

## 9. 12.01.06

**Definition 9.1.** We say that a topological space  $\langle X, O \rangle$  satisfies  $S_1(\mathcal{A}, \mathcal{B})$  iff for every sequence  $\langle \mathcal{U}_n \in \mathcal{A} \mid n \in \mathbb{N} \rangle$ , there are  $\langle U_n \in \mathcal{U}_n \mid n \in \mathbb{N} \rangle$  such that  $\{U_n \mid n \in \mathbb{N}\} \in \mathcal{B}$ .

**Definition 9.2.** We say that a topological space  $\langle X, O \rangle$  satisfies  $S_{fin}(\mathcal{A}, \mathcal{B})$  iff for every sequence  $\langle \mathcal{U}_n \in \mathcal{A} \mid n \in \mathbb{N} \rangle$ , there are  $\langle \mathcal{F}_n \in [\mathcal{U}_n]^{<\omega} \mid n \in \mathbb{N} \rangle$  such that  $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \mathcal{B}$ .

**Definition 9.3.** We say that a topological space  $\langle X, O \rangle$  satisfies  $U_{fin}(\mathcal{A}, \mathcal{B})$  iff for every sequence  $\langle \mathcal{U}_n \in \mathcal{A} \mid n \in \mathbb{N} \rangle$  such that  $\mathcal{U}_n$  does not contain a finite cover for all  $n \in \mathbb{N}$ , there are  $\langle \mathcal{F}_n \in [\mathcal{U}_n]^{<\omega} \mid n \in \mathbb{N} \rangle$  such that  $\{\bigcup \mathcal{F}_n \mid n \in \mathbb{N}\} \in \mathcal{B}$ .

We will only be interested in  $\mathcal{A}, \mathcal{B}$  with  $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(O)$  and  $\bigcup U = X$  for all  $U \in \mathcal{A} \cup \mathcal{B}$ .

**Observation 9.4.** Suppose  $\langle X, O \rangle$  is a topological space, and  $\mathcal{O}$  denotes the family of all open covers of  $X$ .

Then  $X \models S_{fin}(\mathcal{A}, \mathcal{O})$  iff  $X \models U_{fin}(\mathcal{A}, \mathcal{O})$ .

*Proof.* Same proof as in Observation 5.15.  $\square$

**Observation 9.5** (monotonicity). If  $\mathcal{A}_1 \subseteq \mathcal{A}_2$  and  $\mathcal{B}_1 \subseteq \mathcal{B}_2$  then  $\pi(\mathcal{A}_2, \mathcal{B}_1) \Rightarrow \pi(\mathcal{A}_1, \mathcal{B}_1)$  and  $\pi(\mathcal{A}_2, \mathcal{B}_1) \Rightarrow \pi(\mathcal{A}_2, \mathcal{B}_2)$ , where  $\pi \in \{S_1, S_{fin}, U_{fin}\}$ .

**Lemma 9.6.** Suppose  $\langle X, O \rangle$  is a Lindelöf topological space,  $\mathcal{B} \subseteq \mathcal{P}(O)$ , and let  $\Gamma := \Gamma_X$  denote the family of all  $\gamma$ -covers of  $X$ .<sup>29</sup>

Then  $X \models U_{fin}(\Gamma, \mathcal{B})$  iff for all  $\mathcal{A}$ , a family of open covers of  $X$ ,  $X \models U_{fin}(\mathcal{A}, \mathcal{B})$ .

*Proof.* We would like to prove:

$$\forall \mathcal{A}. X \models U_{fin}(\mathcal{A}, \mathcal{B}) \Rightarrow X \models U_{fin}(\Gamma, \mathcal{B}) \Rightarrow X \models U_{fin}(\mathcal{O}, \mathcal{B}) \Rightarrow \forall \mathcal{A}. X \models U_{fin}(\mathcal{A}, \mathcal{B}).$$

But the only non-trivial implication is  $X \models U_{fin}(\Gamma, \mathcal{B}) \Rightarrow X \models U_{fin}(\mathcal{O}, \mathcal{B})$ .

