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8. 05.01.06

Observation 8.1 (ZFC+BC). If 〈X, d〉 is metric, and X |= S1(O,O), then |X| ≤ ℵ0.

Proof. By Observation 7.14, every S1(O,O) metric space is strongly null. Thus, if Borel’s

conjecture 7.5 holds, then X must be countable. �

If one omits the requirement of metricity, we get the following.

Theorem 8.2 (ZFC). There exists an unctounable non-metrizable space that satisfies S1(O,O).

Proof. Consider X := ω1 + 1. We equip X with the interval topology. Let 〈X,O〉 be the

topological space determined by the base:

B := {α↑, α↓, (β, α) | β < α < ω1},

where α↑ := {γ ∈ X | γ > α}, α↓ := {γ ∈ X | γ < α}, (β, α) := β↑ ∩ α↓. We now show

that X is concentrated on the singleton {ω1}, concluding that X |= S1(O,O). Indeed, if

U is an open set containing ω1, then U ⊇ α↑ for some α < ω1. For such α, we get that

(X \ U) ⊆ α+ 1, and in particular, (X \ U) is countable. �

We now work towards giving a direct proof to Corollary 7.33.

Lemma 8.3 (Embedding). Suppose there is a dominating/unbouned/strongly-unbounded

family of cardinality κ, and A ⊆ {0, 1}ω is a set of cardinality ≤ κ.

Then, there there exists a set B ∈ [ωω]κ and a continuous function φ : ωω → ωω such that

B is dominating/unbouned/strongly-unbounded (respectively), and φ[B] = A.

Proof. Assume D = {fα | α < κ} ∈ [ωω]κ is unbounded (or dominating, or strongly-

unbounded). Let {gα | α < κ} enumerate A. Put B := {hα | α < κ}, where:

hα(n) := 2fα(n) + gα(n) (α < κ, n < ω)

B is evidently unbounded (or dominating, or strongly-unbounded). Finally, define a contin-

uous function φ : ωω → ωω by letting for all f ∈ ωω and n < ω: φ(f)(n) = f(n) mod 2. �

Lemma 8.4 (Interleaving). Suppose there is an unbouned/strongly-unbounded family of car-

dinality κ, and A ⊆ ωω is a set of cardinality ≤ κ.

Then, there there exists a set B ∈ [ωω]κ and a continuous surjection φ : ωω → ωω such

that B is unbouned/strongly-unbounded (respectively), and φ[B] = A.

Proof. Assume D = {fα | α < κ} ∈ [ωω]κ is unbounded (or strongly-unbounded). Let

{gα | α < κ} enumerate A. Put B := {hα | α < κ}, where:

hα(n) =

{

fα(k) ∃k < ω(n = 2k)

gα(k) ∃k < ω(n = 2k + 1)
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B is evidently unbounded (or strongly-unbounded). Finally, define φ : ωω → ωω in the

obvious way. �

Definition 8.5. Assume κ is a cardinal, and I is an ideal over some set X.

We say that I has the κ-flexability property iff I is non-trivial, and whenever Y ⊆ X is

κ-concentrated on some A ∈ I, then Y ∈ I.

Observation 8.6. Suppose I is an ideal over some set X that has the κ-flexability property,

then non(I) ≥ κ.

Proof. Fix A ∈ [X]<κ. Pick a ∈ A. Since I is non-trivial, {a} ∈ I. It is now obvious that A

is κ-concentrated at {a} ∈ I. �

Observation 8.7. N has the non(N )-flexability property.

SN has the non(SN )-flexability property.

Proof. Assume Y,A are subsets of R, where A ∈ I and Y is non(N )-concentrated at A.

Fix ε > 0. Since A ∈ I, we may find a family of open sets {Un | n ∈ N} with
∑

n∈N Diam(Un) < ε
2
, and A ⊆ U :=

⋃

n∈N Un

Since U is open containing A, |Y \ U | < non(N ). In particular, (Y \ U) ∈ N and we may

find a family of open sets {Vn | n ∈ N} such that (Y \U) ⊆
⋃

n∈N Vn and
∑

n∈N Diam(Vn) < ε
2
.

