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Definition 7.1. A set A ⊂ R is of Lebesgue measure 0 if for every ε > 0 there is a family

of open intervals 〈In | n ∈ N〉 that covers A and
∑

n∈N |In| < ε.

Definition 7.2. A set A ⊂ R is of strong measure zero (or SMZ) iff for every sequence

〈εn|n ∈ N〉 there is a family of open intervals 〈In | n ∈ N〉 that covers A and |In| < εn for

every n ∈ N.

Proposition 7.3. SMZ =⇒ Lebesgue measure zero.

Proof. Assume the set A ⊂ R is of SMZ. Fix ε > 0. Consider the sequence 〈ε/2n|n ∈ N〉.

Since A is SMZ there is a family of open intervals 〈In|n ∈ N〉 that covers A and |In| < ε/2n

for all n ∈ N. Since
∑

n∈N ε/2
n = ε, we get that A is of Lebesgue measure zero. �

Observation 7.4. If A ⊆ R is countable, then A is SMZ.

Proof. Suppose A = {an ∈ R | n ∈ N} is countable, and 〈εn | n ∈ N〉 is a sequence of positive

reals. For n ∈ N, let In := (an −
εn

4
, an + εn

4
) and observe that 〈In | n ∈ N〉 works. �

To see that SMZ is much stronger than measure zero, consider for example the Cantor set.

We have seen before that it is of measure zero. Is it SMZ? It is obvious that for the sequence

〈1/3n|n ∈ N〉, matching open interval cover the Cantor set. Just take I1 := (0, 1/3), I2 =

(6/9, 7/9), .... On the other hand, for the sequence 〈1/3n|n ∈ N, n > K ≥ 1〉, such family

of open intervals that covers the Cantor set can’t be obtained (think why?). Therefore it is

not SMZ.

Conjecture 7.5 (Borel, 1919). If A ⊆ R is SMZ, then A is countable.

Notice that in R, for some open interval (a, b) ⊂ R, |(a, b)| stands for the length (one

dimensional volume) of (a, b), or equivalently, its’ diameter. Is it the same in larger metric

spaces? Consider for example R2. The set [0, 1] ⊂ R2 is of Lebesgue measure (volume) zero,

but the sum of diameters of any open cover consisting with two dimensional ”boxes” is not

less than 1.22 The question arises is how to ”properly” define SMZ in large metric spaces?

Here is the standard way.

Definition 7.6. Suppose 〈X, d〉 is a metric space.

A ⊆ X is a strongly null set iff for any sequence of positive reals, 〈εn | n ∈ N〉, there is a

partition {An | n ∈ N} such that A =
⋃

n∈NAn and Diam(An) < εn for all n ∈ N.

In the special case of strongly null sets in R, we shall keep call them SMZ.

22A box in R2 is a base set of the product topology, that is a product of open intervals in R
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Observation 7.7. If 〈X, d〉 is a discrete metric space, then A ⊆ X is strongly null iff A is

countable.

Lemma 7.8. A uniformly continuous image of a strongly null set is strongly null.

Proof. Let 〈X, ρX〉, 〈Y, ρY 〉 be metric spaces where X is strongly null, and let f : X → Y be

uniformly continuous onto Y .

Fix ε > 0. Since f is uniformly continuous, a δ > 0 exists, such that given an open ball

B ⊂ X with DiamρX
(B) < δ we result with DiamρY

(f [B]) < ε.

Now, consider some sequence 〈εn | n ∈ N〉. Implementing the last remark we get a

corresponding sequence 〈δn | n ∈ N〉. X is strongly null, hence there exist a cover consisting

of open balls 〈Bn ⊂ X | n ∈ N〉 where DiamρX
(Bn) < δn. For all n ∈ N DiamρY

(f [Bn]) < εn.

Y = f [X] = f
[

⋃

n∈N

Bn

]

⊆
⋃

n∈N

f [Bn] ⊆
⋃

n∈N

B′
n

where B′
n ⊂ Y are open balls of diameter less than εn such that f [Bn] ⊆ B′

n. �

Definition 7.9. For a metric space 〈X, d〉, let SNX := {A ⊆ X | A is a strongly null set }.

In the special case of 〈R, | · |〉, we denote SN := SN R = {A ⊆ R | A is SMZ }.

Proposition 7.10. For any metric space 〈X, d〉, SNX is a σ-ideal.23

Proof. It is obvious that ∅ ∈ SNX .