Assume  $\langle \mathcal{U}_n \in \mathcal{O} \mid n \in \mathbb{N} \rangle$  are given and no  $\mathcal{U}_n$  contains a finite cover. Fix  $n \in \mathbb{N}$ . By Lindelöfness, we may assume an enumeration  $\mathcal{U}_n = \{U_n^k \mid k \in \mathbb{N}\}$ . Let  $\mathcal{V}_n := \{V_n^k \mid k \in \mathbb{N}\}$  where  $V_n^k := \bigcup_{m \leq k} U_n^m$  for all  $k \in \mathbb{N}$ . Since  $\mathcal{U}_n$  contains no finite cover, we know that  $\mathcal{V}_n \in \Gamma$ .

By  $X \models U_{fin}(\Gamma, \mathcal{B})$ , there exists  $f : \mathbb{N} \rightarrow [\mathbb{N}]^{<\omega}$  such that if we let  $\mathcal{F}_n := \{V_n^k \mid k \in f(n)\}$  for all  $n \in \mathbb{N}$ , then  $\{\bigcup \mathcal{F}_n \mid n \in \mathbb{N}\} \in \mathcal{B}$ .

Define  $g : \mathbb{N} \rightarrow [\mathbb{N}]^{<\omega}$  by letting  $g(n) := \{m \in \mathbb{N} \mid \exists k \in f(n). m \leq k\}$  for all  $n \in \mathbb{N}$ . It is evident that  $\bigcup \mathcal{G}_n = \bigcup \mathcal{F}_n$  whenever  $n \in \mathbb{N}$  and  $\mathcal{G}_n := \{U_n^k \mid k \in g(n)\} \in [\mathcal{U}_n]^{<\omega}$ .  $\square$

**Corollary 9.7.** Suppose  $\langle X, O \rangle$  is a Lindelöf topological space. Let  $\Gamma := \Gamma_X$ .

Then  $X \models S_{fin}(\mathcal{O}, \mathcal{O})$  iff  $X \models U_{fin}(\mathcal{O}, \mathcal{O})$  iff  $X \models U_{fin}(\Gamma, \mathcal{O})$

---

<sup>29</sup>Recall Definition 5.8.

**Corollary 9.8.** *Suppose  $\langle X, O \rangle$  is a Lindelöf topological space. Let  $\Gamma := \Gamma_X$ .*

*Then  $X \models U_{fin}(\mathcal{O}, \Gamma)$  iff  $X \models U_{fin}(\Gamma, \Gamma)$ .*

**Proposition 9.9.**  *$S_1(\mathcal{O}, \Gamma)$  is trivial*

*Proof.* Because it implies  $S_{fin}(\mathcal{O}, \Gamma)$ . Now recall Observation 5.14.  $\square$

The same trick of the proof of Theorem 9.6 will prove that  $S_1(\Gamma, \Gamma)$  implies  $U_{fin}(\mathcal{O}, \Gamma)$  and that  $S_1(\Gamma, \mathcal{O})$  implies  $S_{fin}(\mathcal{O}, \mathcal{O})$ , thus we obtain the following diagram of implications:

$$\begin{array}{ccc}
 U_{fin}(\mathcal{O}, \Gamma) & \longrightarrow & S_{fin}(\mathcal{O}, \mathcal{O}) \\
 \uparrow & & \uparrow \\
 S_1(\Gamma, \Gamma) & \longrightarrow & S_1(\Gamma, \mathcal{O}) \\
 \uparrow & & \uparrow \\
 S_1(\mathcal{O}, \mathcal{O}) & & 
 \end{array}$$

**Theorem 9.10** (Scheepers-Just-Miller-Szeptycki).  $S_{fin}(\Gamma, \Gamma) = S_1(\Gamma, \Gamma)$ .

*Proof.* Suppose  $\langle X, O \rangle$  is a topological space,  $\Gamma := \Gamma_X$ , and  $X \models S_{fin}(\Gamma, \Gamma)$ .

Assume  $\langle \mathcal{U}_n \in \Gamma \mid n \in \mathbb{N} \rangle$  are given. By the hypothesis, there exists  $\langle \mathcal{F}_n \in [\mathcal{U}_n]^{<\omega} \mid n \in \mathbb{N} \rangle$  such that  $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n \in \Gamma$ . By Observation 5.9, if we pick  $\langle U_n \in \mathcal{F}_n \mid n \in \mathbb{N} \rangle$ , then also  $\{U_n \mid n \in \mathbb{N}\} \in \Gamma$  and we are almost done.

