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Observation 8.1 (ZFC+BC). If (X,d) is metric, and X = S1(O,O), then | X| < Ro.

Proof. By Observation 7.14, every S;(O, Q) metric space is strongly null. Thus, if Borel’s
conjecture 7.5 holds, then X must be countable. U

If one omits the requirement of metricity, we get the following.
Theorem 8.2 (ZFC). There exists an unctounable non-metrizable space that satisfies S1(O, O).

Proof. Consider X := w; + 1. We equip X with the interval topology. Let (X, 0O) be the
topological space determined by the base:

B:={al,al,(f,a)| f <a<w},

where ol == {y € X | v > a}, al :={y € X | v < a}, (8,a) := 1 Nal. We now show
that X is concentrated on the singleton {w;}, concluding that X = S1(O,0). Indeed, if
U is an open set containing wi, then U D a! for some o < w;. For such a, we get that
(X\U) Ca+1, and in particular, (X \ U) is countable. O

We now work towards giving a direct proof to Corollary 7.33.

Lemma 8.3 (Embedding). Suppose there is a dominating/unbouned/strongly-unbounded
family of cardinality k, and A C {0,1}* is a set of cardinality < k.

Then, there there exists a set B € [w*]* and a continuous function ¢ : w* — w* such that
B is dominating/unbouned/strongly-unbounded (respectively), and ¢|B] = A.

Proof. Assume D = {f, | @« < k} € [w¥]" is unbounded (or dominating, or strongly-
unbounded). Let {g, | @ < k} enumerate A. Put B := {h, | @ < K}, where:

ha(n) = 2fa(n) + gu(n) (@ < K, < w)
B is evidently unbounded (or dominating, or strongly-unbounded). Finally, define a contin-

uous function ¢ : w* — w* by letting for all f € w¥ and n < w: ¢(f)(n) = f(n) mod 2. O

Lemma 8.4 (Interleaving). Suppose there is an unbouned/strongly-unbounded family of car-
dinality k, and A C w* is a set of cardinality < k.

Then, there there exists a set B € [w”]* and a continuous surjection ¢ : w* — w* such
that B is unbouned/strongly-unbounded (respectively), and ¢[B] = A.

Proof. Assume D = {f, | a < k} € [w¥]" is unbounded (or strongly-unbounded). Let
{9a | @ < K} enumerate A. Put B := {h, | @ < K}, where:

ha(n) = fo(k) Fk <w(n=2k)
aln) = ga(k) Tk <w(n=2k+1)
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B is evidently unbounded (or strongly-unbounded). Finally, define ¢ : w* — w* in the
obvious way. O

Definition 8.5. Assume & is a cardinal, and 7 is an ideal over some set X.
We say that Z has the k-flexability property iff Z is non-trivial, and whenever Y C X is
r-concentrated on some A € Z, then Y € 7.

Observation 8.6. Suppose L is an ideal over some set X that has the k-flexability property,
then non(Z) > k.

Proof. Fix A € [X]<". Pick a € A. Since 7 is non-trivial, {a} € Z. It is now obvious that A
is k-concentrated at {a} € Z. O

Observation 8.7. N has the non(N)-flezability property.
SN has the non(SN)-flexability property.

Proof. Assume Y, A are subsets of R, where A € 7 and Y is non(A\)-concentrated at A.
Fix ¢ > 0. Since A € Z, we may find a family of open sets {U, | n € N} with
> neny Diam(Uy) < 5, and A C U = ey Un
Since U is open containing A, |Y \ U| < non(N). In particular, (Y \ U) € N and we may
find a family of open sets {V;, | n € N} such that (Y\U) C J, ey Va and ), .y Diam(V},) < 5.
The proof for the case of SN is essentially the same. O

Theorem 8.8. Assume J C P(R) is a non-trivial, o-additive, proper ideal.
Then for any ideal T C P(R) and a cardinal k > non(J) such that:

e 7 has the k-flexability property;
o There exists a strongly-unbounded family of size k.

there exists X € Z, and a continuous function f: X — R such that f[X]| & J.

