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Definition 9.1. We say that a topological space (X, O) satisfies S1(A, B) iff for every se-
quence (U, € A|n € N), there are (U, € U, | n € N) such that {U, | n € N} € B.

Definition 9.2. We say that a topological space (X, O) satisfies Sy;, (A, B) iff for every
sequence (U, € A | n € N), there are (F, € [U,|<* | n € N) such that | _F. € B.

neN

Definition 9.3. We say that a topological space (X, O) satisfies Uy, (A, B) iff for every
sequence (U, € A | n € N) such that U, does not contain a finite cover for all n € N, there
are (F, € [U,]<* | n € N) such that {{JF, | n € N} € B.

We will only be interested in A, B with A,B C P(O) and YU = X for all U € AU B.

Observation 9.4. Suppose (X,0) is a topological space, and O denotes the family of all
open covers of X.

Proof. Same proof as in Observation 5.15. O

Observation 9.5 (monotonicity). If A; C Ay and By C By then w(As, By) = 7(Ay, Bi)
and w(Asg, B1) = m( Az, Ba), where m € {S1, Stin, Usin}-

Lemma 9.6. Suppose (X,0) is a Lindeldf topological space, B C P(O), and let T := I'x
denote the family of all v-covers of X .?
Then X = Uy (T, B) iff for all A, a family of open covers of X, X = Ugin(A, B).

Proof. We would like to prove:

But the only non-trivial implication is X |= Uyin(T, B) = X |= Upin (O, B).

Assume (U, € O | n € N) are given and no U,, contains a finite cover. Fix n € N. By
Lindel6fness, we may assume an enumeration U,, = {UF | k € N}. Let V, :== {V* | k € N}
where VF .=, ., Um for all k € N. Since U, contains no finite cover, we know that V,, € T".

By X |= Usin(T, B), there exists f : N — [N]<“ such that if we let F, := {V* | k € f(n)}
for all n € N, then {{JF,, | n € N} € B.

Define g : N — [N]<¥ by letting g(n) :=={m € N | 3k € f(n).m < k} for all n € N. It is
evident that |JG, = |J F, whenever n € N and G,, := {U* | k € g(n)} € [U,]=~. O

Corollary 9.7. Suppose (X,O) is a Lindeldf topological space. Let I' :=T'x.

29Recall Definition 5.8.
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Corollary 9.8. Suppose (X,0) is a Lindeldf topological space. Let T' :=T'x.
Then X | Usin(O,T) iff X = Upin(T, T).

Proposition 9.9. S1(O,I") is trivial
Proof. Because it implies Sy, (O,I'). Now recall Observation 5.14. O

The same trick of the proof of Theorem 9.6 will prove that S;(I',I") implies Uy, (O, I') and
that S;(I', O) implies S}, (O, O), thus we obtain the following diagram of implications:

Upin(O,T) —— S (0, 0)

S1(I,T) S1(T,0)

51(0,0)
Theorem 9.10 (Scheepers-Just-Miller-Szeptycki). Sy, (I, ') = Si(I', ).

Proof. Suppose (X, O) is a topological space, I' := I'x, and X |= Sp;, (I, T).

Assume (U, € I' | n € N) are given. By the hypothesis, there exists (F,, € [U,]<¥ | n € N)
such that (J,.yFn € I'. By Observation 5.9, if we pick (U, € F, | n € N), then also
{U, | n € N} € T and we are almost done.

In order to be done, we need to somehow ensure that we indeed selected an element
U, € U, for all n € N, but this wouldn’t happen in the above approach if there exists empty
Fn’s. To complete the proof, we need the following. U

We now generalize the idea of Observation 7.13.

Lemma 9.11. Suppose (X, O) is a topological space, then X = Sy(I',T') iff for all (U, € T |
n € N) there exists (F, € [U,)=' | n € N) such that {U | In e N(U € F,)} €T.

Proof. Suppose (U, € T' | n € N) are given. By Observation 5.9, we may assume an
enumeration U,, = {UF | k € N} for all n € N,

For each n € N, let V,, :== {UF N ...NU* | k € N}. Clearly, (V, | n € N) is a sequence of
y-covers, so by the hypothesis we find F,, € [V,]=! for each n € N.

Let f : N — NU {x} be the function such that for all n € N, f(n) = {x} if F,, = 0, and
Fo = {UI™ 0. n U™}, otherwise. Since {U | 3n € N(U € F,)} € T, Im(f) is infinite,
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and the function f : N — N is well-defined:
fn) :={f(m) | m=min{k >n | f(k) # }.

For n € N, put U, := U{™. Tt is now obvious that (U, € U, | n € N) is a witness to
Si(T,T).% O

Observation 9.12. Assume (X, O) is a topological space, and (U, | n € N) is a sequence
of open sets such that {n € N | x & U,} is finite for all x € X.

If X # U, for alln € N, then U := {U, | n € N} is an infinite set, and in particular
Uerl.

Proof. Suppose not, then by a trivial pigeonhole argument, there exists some m € N and
infinite I C N such that U,, = U, for all n € I. Since U,, # X, we may pick =z € X \ U,, and
conclude that I C {n € N | x ¢ U, }, yielding a contradiction to the finiteness hypothesis. [

30More accurately, it is a witness to an instance of S; (T, T), because the family (U, | n € N) were already
given.