Consider some A ∈ SNX , and let B ⊂ A. Fix 〈εn | n ∈ N〉, then since A ∈ SNX there is

a cover of A consisting of open set 〈Un | n ∈ N〉 with Diam(Un) < εn for all n ∈ N. Since

B ⊆
⋃

n∈N Un, we conclude that B ∈ SNX .

Finally, to see that SNX is σ-additive, assume 〈An ∈ SNX | n ∈ N〉, and fix 〈εn | n ∈ N〉.

Let
⊎

n∈N Jn be a partition of N where Jn is infinite for every n ∈ N.

Let n ∈ N. An ∈ SNX , therefore there is a cover consisting of open sets 〈Un,k | k ∈ Jn〉

such that Diam(Un,k) < εk for all k ∈ Jn.

By
⋃

n∈N

⋃

k∈N Un,k ⊇
⋃

n∈NAn, we conclude that
⋃

n∈NAn ∈ SNX . �

We have already seen that SN ⊆ N . We now show a nice connection between SMZ and

connectedness.

Claim 7.11. SMZ ⇒ 0-dimensional.

Proof. Assume A ∈ R is SMZ. Recalling Theorem 4.28, it is enough to show that A is totally

disconnected. Assume the contrary, that is, it happens that x ∈ I ⊂ A where I is connected

and I \ {x} 6= ∅. I is then an interval which means of positive measure, a contradiction to

the fact that A is null (Proposition 7.3). �

23A σ-ideal is an ideal closed to countable unions, i.e., add(SNX) ≥ ℵ1.
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We now reveal the combinatorics of SMZ.

Definition 7.12 (Rothberger). For k ∈ N, a space 〈X,O〉 satisfies Rothberger’s property or

Sk(O,O) iff for any family of open covers of X, 〈Un | n ∈ N〉, there exists some 〈Fn ∈ [Un]k |

n ∈ N〉, such that
⋃

n∈N Fn covers X.

Observation 7.13. For a topological space 〈X,O〉, TFAE:

(a) X |= S1(O,O).

(b) X |= Sk(O,O) for some k ∈ N.

(c) X |= Sf (O,O) for some f ∈ NN, i.e., for any family of open covers of X, 〈Un | n ∈

N〉, there exists a family 〈Fn ∈ [Un]f(n) | n ∈ N〉, such that
⋃

n∈N Fn

Proof. To see (c)⇒(a), fix f ∈ NN such that X |= Sf (O,O).

Pick an arbitrary partition 〈An ∈ [N]f(n) | n ∈ N〉 with
⊎

n∈NAn = N.

For all n ∈ N, let Vn := {
⋂

Im(g) | g ∈
∏

m∈An
Um}.24 Evidently, each Vn covers X.

Applying Sf (O,O) to 〈Vn | n ∈ N〉, we get a family 〈Fn ∈ [Un]f(n) | n ∈ N〉, such that
⋃

n∈N Fn covers X. Pick 〈Gn ∈ [
∏

m∈An
Um]f(n) | n ∈ N〉 such that Fn = {

⋂

Im(g) | g ∈ Gn}

for all n ∈ N. By |Gn| = f(n) = |An|, we may enumerate Gn = {gi ∈
∏

m∈An
Um | i ∈ An}.

In this notation, we get that
⋃

n∈N Fn = {
⋂

Im(gi) | i ∈ N}.

Finally, since
⋂

Im gi ⊆ gi(i) ∈ Ui for all i ∈ N, we get that 〈gn(n) | n ∈ N〉 exemplifies

X |= S1(O,O). �

Observation 7.14. Assume 〈X, d〉 is a metric space.

For all Y ⊆ X, Y |= S1(O,O) implies that Y is strongly null.

Proof. Consider a family of positive reals 〈εn ∈ R | n ∈ N〉.

Fix a basis B for 〈X, d〉, and put Un := {U ∈ B | Diam(U) < εn} for each n ∈ N. By

applying S1(O,O) of Y to 〈Un | n ∈ N〉, we obtain a family 〈Un ∈ Un | n ∈ N〉 such that

Y ⊆
⋃

n∈N Un, and obviously, Diam(Un) < εn for all n ∈ N. �

Corollary 7.15. A Luzin set is an uncountable strongly null set.

In particular, Borel’s conjecture 7.5 is consistently false.