The proof for the case of SN is essentially the same. �

Theorem 8.8. Assume J ⊆ P(R) is a non-trivial, σ-additive, proper ideal.

Then for any ideal I ⊆ P(R) and a cardinal κ ≥ non(J ) such that:

• I has the κ-flexability property;

• There exists a strongly-unbounded family of size κ.

there exists X ∈ I, and a continuous function f : X → R such that f [X] 6∈ J .

Proof. Pick A ∈ [R]non(J ), with A 6∈ J . If {A ∩ [z, z + 1] | z ∈ Z} ⊆ J , then by the

σ-additivity of J , A ∈ J . It follows that there exists z ∈ Z, such that [z, z + 1] ∩ A 6∈ J .

For notational simplicity, we assume A ⊆ [0, 1]. J is σ-additive and non-trivial, thus

Q ∈ J , hence, we may also assume that A ∩ Q = ∅.

Altogether, we assume A ⊆ ([0, 1] \ Q), |A| = non(J ), and A 6∈ J .

Let ψ : [0, 1]\Q → ωω be an homeomorphism. Put A′ := ψ[A]. By the interleaving lemma

8.4, there exists a strongly-unbounded B ∈ [ωω]κ, and a continuous function φ : ωω → ωω

such that φ[B] = A′. Let X := ψ−1[B] and f := (ψ−1 ◦ φ ◦ ψ) ↾ X.

Notice that X ⊆ R, f : X → R is a composition of continuous functions, and:

f [X] = ψ−1[φ[ψ[X]] = ψ−1[φ[B]] = ψ−1[A′] = A 6∈ J .
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We are left with showing that X ∈ I. Since I satisfies the κ-flexability property, it suffices to

show that X is κ-concentrated at some set from I. By Observation 8.6 and the hypothesis,

non(I) ≥ κ ≥ non(J ) ≥ add(J ) ≥ ℵ1, thus Q ∈ I. Finally, notice that if U is an open set

containing Q, then ψ[[0, 1]\U ] is compact, thus ≤∗-bounded, thus ψ[X \U ] is a ≤∗-bounded

subset of the strongly-unbounded set B, and hence, |X \ U | = |ψ[X \ U ]| < |B| = κ. �

Thus, for instance, if CH holds, we may find a strongly-null subset of R with a continuous

image which is not null. We may also find a strongly-null subset of R with a continuous

image which is not meager. In particular, this set must be uncountable, thus we had obtained

an alternative proof to the fact that CH=⇒ ¬BC.

Proposition 8.9 (CH). Assume that I ⊆ P(R) is an ideal that has the ℵ1-flexability prop-

erty, then for any Y ⊆ ωω, there exists X ∈ I and a continuous f : X → ωω such that

f [X] = Y .

Proof. Fix Y ⊆ R. If Y is countable, this is easy (recall Observation 8.6).

Assume that Y is uncountable. By CH, we may fix a b-scale {fy ∈ ωω | y ∈ Y }. Now, by

applying the interleaving lemma 8.4, we obtain a set B ⊆ ωω that interleaves ωω inside this

scale. In greater details, we obtain a strongly-unbounded set B of size b, and a continuous

function φ : ωω → ωω such that φ[B] = Y . Let ψ : [0, 1] \ Q → ωω be an homeomorphism.

Put X := ψ−1[B] and f = (φ ◦ ψ) ↾ X. Evidently, f is continuous and f [X] = Y .

The standard argument shows that X is b-concentrated at Q. Finally, it follows from the

hypothesis that Q ∈ I, b = ℵ1 and X ∈ I. �

Corollary 8.10 (CH). There exists X ∈ SN , and a continuous function f : X → R such

that f [X] ∈ SN ∗, i.e., a strongly-null set whose continuous image is of Lebesgue measure 1.

