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Definition 7.1. A set A C R is of Lebesgue measure 0 if for every € > 0 there is a family
of open intervals (I, | n € N) that covers A and ) _[/n| <e.

Definition 7.2. A set A C R is of strong measure zero (or SMZ) iff for every sequence
(enln € N) there is a family of open intervals (I, | n € N) that covers A and |I,,| < ¢, for
every n € N.

Proposition 7.3. SMZ = Lebesgue measure zero.

Proof. Assume the set A C R is of SMZ. Fix ¢ > 0. Consider the sequence (¢/2"|n € N).
Since A is SMZ there is a family of open intervals (I,,|n € N) that covers A and |I,,| < ¢/2"

for all n € N. Since > _&/2" = ¢, we get that A is of Lebesgue measure zero. O

neN

Observation 7.4. If A C R is countable, then A is SMZ.

Proof. Suppose A = {a,, € R | n € N} is countable, and (g, | n € N) is a sequence of positive
reals. For n € N, let I,, := (a, — %, a, + %) and observe that (I, | n € N) works. O

To see that SMZ is much stronger than measure zero, consider for example the Cantor set.
We have seen before that it is of measure zero. Is it SMZ? It is obvious that for the sequence
(1/3"|n € N), matching open interval cover the Cantor set. Just take I; := (0,1/3), s =
(6/9,7/9),.... On the other hand, for the sequence (1/3"n € N,n > K > 1), such family
of open intervals that covers the Cantor set can’t be obtained (think why?). Therefore it is
not SMZ.

Conjecture 7.5 (Borel, 1919). If A C R is SMZ, then A is countable.

Notice that in R, for some open interval (a,b) C R, |(a,b)| stands for the length (one
dimensional volume) of (a,b), or equivalently, its’ diameter. Is it the same in larger metric
spaces? Consider for example R?. The set [0, 1] C R? is of Lebesgue measure (volume) zero,
but the sum of diameters of any open cover consisting with two dimensional ”boxes” is not
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less than The question arises is how to "properly” define SMZ in large metric spaces?

Here is the standard way.

Definition 7.6. Suppose (X, d) is a metric space.
A C X is a strongly null set iff for any sequence of positive reals, (g, | n € N), there is a
partition {A, | n € N} such that A =J, .y An and Diam(A,) < &, for all n € N.

In the special case of strongly null sets in R, we shall keep call them SMZ.

227 box in R? is a base set of the product topology, that is a product of open intervals in R
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Observation 7.7. If (X, d) is a discrete metric space, then A C X is strongly null iff A is
countable.

Lemma 7.8. A uniformly continuous image of a strongly null set is strongly null.

Proof. Let (X, px), (Y, py) be metric spaces where X is strongly null, and let f: X — Y be
uniformly continuous onto Y.

Fix € > 0. Since f is uniformly continuous, a § > 0 exists, such that given an open ball
B C X with Diam,, (B) < § we result with Diam,, (f[B]) < e.

Now, consider some sequence (g, | n € N). Implementing the last remark we get a
corresponding sequence (4, | n € N). X is strongly null, hence there exist a cover consisting
of open balls (B,, C X | n € N) where Diam,, (B,,) < d,. For all n € N Diam, (f[B,]) < €.

v = fix]=f|UB| cUsmlcUsB
neN neN neN
where B/, C Y are open balls of diameter less than ¢, such that f[B,] C Bj,. O

Definition 7.9. For a metric space (X, d), let SNy := {A C X | A is a strongly null set }.
In the special case of (R, |- |), we denote SN :=SNgp={ACR|Ais SMZ }.

Proposition 7.10. For any metric space (X,d), SN x is a o-ideal.*

Proof. Tt is obvious that ) € SNx.

Consider some A € SN'x, and let B C A. Fix (g, | n € N), then since A € SNy there is
a cover of A consisting of open set (U,, | n € N) with Diam(U,,) < ¢, for all n € N. Since
B C J,en Un, we conclude that B € SN x.

Finally, to see that SN x is o-additive, assume (A, € SN x | n € N), and fix (g, | n € N).
Let LﬂneN J, be a partition of N where J,, is infinite for every n € N.

Let n € N. A, € SNy, therefore there is a cover consisting of open sets (U, | k € J,,)
such that Diam(U, k) < g for all k € J,,.

By U, en Usen Une 2 Unen Ans we conclude that [, o An € SN x. O

We have already seen that SNV C N. We now show a nice connection between SMZ and
connectedness.

Claim 7.11. SMZ = 0-dimensional.

Proof. Assume A € R is SMZ. Recalling Theorem 4.28, it is enough to show that A is totally
disconnected. Assume the contrary, that is, it happens that x € I C A where [ is connected
and I\ {z} # 0. I is then an interval which means of positive measure, a contradiction to
the fact that A is null (Proposition 7.3). O

Z3A o-ideal is an ideal closed to countable unions, i.e., add(SNx) > Ny.
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We now reveal the combinatorics of SMZ.