Proof. Pick A € [R]""Y) with A ¢ J. If {AN[z,z+1] | 2z € Z} C J, then by the
o-additivity of 7, A € J. It follows that there exists z € Z, such that [z, 2+ 1N A & TJ.

For notational simplicity, we assume A C [0,1]. J is o-additive and non-trivial, thus
Q € J, hence, we may also assume that A NQ = (.

Altogether, we assume A C (]0,1] \ Q), |A| =non(J), and A & J.

Let ¢ : [0,1]\Q — w* be an homeomorphism. Put A’ := ¢[A]. By the interleaving lemma
8.4, there exists a strongly-unbounded B € [w*]", and a continuous function ¢ : w* — w®
such that ¢[B] = A’. Let X :==¢"'[B] and f := (v 'ogo) | X.

Notice that X C R, f: X — R is a composition of continuous functions, and:

FIX]=v IX]| = v [@[Bll =y ' [A]=A ¢ J.
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We are left with showing that X € Z. Since 7 satisfies the s-flexability property, it suffices to
show that X is k-concentrated at some set from Z. By Observation 8.6 and the hypothesis,
non(Z) > k > non(J) > add(J) > Wy, thus Q € Z. Finally, notice that if U is an open set
containing @Q, then ¢[[0, 1]\ U] is compact, thus <*-bounded, thus ¥[X \ U] is a <*-bounded
subset of the strongly-unbounded set B, and hence, | X \ U| = [¢[X \ U]| < |B| = k. O

Thus, for instance, if CH holds, we may find a strongly-null subset of R with a continuous
image which is not null. We may also find a strongly-null subset of R with a continuous
image which is not meager. In particular, this set must be uncountable, thus we had obtained
an alternative proof to the fact that CH= —BC.

Proposition 8.9 (CH). Assume that Z C P(R) is an ideal that has the Xy-flexability prop-
erty, then for any Y C w¥, there exists X € T and a continuous f : X — w* such that
fIX] =Y.

Proof. Fix Y C R. If Y is countable, this is easy (recall Observation 8.6).

Assume that Y is uncountable. By CH, we may fix a b-scale {f, € w* | y € Y'}. Now, by
applying the interleaving lemma 8.4, we obtain a set B C w* that interleaves w* inside this
scale. In greater details, we obtain a strongly-unbounded set B of size b, and a continuous
function ¢ : w¥ — w* such that ¢[B] =Y. Let ¢ : [0,1] \ Q — w* be an homeomorphism.

Put X :=¢Y[B] and f = (¢ o) | X. Evidently, f is continuous and f[X] =Y.

The standard argument shows that X is b-concentrated at Q. Finally, it follows from the
hypothesis that Q € Z, b =Xy and X € 7. Il

Corollary 8.10 (CH). There exists X € SN, and a continuous function f : X — R such
that f[X] € SN, i.e., a strongly-null set whose continuous image is of Lebesque measure 1.

Proof. Since (0,1) \ Q is of Lebesgue measure 1 and a continuous image of w*. O

It is worth mentioning that one can prove in ZFC that there exists continuous mapping
from the cantor set (=a set of measure zero) onto the unit interval (=a set of measure 1).

Question 8.11. Suppose there exists an arbitrary metric space (X, d) which is uncountable
and strongly-null, must this indicate the violation of Borel’s Conjecture 7.5 7

Question 8.12 (Miller). Suppose there exists a metric space (X, d) which is strongly-null
and | X| = ¢, must this indicate the existence of Y € [R]® which is SMZ ?

The second question is unsolved. We shall now work towards introducing a positive answer
to the first question. The key to the solution of this question is Carlson’s lemma. 8.21 which
is deeply inspired by Urysohn’s Theorem 8.20.
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Definition 8.13. A topological space (X, 0) is T} iff {z} is a closed subset for all z € X.

