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Proposition 5.1. N has a countable base consisting of clopen sets.

Proof. {{(n1,...,nk)} % NN)nl, ...,ny, k € N} is a countable base for N (Recall Example

2.14). The complement of a base set {(ny,...,n;)} x NV is equal to the union of all sets of
the form {(my, ..., ms)} x NN where exists i < k such that m; # n;. This is a union of open
sets, hence open. Therefore {(my,...,m;)} x NV is also closed. d

B:={(a,b) N(R\Q) | a,b € Q} = {[a,b] N (R\ Q) | a,b € Q} is a countable family of
clopen sets, admitting a base to R\Q. Applying 2.29, we have another proof to Proposition
5.1.

Definition 5.2. Whenever (X,0) is a topological space whose topology O is a metric
topology'* (generated by some metric p), we say that (X,0) is a metrizable topological
space.

In this case we can say that the metric is compatible with the topology.

Lemma 5.3. Every metric p on a set X is equivalent to a bounded metric.'®

Proof. There are two standard ways of replacing p by a bounded metric: define new functions
p1 and py on X x X by

pr(x,y) == min{1, p(z, y)}

. plzy)

We will show that p; is indeed a metric on X, generating the same topology as p does. The
reader may verify the same for ps.
p1 is a metric:
e p1(z,y) = min{l, p(x,y)} > 0 since p(z,y) > 0.
e pi(z,y) =0iff p(z,y) = 0 and this occur iff z = y.
o pi(z,2) = min{l, p(z, 2)} < min{1, p(z,y)+p(y, 2)} < min{l, p(z, y)}+min{l, p(y, 2)} =
p(z,y) + p1(y, 2)
p1 generates the same topology as p does: on one hand, for some d > 0, Bf'(z) D
B i (1.4 (%) On the other hand, for some d < 1, By (z) = Bj(x) (where By’ (z) for example
is the set {y € X | p1(z,y) < d}). O

Theorem 5.4. A product space [, . Xn is metrizable iff each space X,, is metrizable.

neN

14Open balls generated by any metric is always a topology base.
5 Two metrics on a set are equivalent if they generate the same topology.
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Proof. (=) Each X, is homeomorphic to a subspace of the product space, hence metrizable.
(<) Let ((Xn, pn) | n € N) be a family of metric spaces with Im(p,) C [0, 1] for all n € N.
Define p on X := [[ X; as follows: for x = (2,29, ...) and y = (y1, Y2, -..)

x,y) = —pi(xif ) .
p(z,y) % 5
It is easily verified to be a metric. We will show that it gives the product topology in X.
Pick x = (z1, %2, ...) € X and assume B, C X is an open set containing . We may assume
that B, is the is of the following form:

B, = B., (1) x -+ x B () x [[ Xx-

k>n

where B, (z;) = {y € X, | pi(y, ;) < &;} for all relevant i.

g1 En
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B-(z) C B,. Thus the product topology on X is weaker that the topology induced by p. On
the other hand, given ¢ > 0, we can choose N large enough that >, 3 < £/2. Then
it is easily verified that B < (1) X --» x B = (zn) X [[;o 5 Xk C B:(2), hence, the topology
induced by p is weaker the the product topology. U

Put & := min ( ) Now, if p(x,y) < €, then p;(x;,y;) < ¢; for alli € N, so apparently

Corollary 5.5. NN is a metric-space.
Proposition 5.6. NV is a complete metric space.

Proof. For f,g € NY, denote by N(f,g) := min{n € N | f(n) # g(n)}. Now, define
p(f,g) = m. As in the proof of Theorem 5.4, p is a metric that is compatible with the
usual product topology of NV,

Assume that {f, }ren is a Cauchy sequence. For K € N, there exists Nx € N such that
d(fi, fm) < 1/K for all [,m > Ng. By definition of p this means that f;(n) = f,,(n) for all
I[,m> N, and n < K.

Define f € NY as follows: for every n € N define f(n) := fx, (n). Obviously, d(f,, f) — 0
as n — oo, concluding that NV is complete. O

Corollary 5.7. NV is a Baire space.