Definition 7.12 (Rothberger). For k € N, a space (X, O) satisfies Rothberger’s property or
Sk(O, O) iff for any family of open covers of X, (U, | n € N), there exists some (F,, € [U,]" |
n € N), such that J,, .y Fn covers X.

Observation 7.13. For a topological space (X,0), TFAE:
(a) X = 51(0,0).
(b) X = Sk(O,0) for some k € N.
(c) X | S{(0,0) for some f € NV i.e., for any family of open covers of X, (U, | n €
N), there exists a family (F, € [U,)’™ | n € N), such that |, . Fn

Proof. To see (c)=>(a), fix f € N¥ such that X | S;(0,0).

Pick an arbitrary partition (A, € [N}/ | n € N) with W, . 4, = N.

For all n € N, let V, := {(Im(g) | g € [1,pca, Um}.** Evidently, each V, covers X.

Applying S¢(0,0) to (V, | n € N), we get a family (F, € [,)F™ | n € N), such that
Unen Fn covers X. Pick (G, € [[T,hea, Uml’™ | n € N) such that F, = {Im(g) | g € G}
for all n € N. By |G,| = f(n) = |A,|, we may enumerate G, = {g; € [[,,ca, Un | i € An}.

In this notation, we get that (J,.y Fn = {(1Im(g:) | ¢ € N}.

Finally, since (Img; C g;(i) € Y; for all i € N, we get that (g,(n) | n € N) exemplifies
X E S51(0,0). O

Observation 7.14. Assume (X,d) is a metric space.
ForallY CX,Y |E S1(0,0) implies that Y is strongly null.

Proof. Consider a family of positive reals (¢, € R | n € N).

Fix a basis B for (X,d), and put U,, := {U € B | Diam(U) < ¢,} for each n € N. By
applying S1(0,0) of Y to (U, | n € N), we obtain a family (U, € U,, | n € N) such that
Y C U, ey Un, and obviously, Diam(U,,) < ¢, for all n € N. O

neN

Corollary 7.15. A Luzin set is an uncountable strongly null set.
In particular, Borel’s conjecture 7.5 is consistently false.

Proof. By Claim 3.25 and the preceding observation. O

Our reader might conjecture that Observation 7.14 can be improved and S;(O, Q) is
actually equivalent to strongly null. However, this is not the case. By Proposition 7.10,
strongly null is an hereditary property, whereas we have the following.

Observation 7.16. Sy, (O, O) is non-hereditary.

g ¢ [1,nca, Um means that dom(g) = A, and g(m) € Uy, for all m € A,.



46 ASSAF RINOT AND ROY TEPER

Proof. R is o-compact, thus by Lemma 1.29, R |= Sy;,,(O, O). However, by Theorem 2.29
R\ Q is homeomorphic to NY. It follows from Theorem 4.10 that R\ Q £ S;;,(0,0). O

Observation 7.17. S1(O, Q) is consistently non-hereditary.

Proof. Assume 0 = N;. Consider M := ¢[D] U (Q N [0,1]) of Theorem 4.20. Then M is
N;-concentrated on the countable set QN [0, 1], thus, M = S1(O, O). However, By Theorem
4.10, ¢[D] does not even satisfy S, (O, O) (since ¥ '[¢[D]] = D is dominating), not to
mention 51(0, O). O

It follows from Observation 4.8 that (0 = 8;) = (0 = cov(M)). It will soon be clear
that it suffices to assume 9 = cov(M) to conclude that M = S;(0, O).

Definition 7.18. A set X C NV is said to be guessed by g € NV iff {n € N| f(n) = g(n)}
is infinite for all f € X.

Theorem 7.19. Suppose X C NN, [If | X| < cov(M), then X can be guessed.

Proof. For all f € X and k € N, it is obvious that:
App={9eN'|3neN((n>k)Ag(n) = f(n))}
is dense open. Clearly, any g € [ fex Mken Afe Will do, so assume towards a contradiction
that Nyen Nyex Arx = 0. Tt follows that N¥ = U, .y Ujex Brr, where By := NV\ Ay are
nowhere dense sets. Identifying NN with R \ Q, we get that:
R = U U By U U{Q}
keN feX qeQ

is the union of | X| nowhere dense sets, contradicting | X| < cov(M). O

Theorem 7.20. If (X,0) is a topological space and X | S1(O,0), then any continuous
image of X into NN can be guessed.

Proof. This essentially is the same proof as of Theorem 4.11. Assume some X C NY with
X E S51(0,0). Fixm € N. PutU,, := {(m, k)" | k € N} where (m, k)1 := {f e NV | f(m) =
k} for all k € N. Evidently, U,, is an open cover of X. Fix a bijection ¢ : N x N <> N.