In order to be done, we need to somehow ensure that we indeed selected an element  $U_n \in \mathcal{U}_n$  for all  $n \in \mathbb{N}$ , but this wouldn't happen in the above approach if there exists empty  $\mathcal{F}_n$ 's. To complete the proof, we need the following.  $\square$

We now generalize the idea of Observation 7.13.

**Lemma 9.11.** *Suppose  $\langle X, O \rangle$  is a topological space, then  $X \models S_1(\Gamma, \Gamma)$  iff for all  $\langle \mathcal{U}_n \in \Gamma \mid n \in \mathbb{N} \rangle$  there exists  $\langle \mathcal{F}_n \in [\mathcal{U}_n]^{\leq 1} \mid n \in \mathbb{N} \rangle$  such that  $\{U \mid \exists n \in \mathbb{N}(U \in \mathcal{F}_n)\} \in \Gamma$ .*

*Proof.* Suppose  $\langle \mathcal{U}_n \in \Gamma \mid n \in \mathbb{N} \rangle$  are given. By Observation 5.9, we may assume an enumeration  $\mathcal{U}_n = \{U_n^k \mid k \in \mathbb{N}\}$  for all  $n \in \mathbb{N}$ .

For each  $n \in \mathbb{N}$ , let  $\mathcal{V}_n := \{U_1^k \cap \dots \cap U_n^k \mid k \in \mathbb{N}\}$ . Clearly,  $\langle \mathcal{V}_n \mid n \in \mathbb{N} \rangle$  is a sequence of  $\gamma$ -covers, so by the hypothesis we find  $\mathcal{F}_n \in [\mathcal{V}_n]^{\leq 1}$  for each  $n \in \mathbb{N}$ .

Let  $f : \mathbb{N} \rightarrow \mathbb{N} \cup \{\star\}$  be the function such that for all  $n \in \mathbb{N}$ ,  $f(n) = \{\star\}$  if  $\mathcal{F}_n = \emptyset$ , and  $\mathcal{F}_n = \{U_1^{f(n)} \cap \dots \cap U_n^{f(n)}\}$ , otherwise. Since  $\{U \mid \exists n \in \mathbb{N}(U \in \mathcal{F}_n)\} \in \Gamma$ ,  $\text{Im}(f)$  is infinite,

and the function  $\tilde{f} : \mathbb{N} \rightarrow \mathbb{N}$  is well-defined:

$$f(n) := \{f(m) \mid m = \min\{k \geq n \mid f(k) \neq \star\}\}.$$

For  $n \in \mathbb{N}$ , put  $U_n := U_n^{\tilde{f}(n)}$ . It is now obvious that  $\langle U_n \in \mathcal{U}_n \mid n \in \mathbb{N} \rangle$  is a witness to  $S_1(\Gamma, \Gamma)$ .<sup>30</sup>  $\square$

**Observation 9.12.** *Assume  $\langle X, O \rangle$  is a topological space, and  $\langle U_n \mid n \in \mathbb{N} \rangle$  is a **sequence** of open sets such that  $\{n \in \mathbb{N} \mid x \notin U_n\}$  is finite for all  $x \in X$ .*

*If  $X \neq U_n$  for all  $n \in \mathbb{N}$ , then  $\mathcal{U} := \{U_n \mid n \in \mathbb{N}\}$  is an infinite **set**, and in particular  $\mathcal{U} \in \Gamma$ .*

*Proof.* Suppose not, then by a trivial pigeonhole argument, there exists some  $m \in \mathbb{N}$  and infinite  $I \subseteq \mathbb{N}$  such that  $U_n = U_m$  for all  $n \in I$ . Since  $U_n \neq X$ , we may pick  $x \in X \setminus U_m$  and conclude that  $I \subseteq \{n \in \mathbb{N} \mid x \notin U_n\}$ , yielding a contradiction to the finiteness hypothesis.  $\square$

---

<sup>30</sup>More accurately, it is a witness to an instance of  $S_1(\Gamma, \Gamma)$ , because the family  $\langle U_n \mid n \in \mathbb{N} \rangle$  were already given.