Notice that if a space is locally compact, then it is also a Baire space, this is essentially
due to Lemma 3.13 and Theorem 3.16.

Now, Since R is locally compact, and N is homeomorphic to R \ Q,'® we know that N¥

t17

is also locally compact™’. This gives another proof for the preceding Corollary.

homeomorphic, not isometric.
I"Recall Corollary 4.27.
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Definition 5.8. Suppose (X, O) is a topological space. A family of open sets U C O is a
~v-cover iff U is infinite, and for all x € X, {U e U | v ¢ U} is finite.

Thus, for instance, {(—n,n) | n € N} is a y-cover of R.

Observation 5.9. If U is a y-cover of some space (X,0), then any infinite subset V C U
1S @ 7y-cover.
In particular, any y-cover contains a countable vy-cover.

Observation 5.10. Suppose U = {U,, | n € N} is an open cover of some space (X, O), then
either U contains a finite subcover, or that V :={{J, ., U, | n € N} is a vy-cover of X.

m<n

Proof. If U does not contain a finite subcover, then V is infinite, and is clearly a y-cover. [

Definition 5.11. For a topological space (X, O) denote O := {U/ C O | U is an open cover of X}
and I' := {V C O | V is an open 7-cover of X}.

Definition 5.12 (Hurewicz). A space (X, O) satisfies Hurewicz’s property or Uy;, (O, 1) iff
for any sequence of open covers of X, (U, | n € N), each do not contain a finite subcover,
there exists some (F, € [U,]< | n € N), such that {{JF, | n € N} forms a y-cover of X.

Observation 5.13. Uy, (O, ') is a topological property and there also exists an analogue of
Observation 1.51 for Uy, (O, ).

Proof. Essentially the same proofs of 2.1 and 1.31. ]

To compare the definition of Uy, (O,I') with Sg;,, (O, O) (Definition 1.26), it is evident
that the left hand side set (O in both cases) is the requirement that U, € O for all n € N.

Now, for the right hand side, in the first case we need to generate a ~-cover, that is, a
member of I', while, on the other, we need to generate an open cover, that is, a member of
O. The generation is always based at some finite sets (F,, € [U,]<* | n € N), where S "says”
that the object is obtained by taking |J _nFn, and U says that the object is obtained by
considering {|J F, | n € N}.

neN

Observation 5.14. X |= S}, (O,I") implies that any open cover of X contains a y-cover.
Consequently, no topological space X satisfies S, (O,T).

Proof. For an open cover U, consider (U, € O | n € N) where U,, :== U for all n € N. By the
hypothesis, there exists (F, € [U,]<* | n € N) such that (J, .y Fn € U is a y-cover.
To see the second assertion, take U := {X}. O

Observation 5.15. Uy, (O,T") = S, (O, O).
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Proof. We assume a topological space (X,0) and (U, € O | n € N). By the hypothesis,
there exists (F,, € [U,]< | n € N) such that {{JF, | n € N} € I.
We claim that | J, _y Fn covers X. Indeed, since {|JF, | n € N} covers X, we have:

rc YUz -UU~

neN neN

neN
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We can now obtain the result of Lemma 1.29 as an application of the preceding together
with the following.

Lemma 5.16. If (X, O) is a o-compact topological space, then X = Uy (O,T).

Proof. Suppose (K, | n € N) is an increasing sequence of compact subspaces of X, whose
union is X, and (U, € O | n € N), each do not contain a finite subcover of X. By
compactness of each factor, there exists (F,, € [U,]<¥ | n € N) such that K, C |JF, for all
n € N. Finally, since (K, | n € N) / X, we conclude that {{JF, | n € N} is a y-cover of X
(it is infinite because each U,, does not contain a finite subcover). 4

Conjecture 5.17 (Hurewicz). Uy, (O, 1) is equivalent to o-compactness.

The reader might want to compare the above with Conjecture 1.30. To continue the
research, we need the following reduction theorem, an analogue of Theorem 4.10.

Theorem 5.18 (Hurewicz). For all X CR, TFAE:
o X =Usin(O,1).

o Any continuous image of X into NV is <*-bounded.
Proof. We omit the proof. Instead, we prove the following two propositions. O

Theorem 5.19. If (X,0) is a topological space and X = Uy (O, 1), then any continuous
image of X into NV is <*-bounded.