Definition 8.14. A T} topological space X is regular iff whenever A is closed subset of X
and = ¢ A, then there are disjoint open sets U,V with x € U and A C V.

A T topological space X is normal iff whenever A, B are disjoint closed sets in X, then
there are disjoint open sets U,V with A CU and B C V.

Notice that a metric space is normal and regular. Actually, we had already took advantage
of this property in the proof of Theorem 3.16. Also notice that a normal space is regular,
since in a 717 space points are closed sets.

Observation 8.15. Suppose (X, O) is a topological space such that for any two closed subsets
A, B, there exists a continuous function f : X — [0,1] such that f[A] = {0} and f[B] = {1},

then X is normal.

Proof. Fix closed subsets A, B, and let f be like in the hypothesis. Then f~'[0,0.5) and
f710.5,1] are mutually disjoint open sets, containing A and B respectively. O

Urysohn, in his celebrated lemma, was able to prove the converse:

Lemma 8.16 (Urysohn). Let X be a normal topological space, and A, B C X are disjoint
and closed. Then there exist a continuous function f : X — [0,1] such that f[A] = {0} and

f1B] = {1}.

Proof. Fix an enumeration Q N [0,1] = {r, | n € N) with r; = 1 and r, = 0. We will
construct a family of open sets (V.|r € QN [0, 1]) by induction on n € N. The family will
satisfy:

r<r =V, CV (r,r" € QNI0,1])

Inductinon base n € {1,2}: Put V; = V,, := B° Since X is normal, the separation
A CU CU C B¢ where U is open, is possible. Pick such U and let V; =V, := U.

Inductive hypothesis: Assume we had already defined V., V,,, ..., V. .

Induction step n + 1: Find m,l € N such that r,, := max{r; | i < n,r; < r,} and
ry = min{r; | i < n,r; > r,} ("closest” rationals to 7,1 so far). By the normality of X, an
open set U exists such that V. C U C U C V;,. Define V.

We now define a function f: X — [0, 1] by

w1 := U. End of the construction.

inf{rlz € V,.} ifx eV,
f(I)Z {’ } : 1
1 ifxe B
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In order to prove that f is continuous, it is suffice to show that f~'[0,a) and f~*(b,1] are
open subsets of X for any a,b € R. Indeed:

f0,0) = {alf(z) <a} = {alFr e Qr<azeVi}= |J Vi
0<r<a
ré@

This is a union of open sets, thus open.

b1 = {z|f(x) > b} = {z|f(2) < b} = {a|V"' > b2 €V} ={z|F > ba ¢ V,} =
{23, 7' >r>bagV,CVu}= U i7AS

b<r<1
Again, this is a union of open sets, hence open. O

In order to prove our next theorem we will have to introduce the Hilbert space /5.

Definition 8.17. A natural extension of finite dimensional euclidian spaces is

by :={(z1,22,...) | w; € R,in < 00}

neN

For any two elements x,y € {5, the inner product is defined by (z,y) := > . Zn¥n. It is
well known that any inner product space is a normed space by defining

|z =yl ==z —y, 2 —y) (z,y € bs)
Notice that £, is separable. A countable dense set is {(xl, ey X0, 0,0,..) €Ly | n € Njx; € Q}.

Theorem 8.18 (Urysohn). A second countable normal space is metrizable.?

Proof. Let X be a second countable normal space, and assume B = {B; | j € N} is a
countable base for the topology on X. Put Z := {(j, i)ENxN| B, C Bi}.

For each (j,7) € Z, by applying Urysohn’s lemma 8.16, we may pick a continuous function
fii: X —[0,1] such that f;,[Bf] = {1} and f;;[B,] = {0}. Let us enumerate these functions
(fiil (j,7) € ) = (gn | n € N) and define a function G' : X — ¢, by letting for each = € /5:

G(x) == (gl(x), ggéx)’ s gnéx)’ )
Showing that G is a homeomorphism on G[X] C ¢, will do, since a subspace of a metrizable

space is metrizable.