Proof. By Claim 3.25 and the preceding observation. �

Our reader might conjecture that Observation 7.14 can be improved and S1(O,O) is

actually equivalent to strongly null. However, this is not the case. By Proposition 7.10,

strongly null is an hereditary property, whereas we have the following.

Observation 7.16. Sfin(O,O) is non-hereditary.

24g ∈
∏

m∈An

Um means that dom(g) = An and g(m) ∈ Um for all m ∈ An.
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Proof. R is σ-compact, thus by Lemma 1.29, R |= Sfin(O,O). However, by Theorem 2.29

R \ Q is homeomorphic to NN. It follows from Theorem 4.10 that R \ Q 6|= Sfin(O,O). �

Observation 7.17. S1(O,O) is consistently non-hereditary.

Proof. Assume d = ℵ1. Consider M := ψ[D] ∪ (Q ∩ [0, 1]) of Theorem 4.20. Then M is

ℵ1-concentrated on the countable set Q∩ [0, 1], thus, M |= S1(O,O). However, By Theorem

4.10, ψ[D] does not even satisfy Sfin(O,O) (since ψ−1[ψ[D]] = D is dominating), not to

mention S1(O,O). �

It follows from Observation 4.8 that (d = ℵ1) =⇒ (d = cov(M)). It will soon be clear

that it suffices to assume d = cov(M) to conclude that M |= S1(O,O).

Definition 7.18. A set X ⊆ NN is said to be guessed by g ∈ NN iff {n ∈ N | f(n) = g(n)}

is infinite for all f ∈ X.

Theorem 7.19. Suppose X ⊆ NN. If |X| < cov(M), then X can be guessed.

Proof. For all f ∈ X and k ∈ N, it is obvious that:

Af,k :=
{

g ∈ NN | ∃n ∈ N
(

(n > k) ∧ g(n) = f(n)
)}

is dense open. Clearly, any g ∈
⋂

f∈X

⋂

k∈NAf,k will do, so assume towards a contradiction

that
⋂

k∈N

⋂

f∈X Af,k = ∅. It follows that NN =
⋃

k∈N

⋃

f∈X Bf,k, where Bf,k := NN \Af,k are

nowhere dense sets. Identifying NN with R \ Q, we get that:

R =
⋃

k∈N

⋃

f∈X

Bf,k ∪
⋃

q∈Q

{q}

is the union of |X| nowhere dense sets, contradicting |X| < cov(M). �

Theorem 7.20. If 〈X,O〉 is a topological space and X |= S1(O,O), then any continuous

image of X into NN can be guessed.

Proof. This essentially is the same proof as of Theorem 4.11. Assume some X ⊆ NN with

X |= S1(O,O). Fix m ∈ N. Put Um := {(m, k)↑ | k ∈ N} where (m, k)↑ := {f ∈ NN | f(m) =

k} for all k ∈ N. Evidently, Um is an open cover of X. Fix a bijection ψ : N × N ↔ N.

Fix i ∈ N. Since X |= S1(O,O) and 〈Uψ(i,n) | n ∈ N〉 is a countable family of open covers

of X, there exists gi : ψ[{i} × N] → N such that X ⊆
⋃

n∈N

(

ψ(i, n), g
(

ψ(i, n)
)

)↑

.

Let g : N → N be g :=
⋃

n∈N gn. It is evident that g guesses X. �

Theorem 7.21 (Rec law). Suppose 〈X,O〉 is a topological space that has a base B which is

countable and composed only of clopen sets.

If any continuous image of X into NN can be guessed, then X |= S1(O,O).
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Proof. Assume a family of open covers of X, 〈Un ⊆ B | n ∈ N〉. Since B is countable, there

exists an enumeration Un = {Um
n | m ∈ N} for all n ∈ N. We may also assume for all n ∈ N

that members of Un are mutually-disjoint, thus, for all x ∈ X, there is a unique fx ∈ NN

such that x ∈ U
fx(n)
n for all n ∈ N. Finally, let ψ : X → NN be the map x 7→ fx.

Since ψ is continuous, we may pick g ∈ NN that guesses ψ[X].

For all n ∈ N, let Un := U
g(n)
n . To see that 〈Un | n ∈ N〉 covers X. Notice that for each

x ∈ X, there exists some n ∈ N such that fx(n) = g(n), i.e., x ∈ U
g(n)
n = Un. �

Corollary 7.22. For all X ⊆ R, TFAE:

• X |= S1(O,O).