Proof. By Observation 5.13, we may assume that X C N¥ and X = Uy, (O,T). Fix n € N.
Put U, := {(n,k)! | k € N}. Evidently, (4, | n € N) € O, so let (F, € [U,]<* | n € N)
witness Uy, (O,T). Define g : N — N. Forn € N, let g(n) := 1+ max{k € N| (n,k)! € F,}.
To see that X C {g}, we pick f € X and show that f <* g.
Since {{JF, | n € N} € T, there exists some N € N, such that f € |JF, for all n > N,
that is, f(n) < g(n) for all n > N, and we are done. O

Theorem 5.20 (Rectaw). Suppose (X, O) is a topological space that has a base B which is
countable and composed only of clopen sets.
If any continuous image of X into NN is <*-boudned, then X | Uy, (O,T).
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Proof. By Observation 5.13, we assume a family of open covers of X, (U, C B | n € N),
each do not contain a finite subcover. Since B is countable, there exists an enumeration
U, = {U™ | m € N} for all n € N. We may also assume that members of U,, are mutually-
disjoint for all n € N, thus, for all # € X, there is a unique f, € NY such that = € U,fz(") for
all n € N. Finally, let v : X — NN be the map z — f,.

Since 1) is continuous, we may pick g € NY witnessing that 1[X] is <*-boudned. For all
n € N, put F, := {UL, .., U™}, To see that {{JF, | n € N} is a v-cover, fix € X. By
definition of g, there exists some N € N such that f,(n) < g(n) for all n > N, and hence,
r e |JF, forall n > N. As usual, {|JF, | n € N} is infinite because each U,, does not

contain a finite subcover. O
Corollary 5.21. If X € [R|<%, then X = Uy, (O,T).
Proof. By (<) of Theorem 5.18. O

The next is similar to Corollary 4.19.

Corollary 5.22. Any uncountable X € [R]<° is a counter-ezample to Hurewicz’s conjecture.
In particular, Hurewicz’s conjecture 5.17 is consistently false.

<b is uncountable. If X

Proof. Suppose b > N; (this assumption is consistent) and X € [R]
was o-compact, then by Lemma 3.23, it had contained a perfect subset and by Lemma 3.26,

X had to contained a set of size ¢, contradicting | X| < b < c. g

Observation 5.23. Consistently, there exists X C NN such that:

<a> X ): SfiTL(O’O)f

(b) X ¥ Usin(O,T') (and in particular, X is not o-compact).
Thus, consistently: Menger’s conjecture 1.30 has a counter-ezample already inside NV, and
Observation 5.14 cannot be improved.

Proof. Put J := {Y C NY | Y is meager }. By Corollary 5.7, J is a proper ideal. Assume
¢ = ¥y (this is consistent), or even the weaker assumption that cov(7) = cof (7).

For X := A, the set given by Theorem 3.7 by taking I = J, the same argument of the
proof of Claim 3.25 shows that A is cov(J)-concentrated on one of its countable (dense)
subsets. Now, since Z, C J, we have cov(J) < cov(Z,) = 9. Thus, we noticed that there
exists D € [X]* such that X is d-concentrated at D, and hence X = Sy,(O, O).

To see that X [~ Uy (O,T), notice that X ¢ J implies X ¢ 7, and recall Theorem
5.19. U

With the notation the above proof, it is very interesting to notice that even if ¢ = ¥y (and
hence b = 0), then still, somehow, the diagonalization process of Theorem 3.7 will generate
X C [NY] (of cardinality b = 9), which is <*-unbounded, but not <*-dominating.



INFINITE COMBINATORIAL TOPOLOGY 33

Definition 5.24. A function f: X — Y between two topological spaces is a Borel function
iff the preimage of an open set (in Y') is Borel (in X).

Thus, Borel function is a weakening of continuous function.

Theorem 5.25 (Kuratowski). If S C [0,1] C R and f : S — NN is a Borel function, then
there exists an extension g : [0,1] — NN such that g is a Borel function and g | S = f.