G is an injection: Fix « # y in X. It suffices to find (j,7) € 7 such that f;;(z) # f;.:(y).
X is Ty, thus a base set B; € B exists, such that = € B; and y ¢ B;. Now, since X is normal,
a base set B; € B exists, such that € B; C B; C B;, hence, f;;(r) =1 and f;,(y) = 0.

26Recall that a second countable topological space is a space with a countable base to its’ topology.
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G is continuous: Let € X and € > 0. Let N be large enough so that > _ # < e
The functions ¢y, ..., gn are continuous, therefore there are open sets Uy, ..., Uy, containing
x, such that —5|g,(x) — gn(z,)|* < % whenever 1 <n < N and z, € U,. Finally, for every
u € U =), Un, we have:

||G(ZL’) . G(U)H2 _ Z |gn(‘r)n_zgn(u)| < 222,
neN
We get that for every # € X there existt an open set € U such that G(U) C B 5.(G(x)),
that is G is continuous.
G is open: Let U be an open subset of X and pick x € U. Since X is regular there are
B;, B; € B such that z € B; C FJ C B,.
Now, g, = f;; satisfies ¢,,(z) = 0 and ¢, (U¢) = 1, therefore, for y € U®

16() = G > ~gloal®) ~ gule)]? =

ﬁ.
We get that if y satisfies G(y) € B 1 (G(z)) than y ¢ U*, meaning that y € U and therefore
B (G(x)) € G(U), hence G is open. O

The previous theorem can be strengthened with some more topological arguments.
Lemma 8.19. A second countable regular space X is normal.

Proof. Suppose A and B are mutually-disjoint closed subsets of X.
Assume B = (D,|n € N) is a countable base to X. Fix functions f: A - N,g: B — N
such that:

o Forall z € A: x € Dy C Dy C B
e forallye B: y € Dg(y) - Dg(y) C A-

To see such function exists, fix for instance x € A. Since X is regular, a base set D, € B
exists such that = € D,, C D,, C B¢,

Enumerate {U, | n € N} = {Dy,) | v € A} and {V,, | n € N} = {Dy,) | y € B}. It
follows that A C J,cn Un, B € U,1en Vo, and B NU,=0,ANV, =0 for all n € N.

For every n € N, define U}, := U, \ U,.,, Vi and V! .=V, \ U, U;.

Notice that U := |J,,cy Uy, is a union of open sets, thus open. Same for V := Unen Var-

Also, by the choice of {U,,V,, | n € N}, A C U and B C V. We are left with showing
that U NV = (). Assume that there is x with z € U NV, that is, there are 7,7 € N with
z € U;NV]. Obviously, i # j. Actually, if i < j, then z ¢ V/, and if i > j, then z ¢ Uj.
Altogether, we get that U NV = (. O

Corollary 8.20 (Urysohn). A second countable regqular space is metrizable.
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{5 is a separable metric space. Urysohn’s theorem assures us that a second countable
regular space is separable and metrizable. On the other hand, any separable metrizable
space is second countable®” and normal (hence regular), thus the equivalence. knowing that,
we get that every separable metrizable space is homeomorphic to some subspace of /5.

Lemma 8.21 (Carlson). If (X, d) is a separable metric space and |X| < 2%, then there
exists an injection 1 : X — R such that |¢(z) — ¥ (y)| < d(z,y) for all x,y € X.

Proof. By Lemma 5.3, we may assume that Im(d) C [0,1].?® Since X is separable, we may
pick a dense subset {x, | n < w}. For each x € X, attach an analytic function on the unit
ball, f. : {y € C| |y| < 1} — C, by letting:

[ee] d N
L) = %
n=0 ’

Since z — (d(x,x,) | n < w) is one-to-one, and two analytic functions with different Taylor
expension are different, we have that x — f, is one-to-one.

Lemma 8.22. If f, g are two analytic functions, then Ay, = {z | f(2) = g(2)} is countable.