Proof. Since (0, 1) \ Q is of Lebesgue measure 1 and a continuous image of ωω. �

It is worth mentioning that one can prove in ZFC that there exists continuous mapping

from the cantor set (=a set of measure zero) onto the unit interval (=a set of measure 1).

Question 8.11. Suppose there exists an arbitrary metric space 〈X, d〉 which is uncountable

and strongly-null, must this indicate the violation of Borel’s Conjecture 7.5 ?

Question 8.12 (Miller). Suppose there exists a metric space 〈X, d〉 which is strongly-null

and |X| = c, must this indicate the existence of Y ∈ [R]c which is SMZ ?

The second question is unsolved. We shall now work towards introducing a positive answer

to the first question. The key to the solution of this question is Carlson’s lemma. 8.21 which

is deeply inspired by Urysohn’s Theorem 8.20.
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Definition 8.13. A topological space 〈X,O〉 is T1 iff {x} is a closed subset for all x ∈ X.

Definition 8.14. A T1 topological space X is regular iff whenever A is closed subset of X

and x /∈ A, then there are disjoint open sets U, V with x ∈ U and A ⊆ V .

A T1 topological space X is normal iff whenever A,B are disjoint closed sets in X, then

there are disjoint open sets U, V with A ⊆ U and B ⊆ V .

Notice that a metric space is normal and regular. Actually, we had already took advantage

of this property in the proof of Theorem 3.16. Also notice that a normal space is regular,

since in a T1 space points are closed sets.

Observation 8.15. Suppose 〈X,O〉 is a topological space such that for any two closed subsets

A,B, there exists a continuous function f : X → [0, 1] such that f [A] = {0} and f [B] = {1},

then X is normal.

Proof. Fix closed subsets A,B, and let f be like in the hypothesis. Then f−1[0, 0.5) and

f−1(0.5, 1] are mutually disjoint open sets, containing A and B respectively. �

Urysohn, in his celebrated lemma, was able to prove the converse:

Lemma 8.16 (Urysohn). Let X be a normal topological space, and A,B ⊂ X are disjoint

and closed. Then there exist a continuous function f : X → [0, 1] such that f [A] = {0} and

f [B] = {1}.

Proof. Fix an enumeration Q ∩ [0, 1] = {rn | n ∈ N〉 with r1 = 1 and r2 = 0. We will

construct a family of open sets 〈Vr|r ∈ Q ∩ [0, 1]〉 by induction on n ∈ N. The family will

satisfy:

r < r′ =⇒ Vr ⊂ Vr′ (r, r′ ∈ Q ∩ [0, 1])

Inductinon base n ∈ {1, 2}: Put V1 = Vr1
:= Bc. Since X is normal, the separation

A ⊆ U ⊆ U ⊂ Bc, where U is open, is possible. Pick such U and let V0 = Vr2
:= U .

Inductive hypothesis: Assume we had already defined Vr1
, Vr2

, ..., Vrn
.

Induction step n + 1: Find m, l ∈ N such that rm := max{ri | i ≤ n, ri < rn} and

rl := min{ri | i ≤ n, ri > rn} (”closest” rationals to rn+1 so far). By the normality of X, an

open set U exists such that Vrm
⊆ U ⊂ U ⊆ Vrl

. Define Vrn+1
:= U . End of the construction.

We now define a function f : X → [0, 1] by

f(x) =

{

inf{r|x ∈ Vr} if x ∈ V1

1 if x ∈ B
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In order to prove that f is continuous, it is suffice to show that f−1[0, a) and f−1(b, 1] are

open subsets of X for any a, b ∈ R. Indeed:

f−1[0, a) = {x|f(x) < a} = {x|∃r ∈ Q, r < a, x ∈ Vr} =
⋃

0≤r<a
r∈Q

Vr.

This is a union of open sets, thus open.

f−1(b, 1] = {x|f(x) > b} = {x|f(x) ≤ b}c = {x|∀r′ > b, x ∈ Vr′}
c = {x|∃r′ > b, x /∈ Vr′} =

{x|∃r, r′, r′ > r > b, x /∈ Vr ⊆ Vr′} =
⋃

b<r≤1

Vr

c
.