Fix i € N. Since X |= 51(0,0) and Uy | n € N) is a countable family of open covers

N
of X, there exists g; : [{i} x N] — N such that X C J, o <w(i,n),g(¢(i,n))> :
Let g: N — Nbe g :=J,cn gn- It is evident that g guesses X. O

Theorem 7.21 (Reclaw). Suppose (X, O) is a topological space that has a base B which is
countable and composed only of clopen sets.
If any continuous image of X into NN can be guessed, then X = S1(0,0O).
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Proof. Assume a family of open covers of X, (U, C B | n € N). Since B is countable, there
exists an enumeration U,, = {U" | m € N} for all n € N. We may also assume for all n € N
that members of U, are mutually-disjoint, thus, for all z € X, there is a unique f, € NV
such that = € U*™ for all n € N. Finally, let ¢ : X — NY be the map z — f,.

Since 1 is continuous, we may pick g € NY that guesses [ X].

For all n € N, let U, := US™. To see that (U, | n € N) covers X. Notice that for each
x € X, there exists some n € N such that f,(n) = g(n), i.e., z € U™ = U,. O

Corollary 7.22. For all X CR, TFAE:
e X E 5(0,0).

o Any continuous image of X into NN can be guessed.
Proof. By theorems 7.20,7.21 and 7.11. O
Corollary 7.23. X |= 5,(0,0) for all X € [R]<«VM),

Corollary 7.24. If X C R is cov(M)-concentrated on one of its countable subsets, then
X = 51(0,0).

Corollary 7.25. If cov(M) =0, then M of Theorem 4.20 satisfies S1(O, Q).
To complete the picture, we mention the following important result.
Theorem 7.26 (Laver). Borel’s conjecture 7.5 is consistent.

It follows from Corollary 7.15 and the preceding that Borel’s Conjecture is independent
of the usual axioms of mathematics (ZFC).

Definition 7.27. A set X C N" is strongly unbounded iff for all f € N¥, | X n{f}| < |X].

Intuitively, strongly unbounded sets needs to be ”fat” enough to be unbounded, but ”slim”
enough to be strongly unbounded. For instance, NV is indeed unbounded, but it is too ”fat”
to be strongly-unbounded, recalling Observation 4.9.

Observation 7.28. There exists strongly unbounded families of cardinality b and 0.
Proof. By Lemmas 1.11 and 1.12. Il

Observation 7.29. Suppose X C NV is a set such that :
o cf |X| > NQ,
e Forall f e NV, {ge X |g< [} <I|X|

then, X s strongly unbounded.
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Proof. Because {g € NV | g <* f} can be obtained as the following countable union:

U{{geN"g< #} | f e NYIN € N(vVn > N(f'(n) = f(n))}.

Let us examine several consequences of Borel’s conjecture (BC).

Observation 7.30. Assuming ZFC+BC, we have:
(a) SN = [R]=~

(b) X C R satisfies S1(O, O) iff X is countable.

(¢) Any (continuous) image of SMZ is SMZ.

(d) There is no Luzin set.

(e) For any uncountable cardinal k < cov(M), there is no strongly unbounded family
X e [NV~

(g) cov(M) < min{cof (M), b}. In particular b > Xy and —CH.

Proof. (a) is equivalent to BC. (b) follows from Observation 7.14. (c) follows from the fact
that an image of a countable set is countable. (d) follows from Corollary 7.15.
(e) If X C NN is strongly-unbounded and ¢ : N¥ — R is an homeomorphism, then
Y[X]U (QN[0,1]) is | X|-concentrated at @ N [0,1]. Now if X is strongly-unbounded and
| X| < cov(M), then by Corollary 7.24 and Observation 7.14, ¥)[X]| U (Q N[0, 1]) is SMZ.
(f) If cov(M) = cof (M), then we may apply Theorem 3.7 to obtain a subset of R which is
cov(M)-concentrated at any of its countable dense subsets. Now apply Corollary 7.24 and
Observation 7.14.
If cov(M) = b, then Observation 7.28 would have contradict the preceding item.

Finally, by b > cov(M), we have:
¢>b > cov(M) > add(M) > .

Question 7.31. Is it always true that the continuous image of SMZ is SMZ?

We had already seen that, consistently, SMZ and S;(O, O) are different properties, e.g.,
assuming CH, S1(O, O) is non-hereditary, while SA/ is an ideal. To answer our question
(negatively), we introduce the following theorem:

Theorem 7.32 (Fremlin-Miller). For X C R, TFAE:

(a) X | 51(0,0).
(b) Any continuous image of X into R is strongly null.
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Corollary 7.33. Assuming CH, there exists a SMZ set X C R and a continuous function
f: X — R, such that f[X] is not SMZ.

It happens that the converse of Theorem 7.19 is also true.

Fact 7.34. There exists X € [NN]*VM) that cannot be guessed.
In particular, the minimal cardinality of A C R with A = S1(0, O) is cov(M).

Together with Observation 7.30, we obtain that assuming ZFC+BC: cov(M) = 8y < b.