Theorem 5.26 (Luzin). If f : [0,1] — N is a Borel function, then for all n € N, there
exists some closed subset C,, C [0,1] such that f | C, is continuous and C,, is of Lebesgue
measure > 1 — %

The next is similar to Theorem 3.24.

Theorem 5.27. A Sierpinski subset of [0, 1] is a counter-example to Hurewicz’s conjecture.
In particular, Hurewicz’s conjecture 5.17 is consistently false.

Proof. Let S C [0,1] be a Sierpinski set. The consistency of existence of such set follows,
e.g., from ¢ = Xy and the proof of Corollary 3.8 applied to N ] instead of to N.

Claim 5.28. S is not o-compact.

Proof. If S was o-compact, then by Lemma 3.23, it had contain a perfect subset and by
Lemma 3.26, S had to contained a null set of size ¢, contradicting the fact that S is Sierpinski
set. Il

We now use Theorem 5.18 to prove that S = Uy, (O,T).
Claim 5.29. Assume ¢ : S — NV is a Borel function, then (S| € .

Proof. Let ¢ : [0,1] — NN be an extension of ¥ given by Theorem 5.25. Let (C, C [0,1] |
n € N) be like in Theorem 5.26 applied to .

For n € N, the choice of C, implies that ¢[Cy] is compact. It follows @[,y Cn] =
Uen ¢[Cr] is o-compact, and in particular, 1[S N J,,cy Cn] € Zp. (Recall Lemma 4.7.)

We are left with showing that [S\ |, ey Cn] € Zs, but this is trivial, because | J,,cy Cn is

of measure 1 and S is a Sierpinski set, so, S\ (U, ey Cn is countable. O

g

With the notation of the preceding proof, notice that it suffices to assume that S has the
property that any intersection of S with a null set is of cardinality < b, that is, the proof
can be carried out flawlessly had we assumed that S C [0, 1] is the set given by Theorem
3.7, whenever cov(N') = cof(N) = b.
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Definition 5.30. A compactification of a space X is a pair (K,h), where K is compact,
h: X — h(X) C K is an homeomorphism, and h(X) = K
We will sometimes simply say that K is a compactification of X. In many cases, h will

be an inclusion map, so that X C K.

Definition 5.31. A space (X, O) is locally-compact iff for all x € X, there exists an open
U C X, with z € U and U compact.

Definition 5.32 (Alexandrov compactification). Let (X, O) be locally-compact, noncom-
pact Hausdorff space, and p ¢ X. Define (X*, O*) by letting X* := X U {p} and:

O :=0U{{p}U(X\K)|K C X is compact }.
We call X* the one-point compactification of X.

Observations:

e Verifying that (X*, O*) is indeed a topological space is easy.

e X* is compact. Assume {Us}ses is an open cover of X*.

It follows that there exist some s, € S with p € U, that is, U,, = {p} U (X \ K)
where K is compact in X. Now, {U,}ses\s, is an open cover of K, so there is a finite
subcover {Us,, ..., U, }. We conclude that {U,,,Us,, ...,Us, } is a cover of X*.

e X is open in X* since X is open in itself.

e X is dense in X*. Showing that {p} is not open will do. Assume that {p} is open,
meaning {p} = {p} U (X \ X) where X is compact. A contradiction, since X is
noncompact.

e X* is Hausdorff. Consider two distinct points x, 2’ in X*. If both are in X then we
are done since X is Hausdorff. So, assume 2’ = p. X is locally compact, that is, there
is an open set x € U, such that U, is compact in X, therefore V, := {p} U (X \ U,)
is open and U, NV}, = 0.

Example 5.33. (1) Consider the real line R, and define R* := R U {co} with the topology
as described. Now, this is actually a space homeomorphic to S*, the unit sphere in R?, which
is obviously compact.

(2) Actually, the one-point compactification of R™ is S™.

Theorem 5.34 (Alexander). Assume (X,0) is a topological space and S is some subbase
for the topology on X.
If every cover of X with elements of S has a finite subcover, then X is compact.

Proof. For the sake of the proof, we shall use the following notation:
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A collection U of open sets is B iff it is not a cover. It is By;, iff it does not have a finite
subcover. We say that a By, collection U is mazimal iff there exists some open set U such
that U U{U} is not B,.

