ufin(O, Γ) Sfin(O,O)

S1(Γ, Γ) S1(Γ,O)

S1(O,O)

-

-

6 6

6

Theorem 9.10 (Scheepers-Just-Miller-Szeptycki). Sfin(Γ, Γ) = S1(Γ, Γ).

Proof. Suppose 〈X,O〉 is a topological space, Γ := ΓX , and X |= Sfin(Γ, Γ).

Assume 〈Un ∈ Γ | n ∈ N〉 are given. By the hypothesis, there exists 〈Fn ∈ [Un]<ω | n ∈ N〉

such that
⋃

n∈N
Fn ∈ Γ. By Observation 5.9, if we pick 〈Un ∈ Fn | n ∈ N〉, then also

{Un | n ∈ N} ∈ Γ and we are almost done.

In order to be done, we need to somehow ensure that we indeed selected an element

Un ∈ Un for all n ∈ N, but this wouldn’t happen in the above approach if there exists empty

Fn’s. To complete the proof, we need the following. �

We now generalize the idea of Observation 7.13.

Lemma 9.11. Suppose 〈X,O〉 is a topological space, then X |= S1(Γ, Γ) iff for all 〈Un ∈ Γ |

n ∈ N〉 there exists 〈Fn ∈ [Un]≤1 | n ∈ N〉 such that {U | ∃n ∈ N(U ∈ Fn)} ∈ Γ.

Proof. Suppose 〈Un ∈ Γ | n ∈ N〉 are given. By Observation 5.9, we may assume an

enumeration Un = {Uk
n | k ∈ N} for all n ∈ N.

For each n ∈ N, let Vn := {Uk
1 ∩ ... ∩ Uk

n | k ∈ N}. Clearly, 〈Vn | n ∈ N〉 is a sequence of

γ-covers, so by the hypothesis we find Fn ∈ [Vn]≤1 for each n ∈ N.

Let f : N → N ∪ {⋆} be the function such that for all n ∈ N, f(n) = {⋆} if Fn = ∅, and

Fn = {U
f(n)
1 ∩ ... ∩ U

f(n)
n }, otherwise. Since {U | ∃n ∈ N(U ∈ Fn)} ∈ Γ, Im(f) is infinite,
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and the function f̃ : N → N is well-defined:

f(n) := {f(m) | m = min{k ≥ n | f(k) 6= ⋆}.

For n ∈ N, put Un := U
f̃(n)
n . It is now obvious that 〈Un ∈ Un | n ∈ N〉 is a witness to

S1(Γ, Γ).30 �

Observation 9.12. Assume 〈X,O〉 is a topological space, and 〈Un | n ∈ N〉 is a sequence

of open sets such that {n ∈ N | x 6∈ Un} is finite for all x ∈ X.

If X 6= Un for all n ∈ N , then U := {Un | n ∈ N} is an infinite set, and in particular

U ∈ Γ.

Proof. Suppose not, then by a trivial pigeonhole argument, there exists some m ∈ N and

infinite I ⊆ N such that Un = Um for all n ∈ I. Since Un 6= X, we may pick x ∈ X \Um and

conclude that I ⊆ {n ∈ N | x 6∈ Un}, yielding a contradiction to the finiteness hypothesis. �

30More accurately, it is a witness to an instance of S1(Γ,Γ), because the family 〈Un | n ∈ N〉 were already
given.