• Any continuous image of X into NN can be guessed.

Proof. By theorems 7.20,7.21 and 7.11. �

Corollary 7.23. X |= S1(O,O) for all X ∈ [R]<cov(M).

Corollary 7.24. If X ⊆ R is cov(M)-concentrated on one of its countable subsets, then

X |= S1(O,O).

Corollary 7.25. If cov(M) = d, then M of Theorem 4.20 satisfies S1(O,O).

To complete the picture, we mention the following important result.

Theorem 7.26 (Laver). Borel’s conjecture 7.5 is consistent.

It follows from Corollary 7.15 and the preceding that Borel’s Conjecture is independent

of the usual axioms of mathematics (ZFC).

Definition 7.27. A set X ⊆ NN is strongly unbounded iff for all f ∈ NN, |X ∩ {f}| < |X|.

Intuitively, strongly unbounded sets needs to be ”fat” enough to be unbounded, but ”slim”

enough to be strongly unbounded. For instance, NN is indeed unbounded, but it is too ”fat”

to be strongly-unbounded, recalling Observation 4.9.

Observation 7.28. There exists strongly unbounded families of cardinality b and d.

Proof. By Lemmas 1.11 and 1.12. �

Observation 7.29. Suppose X ⊆ NN is a set such that :

• cf |X| > ℵ0,

• For all f ∈ NN, |{g ∈ X | g ≤ f}| < |X|.

then, X is strongly unbounded.
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Proof. Because {g ∈ NN | g ≤∗ f} can be obtained as the following countable union:
⋃

{

{g ∈ NN | g ≤ f ′} | f ′ ∈ NN∃N ∈ N(∀n ≥ N(f ′(n) = f(n))
}

.

�

Let us examine several consequences of Borel’s conjecture (BC).

Observation 7.30. Assuming ZFC+BC, we have:

(a) SN = [R]≤ω.

(b) X ⊆ R satisfies S1(O,O) iff X is countable.

(c) Any (continuous) image of SMZ is SMZ.

(d) There is no Luzin set.

(e) For any uncountable cardinal κ ≤ cov(M), there is no strongly unbounded family

X ∈ [NN]κ.

(g) cov(M) < min{cof(M), b}. In particular b > ℵ1 and ¬CH.

Proof. (a) is equivalent to BC. (b) follows from Observation 7.14. (c) follows from the fact

that an image of a countable set is countable. (d) follows from Corollary 7.15.

(e) If X ⊆ NN is strongly-unbounded and ψ : NN → R is an homeomorphism, then

ψ[X] ∪ (Q ∩ [0, 1]) is |X|-concentrated at Q ∩ [0, 1]. Now if X is strongly-unbounded and

|X| ≤ cov(M), then by Corollary 7.24 and Observation 7.14, ψ[X] ∪ (Q ∩ [0, 1]) is SMZ.

(f) If cov(M) = cof(M), then we may apply Theorem 3.7 to obtain a subset of R which is

cov(M)-concentrated at any of its countable dense subsets. Now apply Corollary 7.24 and

Observation 7.14.

If cov(M) = b, then Observation 7.28 would have contradict the preceding item.

Finally, by b > cov(M), we have:

c ≥ b > cov(M) ≥ add(M) ≥ ℵ1.

�

Question 7.31. Is it always true that the continuous image of SMZ is SMZ?

We had already seen that, consistently, SMZ and S1(O,O) are different properties, e.g.,

assuming CH, S1(O,O) is non-hereditary, while SN is an ideal. To answer our question

(negatively), we introduce the following theorem:

Theorem 7.32 (Fremlin-Miller). For X ⊆ R, TFAE:

(a) X |= S1(O,O).

(b) Any continuous image of X into R is strongly null.
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Corollary 7.33. Assuming CH, there exists a SMZ set X ⊆ R and a continuous function

f : X → R, such that f [X] is not SMZ.

It happens that the converse of Theorem 7.19 is also true.

Fact 7.34. There exists X ∈ [NN]cov(M) that cannot be guessed.

In particular, the minimal cardinality of A ⊆ R with A 6|= S1(O,O) is cov(M).

Together with Observation 7.30, we obtain that assuming ZFC+BC: cov(M) = ℵ1 < b.