Again, this is a union of open sets, hence open. �

In order to prove our next theorem we will have to introduce the Hilbert space ℓ2.

Definition 8.17. A natural extension of finite dimensional euclidian spaces is

ℓ2 :=
{

(x1, x2, ...) | xi ∈ R,
∑

n∈N

x2
n <∞

}

.

For any two elements x, y ∈ ℓ2, the inner product is defined by 〈x, y〉 :=
∑

n∈N xnyn. It is

well known that any inner product space is a normed space by defining

||x− y||2 := 〈x− y, x− y〉 (x, y ∈ ℓ2)

Notice that ℓ2 is separable. A countable dense set is
{

(x1, ..., xn, 0, 0, ..) ∈ ℓ2 | n ∈ N, xi ∈ Q}.

Theorem 8.18 (Urysohn). A second countable normal space is metrizable.26

Proof. Let X be a second countable normal space, and assume B = {Bj | j ∈ N} is a

countable base for the topology on X. Put I :=
{

(j, i) ∈ N × N | Bj ⊆ Bi

}

.

For each (j, i) ∈ I, by applying Urysohn’s lemma 8.16, we may pick a continuous function

fj,i : X → [0, 1] such that fj,i[B
c
i ] = {1} and fj,i[Bj] = {0}. Let us enumerate these functions

〈fj,i | (j, i) ∈ I〉 = 〈gn | n ∈ N〉 and define a function G : X → ℓ2 by letting for each x ∈ ℓ2:

G(x) :=
(

g1(x),
g2(x)

2
, ...,

gn(x)

n
, ...

)

.

Showing that G is a homeomorphism on G[X] ⊆ ℓ2 will do, since a subspace of a metrizable

space is metrizable.

G is an injection: Fix x 6= y in X. It suffices to find (j, i) ∈ I such that fj,i(x) 6= fj,i(y).

X is T1, thus a base set Bi ∈ B exists, such that x ∈ Bi and y /∈ Bi. Now, since X is normal,

a base set Bj ∈ B exists, such that x ∈ Bj ⊆ Bj ⊆ Bi, hence, fj,i(x) = 1 and fj,i(y) = 0.

26Recall that a second countable topological space is a space with a countable base to its’ topology.
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G is continuous: Let x ∈ X and ε > 0. Let N be large enough so that
∑

n>N
1
n2 < ε2.

The functions g1, ..., gN are continuous, therefore there are open sets U1, ..., UN , containing

x, such that 1
n2 |gn(x) − gn(xn)|2 < ε2

N
whenever 1 ≤ n ≤ N and xn ∈ Un. Finally, for every

u ∈ U :=
⋂

1≤n≤N Un, we have:

||G(x) −G(u)||2 =
∑

n∈N

|gn(x) − gn(u)|

n2
< 2ε2.

We get that for every x ∈ X there existt an open set x ∈ U such that G(U) ⊆ B√
2ε(G(x)),

that is G is continuous.

G is open: Let U be an open subset of X and pick x ∈ U . Since X is regular there are

Bi, Bj ∈ B such that x ∈ Bj ⊆ Bj ⊆ Bi.

Now, gn = fj,i satisfies gn(x) = 0 and gn(U c) = 1, therefore, for y ∈ U c

||G(x) −G(y)|| ≥
1

n2
|gn(x) − gn(y)|2 =

1

n2
.

We get that if y satisfies G(y) ∈ B 1

2n
(G(x)) than y 6∈ U c, meaning that y ∈ U and therefore

B 1

2n
(G(x)) ⊂ G(U), hence G is open. �

The previous theorem can be strengthened with some more topological arguments.

Lemma 8.19. A second countable regular space X is normal.

Proof. Suppose A and B are mutually-disjoint closed subsets of X.

Assume B = 〈Dn|n ∈ N〉 is a countable base to X. Fix functions f : A → N, g : B → N

such that:

• For all x ∈ A: x ∈ Df(x) ⊆ Df(x) ⊆ Bc;

• For all y ∈ B: y ∈ Dg(y) ⊆ Dg(y) ⊆ Ac.