Evidently, B = By;,, and (X, O) is compact iff B;, = B for all i/ C O.

Lemma 5.35. Every By;, collection can be extended to a mazimal By, collection.

Proof. Assume Uy is By;,. Let A :={U | Uy CU C O is By }. A is clearly non-empty.
Naturally, (A, C) is a partially ordered-set. Now, recall Zorn’s Lemma:

Lemma 5.36 (Zorn). If (P, <) is a non-empty poset with the property:
(x) For all C C P such that (C,<) is linearly-ordered, there ezists some y € P such that
x <y forallx € C.

Then, (P, <) contains a mazximal element m, that is, m £ x for all x € P.

Clearly, to complete the proof, it suffices to show that the hypothesis of Zorn’s Lemma
holds. Let {U;}ic; € A (where I is some index set) be a chain, and define U/ := (J,,; U;.

Assume now that U is not By, that is, there are {Uj }x<, C U such that X = J, ., Us.
Since there is an increasing sequence (i € I | 1 < k < n) such that Uy € U;,, we get that
U, is Byi,. A contradiction. O

So, assume now that U is a maximal By;, extension of U.

Let J be an arbitrary index set. For all j € J assume V; ¢ U is an open set, then there are
{Uj, Yrza, all in U such that V; UU,.-,, Uy, = X. Therefore (m ! vj) U (U Uiz, Uk) = X.
We conclude that there does not exist U € U such that [ ; Vi C U, otherwise U would not
have been By;,. Thus, if ﬂj V; C U for some U € U, then there is j € J with V; € U.

Define U’ :=UNS. Let x € U € U. There are {V;},<, C S such that z € [, V; C U,
thus, there is j < n such that V; € U, therefore V; € U’. We conclude that JU' = JU.

Now, assume X = [JU, meaning X = [JU’, but, by the hypothesis, U’ has a subcover for
X, therefore so does U, in contradiction to the fact that U is By;),.

So, X # |JU, that is, U is a B collection, in particular, Uy is a B collection, but we
assumed Uy is By,

Since Uy is an arbitrary By;, collection, we get that X is compact. U

Theorem 5.37 (Tychonoff). A nonempty product space is compact iff each factor space (in
the product) is compact.

Proof. (=) If the product space is nonempty, then the projection maps are all continuous (see
proposition 2.15) and onto, and since the continuous image of a compact space is compact,
the result follows.
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(<) Assume {X;}ics is a collection of compact spaces, and define X :=[],., X;. Consider
the canonical subbase to the topology of X, S := {x;'[U] | i € I,U C X is open}.

By Alexander’s theorem 5.34, it is sufficient to show that every By, collection U C S, is
also a B collection, so let us fix such U.

For alli € I, put U; .= {U C X; | n; '[U] € U}.

Lemma 5.38. For alli € I, U; is By, in X;.

Proof. Assume that U; is not B, in X;, then there are Uy, .., U,, € U; such that UkSn U, =X,
hence X = w1, '[X;] = ’/Ti_l[ngn U] = U< m [Uk]. We conclude that U is Byi,. A
contradiction. U

Now, since X; is compact, we must conclude that ; is a B collection (for all i € I),

meaning that there exist some z; € X; \ (UU;).
Let x € X be the only member in X satisfying m;(z) = z; for all ¢ € I.

Lemma 5.39. = ¢ |J A.
In particular, U is a B collection.

Proof. Assume z € | JU, then there exists some U € U such that x € U, that is, there exists
some i € I and U; C X; such that » € U = ; [U]]
Now, x € ; '[U;] iff ; = m;(z) € U;. This is a contradiction to the fact that ; ¢ JU;. O

g

It is worth mentioning that Tychonoff’s theorem 5.37 is equivalent to the Axiom of Choice
(the C of ZFC) which is equivalent to Zorn’s Lemma 5.36.

Theorem 5.40 (Scheepers-Just-Miller-Szeptycki). Hurewicz’s conjecture 5.17 is false.

We omit the original proof. Instead, in the next lecture we shall introduce an alternative,
simpler, proof due to Bartoszynski and Tsaban.