Proof. Suppose not, then we could find a compact subset K C C such that K N Ay, is
uncountable. In particular, f and g are two analytic functions that share an accumulation
point, and we must have conclude that f = g. U

Put A:=J{Apy, | 2.y € X,z # y}. |A] < 2% since |X| < 2%, and it follows that we
may pick r € [0,In(e)] € R such that » ¢ A. Define ¢ : X — R by ¢(z) := f.(r) for all
x € X. 1 is an injection. To see that it satisfies the Lipshitz property, notice that for all
x,y € X, we have:

[ (2)= () = [folr)—fy(r)] = ‘ 3 MT“‘Z d(y, .:cn)rn

|30 da) = )

n!

g

Theorem 8.23 (Carlson). If there exists an uncountable metric space which is strongly null,
then —BC.

2TConsider all open balls of rational radiuses centered at elements of a countable dense set.

*®Notice that if (X, d) is strongly null, then so is (X, t25).
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Proof. If ¢ = Wy, then by corollaries 3.9 and 7.15, -BC and we are done. Assume ¢ > N;.
Assume that (X, d) is an uncountable strongly-null metric space, then for all Y € [X]|*, (Y, d)
is a strongly-null metric space of cardinality < 2%. Had we known that Y is separable, we
could use Lemmas 8.21,7.8 to complete the proof. Recalling Lemma 2.6, we are left with
proving the following. O

Lemma 8.24. Assume (X, d) is a strongly null metric space, then X is second-countable.

Proof. By the hypothesis, for all n € N, we may find (2", € X | m € N) and {&" € (0, 00) |
m € N} such that X C (J,,cnBen (22,) and >, yem < 1. A moment’s reflection makes it
clear that {B.. (z7) | n,m € N} is a base to X. O

Corollary 8.25. Suppose (X, d) is a metric space and X = S1(O,0), then w(X) = Ny.
Proof. By Observation 7.14 and the preceding lemma. O
Definition 8.26. Suppose (X, O) is a topological space, let o(X) = |O| 4+ N,.

Corollary 8.27. Suppose (X, d) is a metric space and X = S1(0,0), then o(X) < w(x)N0

Proof. By the preceding Lemma, we may pick a base B of cardinality Ry, and then any U € O
is of the form U = |JU for some U C B, i.e., U = |JU for some U € [B]=™. O

We now work towards proving the same for Sy;, (O, O).
Lemma 8.28. Suppose (X, d) is a metric space, then any open set U is F.
Proof. Since U is open U = |J,, B

ball of radius r; centered at x;).

(x;) (where I is some index set and B,,(z;) is an open

For every i € [ fix some sequence (g;, | k € N) such ¢;, — r;. Define F, := [, B, ().
Evidently U = ey Fr-
U

Lemma 8.29. The property St (O, O) is o-additive.

Proof. Suppose (X, O) is a metric space, and (X,, € X | m < w) is a family of subspaces,
each satisfies Sy, (O, O). We shall show that | J,, .y Xim | Spin (O, O).

Assume (U, | n € N) is a family of open covers of (J, .y X,. Put N = ¢, An where
each A,, is infinite. For m € N by X, = Spin(O, O), we may find <]—" €U | ne Ay
such that X, CJU . It follows that |J,,cny Xm € UU O

neAm mEN

Corollary 8.30. Sy;, (O, O) is open hereditary to any metric space.

Proof. By Observation 1.27, S, (O, O) is closed hereditary. Now apply Lemmas 8.28,8.29.
O
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Corollary 8.31. Suppose (X, d) is a metric space and X = Spin (O, O), then o(X) < w(z)™.

Proof. Fix a base B of cardinality w(X). Then for any open set U, there exists some U C B
such that U = [JU. Finally, by Corollary 8.30 and Observation 1.28 (applied to U), there
exists V' € [U]=N such that U = |JV. Thus, we have shown that for each open set U, there
exists V € [B]=" such that U = V. O