To see such function exists, fix for instance x ∈ A. Since X is regular, a base set Dn ∈ B

exists such that x ∈ Dn ⊆ Dn ⊆ Bc.

Enumerate {Un | n ∈ N} = {Df(x) | x ∈ A} and {Vn | n ∈ N} = {Dg(y) | y ∈ B}. It

follows that A ⊆
⋃

n∈N Un, B ⊆
⋃

n∈N Vn, and B ∩ Un = ∅, A ∩ Vn = ∅ for all n ∈ N.

For every n ∈ N, define U ′
n := Un \

⋃

i≤n Vi and V ′
n := Vn \

⋃

i≤n Ui.

Notice that U :=
⋃

n∈N U
′
n is a union of open sets, thus open. Same for V :=

⋃

n∈N V
′
n.

Also, by the choice of {Un, Vn | n ∈ N}, A ⊆ U and B ⊆ V . We are left with showing

that U ∩ V = ∅. Assume that there is x with x ∈ U ∩ V , that is, there are i, j ∈ N with

x ∈ U ′
i ∩ V

′
j . Obviously, i 6= j. Actually, if i < j, then x 6∈ V ′

j , and if i > j, then x 6∈ U ′
i .

Altogether, we get that U ∩ V = ∅. �

Corollary 8.20 (Urysohn). A second countable regular space is metrizable.



56 ASSAF RINOT AND ROY TEPER

ℓ2 is a separable metric space. Urysohn’s theorem assures us that a second countable

regular space is separable and metrizable. On the other hand, any separable metrizable

space is second countable27 and normal (hence regular), thus the equivalence. knowing that,

we get that every separable metrizable space is homeomorphic to some subspace of ℓ2.

Lemma 8.21 (Carlson). If 〈X, d〉 is a separable metric space and |X| < 2ℵ0, then there

exists an injection ψ : X → R such that |ψ(x) − ψ(y)| ≤ d(x, y) for all x, y ∈ X.

Proof. By Lemma 5.3, we may assume that Im(d) ⊆ [0, 1].28 Since X is separable, we may

pick a dense subset {xn | n < ω}. For each x ∈ X, attach an analytic function on the unit

ball, fx : {y ∈ C | |y| < 1} → C, by letting:

fx(z) :=
∞

∑

n=0

d(x, xn)

n!
zn.

Since x 7→ 〈d(x, xn) | n < ω〉 is one-to-one, and two analytic functions with different Taylor

expension are different, we have that x 7→ fx is one-to-one.

Lemma 8.22. If f, g are two analytic functions, then Af,g := {z | f(z) = g(z)} is countable.

Proof. Suppose not, then we could find a compact subset K ⊆ C such that K ∩ Af,g is

uncountable. In particular, f and g are two analytic functions that share an accumulation

point, and we must have conclude that f = g. �

Put A :=
⋃

{Afx,fy
| x, y ∈ X, x 6= y}. |A| < 2ℵ0 since |X| < 2ℵ0 , and it follows that we

may pick r ∈ [0, ln(e)] ⊆ R such that r 6∈ A. Define ψ : X → R by ψ(x) := fx(r) for all

x ∈ X. ψ is an injection. To see that it satisfies the Lipshitz property, notice that for all

x, y ∈ X, we have:

|ψ(x)−ψ(y)| = |fx(r)−fy(r)| =
∣

∣

∣

∞
∑

n=0

d(x, xn)

n!
rn−

∞
∑

n=0

d(y, xn)

n!
rn

∣

∣

∣
=

∣

∣

∣

∞
∑

n=0

d(x, xn) − d(y, xn)

n!
rn

∣

∣

∣

≤
∞

∑

n=0

d(x, y)

n!
rn = er · d(x, y) ≤ eln(e) · d(x, y) = d(x, y).

�

Theorem 8.23 (Carlson). If there exists an uncountable metric space which is strongly null,

then ¬BC.

27Consider all open balls of rational radiuses centered at elements of a countable dense set.
28Notice that if 〈X, d〉 is strongly null, then so is 〈X, d

1+d
〉.
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Proof. If c = ℵ1, then by corollaries 3.9 and 7.15, ¬BC and we are done. Assume c > ℵ1.

Assume that 〈X, d〉 is an uncountable strongly-null metric space, then for all Y ∈ [X]ℵ1 , 〈Y, d〉

is a strongly-null metric space of cardinality < 2ℵ0 . Had we known that Y is separable, we

could use Lemmas 8.21,7.8 to complete the proof. Recalling Lemma 2.6, we are left with

proving the following. �

Lemma 8.24. Assume 〈X, d〉 is a strongly null metric space, then X is second-countable.

Proof. By the hypothesis, for all n ∈ N, we may find 〈xn
m ∈ X | m ∈ N〉 and {εm

n ∈ (0,∞) |

m ∈ N} such that X ⊆
⋃

m∈N Bεn
m
(xn

m) and
∑

m∈N ε
n
m < 1

n
. A moment’s reflection makes it

clear that {Bεn
m
(xn

m) | n,m ∈ N} is a base to X. �

Corollary 8.25. Suppose 〈X, d〉 is a metric space and X |= S1(O,O), then w(X) = ℵ0.

Proof. By Observation 7.14 and the preceding lemma. �

Definition 8.26. Suppose 〈X,O〉 is a topological space, let o(X) = |O| + ℵ0.

Corollary 8.27. Suppose 〈X, d〉 is a metric space and X |= S1(O,O), then o(X) ≤ w(x)ℵ0.

Proof. By the preceding Lemma, we may pick a base B of cardinality ℵ0, and then any U ∈ O

is of the form U =
⋃

U for some U ⊆ B, i.e., U =
⋃

U for some U ∈ [B]≤ℵ0 . �

We now work towards proving the same for Sfin(O,O).

Lemma 8.28. Suppose 〈X, d〉 is a metric space, then any open set U is Fσ.

Proof. Since U is open U =
⋃

i∈I Bri
(xi) (where I is some index set and Bri

(xi) is an open

ball of radius ri centered at xi).

For every i ∈ I fix some sequence 〈εik | k ∈ N〉 such εik → ri. Define Fk :=
⋃

i∈I Bεik
(xi).

Evidently U =
⋃

k∈N Fk.

�

Lemma 8.29. The property Sfin(O,O) is σ-additive.

Proof. Suppose 〈X,O〉 is a metric space, and 〈Xm ⊆ X | m < ω〉 is a family of subspaces,

each satisfies Sfin(O,O). We shall show that
⋃

m∈N Xm |= Sfin(O,O).

Assume 〈Un | n ∈ N〉 is a family of open covers of
⋃

n∈N Xn. Put N =
⊎

m∈N Am where

each Am is infinite. For m ∈ N, by Xm |= Sfin(O,O), we may find 〈Fn ∈ [Un]<ω | n ∈ Am〉

such that Xm ⊆
⋃ ⋃

n∈Am
Fm. It follows that

⋃

m∈N Xm ⊆
⋃ ⋃

m∈N Fm. �

Corollary 8.30. Sfin(O,O) is open hereditary to any metric space.

Proof. By Observation 1.27, Sfin(O,O) is closed hereditary. Now apply Lemmas 8.28,8.29.

�
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Corollary 8.31. Suppose 〈X, d〉 is a metric space and X |= Sfin(O,O), then o(X) ≤ w(x)ℵ0.

Proof. Fix a base B of cardinality w(X). Then for any open set U , there exists some U ⊆ B

such that U =
⋃

U . Finally, by Corollary 8.30 and Observation 1.28 (applied to U), there

exists V ∈ [U ]≤ℵ0 such that U =
⋃

V . Thus, we have shown that for each open set U , there

exists V ∈ [B]≤ℵ0 such that U =
⋃

V . �


