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Proposition 5.1. NN has a countable base consisting of clopen sets.

Proof.
{

{(n1, . . . , nk)} × NN

∣

∣

∣
n1, . . . , nk, k ∈ N

}

is a countable base for NN (Recall Example

2.14). The complement of a base set {(n1, . . . , nk)} × NN, is equal to the union of all sets of

the form {(m1, . . . ,mk)}×NN where exists i ≤ k such that mi 6= ni. This is a union of open

sets, hence open. Therefore {(m1, . . . ,mk)} × NN is also closed. �

B :=
{

(a, b) ∩ (R \ Q) | a, b ∈ Q
}

=
{

[a, b] ∩ (R \ Q) | a, b ∈ Q
}

is a countable family of

clopen sets, admitting a base to R\Q. Applying 2.29, we have another proof to Proposition

5.1.

Definition 5.2. Whenever 〈X,O〉 is a topological space whose topology O is a metric

topology14 (generated by some metric ρ), we say that 〈X,O〉 is a metrizable topological

space.

In this case we can say that the metric is compatible with the topology.

Lemma 5.3. Every metric ρ on a set X is equivalent to a bounded metric.15

Proof. There are two standard ways of replacing ρ by a bounded metric: define new functions

ρ1 and ρ2 on X ×X by

ρ1(x, y) := min{1, ρ(x, y)}

ρ2(x, y) :=
ρ(x, y)

1 + ρ(x, y)

We will show that ρ1 is indeed a metric on X, generating the same topology as ρ does. The

reader may verify the same for ρ2.

ρ1 is a metric:

• ρ1(x, y) = min{1, ρ(x, y)} ≥ 0 since ρ(x, y) ≥ 0.

• ρ1(x, y) = 0 iff ρ(x, y) = 0 and this occur iff x = y.

• ρ1(x, z) = min{1, ρ(x, z)} ≤ min{1, ρ(x, y)+ρ(y, z)} ≤ min{1, ρ(x, y)}+min{1, ρ(y, z)} =

ρ1(x, y) + ρ1(y, z)

ρ1 generates the same topology as ρ does: on one hand, for some d > 0, B
ρ1

d (x) ⊇

B
ρ

min {1,d}(x). On the other hand, for some d < 1, B
ρ1

d (x) = B
ρ
d(x) (where B

ρ1

d (x) for example

is the set {y ∈ X | ρ1(x, y) < d}). �

Theorem 5.4. A product space
∏

n∈N
Xn is metrizable iff each space Xn is metrizable.

14Open balls generated by any metric is always a topology base.
15Two metrics on a set are equivalent if they generate the same topology.
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Proof. (⇒) Each Xn is homeomorphic to a subspace of the product space, hence metrizable.

(⇐) Let 〈〈Xn, ρn〉 | n ∈ N〉 be a family of metric spaces with Im(ρn) ⊆ [0, 1] for all n ∈ N.

Define ρ on X :=
∏

Xi as follows: for x = (x1, x2, ...) and y = (y1, y2, ...)

ρ(x, y) :=
∑

i∈N

ρi(xi, yi)

2i
.

It is easily verified to be a metric. We will show that it gives the product topology in X.

Pick x = (x1, x2, ...) ∈ X and assume Bx ⊆ X is an open set containing x. We may assume

that Bx is the is of the following form:

Bx = Bε1
(x1) × · · · × Bεn

(xn) ×
∏

k>n

Xk.

where Bεi
(xi) = {y ∈ Xi | ρi(y, xi) < εi} for all relevant i.

Put ε := min
(

ε1

2
, ..., εn

2n

)

. Now, if ρ(x, y) < ε, then ρi(xi, yi) < εi for all i ∈ N, so apparently

Bε(x) ⊂ Bx. Thus the product topology on X is weaker that the topology induced by ρ. On

the other hand, given ε > 0, we can choose N large enough that
∑

i≥N+1
1
2i < ε/2. Then

it is easily verified that B ε
2N

(x1) × · · · × B ε
2N

(xN) ×
∏

k>N Xk ⊂ Bε(x), hence, the topology

induced by ρ is weaker the the product topology. �

Corollary 5.5. NN is a metric-space.

Proposition 5.6. NN is a complete metric space.

Proof. For f, g ∈ NN, denote by N(f, g) := min{n ∈ N | f(n) 6= g(n)}. Now, define

ρ(f, g) := 1
N(f,g)

. As in the proof of Theorem 5.4, ρ is a metric that is compatible with the

usual product topology of NN.

Assume that {fn}n∈N is a Cauchy sequence. For K ∈ N, there exists NK ∈ N such that

d(fl, fm) < 1/K for all l,m ≥ NK . By definition of ρ this means that fl(n) = fm(n) for all

l,m ≥ Nk and n ≤ K.

Define f ∈ NN as follows: for every n ∈ N define f(n) := fNn
(n). Obviously, d(fn, f) → 0

as n→ ∞, concluding that NN is complete. �

Corollary 5.7. NN is a Baire space.

Notice that if a space is locally compact, then it is also a Baire space, this is essentially

due to Lemma 3.13 and Theorem 3.16.

Now, Since R is locally compact, and NN is homeomorphic to R \ Q,16 we know that NN

is also locally compact17. This gives another proof for the preceding Corollary.

16homeomorphic, not isometric.
17Recall Corollary 4.27.
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Definition 5.8. Suppose 〈X,O〉 is a topological space. A family of open sets U ⊆ O is a

γ-cover iff U is infinite, and for all x ∈ X, {U ∈ U | x 6∈ U} is finite.

Thus, for instance, {(−n, n) | n ∈ N} is a γ-cover of R.

Observation 5.9. If U is a γ-cover of some space 〈X,O〉, then any infinite subset V ⊆ U

is a γ-cover.

In particular, any γ-cover contains a countable γ-cover.

Observation 5.10. Suppose U = {Un | n ∈ N} is an open cover of some space 〈X,O〉, then

either U contains a finite subcover, or that V := {
⋃

m≤n Un | n ∈ N} is a γ-cover of X.

Proof. If U does not contain a finite subcover, then V is infinite, and is clearly a γ-cover. �

Definition 5.11. For a topological space 〈X,O〉 denote O := {U ⊆ O | U is an open cover of X}

and Γ := {V ⊆ O | V is an open γ-cover of X}.

Definition 5.12 (Hurewicz). A space 〈X,O〉 satisfies Hurewicz’s property or Ufin(O,Γ) iff

for any sequence of open covers of X, 〈Un | n ∈ N〉, each do not contain a finite subcover,

there exists some 〈Fn ∈ [Un]<ω | n ∈ N〉, such that {
⋃

Fn | n ∈ N} forms a γ-cover of X.

Observation 5.13. Ufin(O,Γ) is a topological property and there also exists an analogue of

Observation 1.31 for Ufin(O,Γ).

Proof. Essentially the same proofs of 2.1 and 1.31. �

To compare the definition of Ufin(O,Γ) with Sfin(O,O) (Definition 1.26), it is evident

that the left hand side set (O in both cases) is the requirement that Un ∈ O for all n ∈ N.

Now, for the right hand side, in the first case we need to generate a γ-cover, that is, a

member of Γ, while, on the other, we need to generate an open cover, that is, a member of

O. The generation is always based at some finite sets 〈Fn ∈ [Un]<ω | n ∈ N〉, where S ”says”

that the object is obtained by taking
⋃

n∈N
Fn, and U says that the object is obtained by

considering {
⋃

Fn | n ∈ N}.

Observation 5.14. X |= Sfin(O,Γ) implies that any open cover of X contains a γ-cover.

Consequently, no topological space X satisfies Sfin(O,Γ).

Proof. For an open cover U , consider 〈Un ∈ O | n ∈ N〉 where Un := U for all n ∈ N. By the

hypothesis, there exists 〈Fn ∈ [Un]<ω | n ∈ N〉 such that
⋃

n∈N
Fn ⊆ U is a γ-cover.

To see the second assertion, take U := {X}. �

Observation 5.15. Ufin(O,Γ) ⇒ Sfin(O,O).
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Proof. We assume a topological space 〈X,O〉 and 〈Un ∈ O | n ∈ N〉. By the hypothesis,

there exists 〈Fn ∈ [Un]<ω | n ∈ N〉 such that {
⋃

Fn | n ∈ N} ∈ Γ.

We claim that
⋃

n∈N
Fn covers X. Indeed, since {

⋃

Fn | n ∈ N} covers X, we have:

X ⊆
⋃

n∈N

⋃

Fn =
⋃ ⋃

n∈N

Fn.

�

We can now obtain the result of Lemma 1.29 as an application of the preceding together

with the following.

Lemma 5.16. If 〈X,O〉 is a σ-compact topological space, then X |= Ufin(O,Γ).

Proof. Suppose 〈Kn | n ∈ N〉 is an increasing sequence of compact subspaces of X, whose

union is X, and 〈Un ∈ O | n ∈ N〉, each do not contain a finite subcover of X. By

compactness of each factor, there exists 〈Fn ∈ [Un]<ω | n ∈ N〉 such that Kn ⊆
⋃

Fn for all

n ∈ N. Finally, since 〈Kn | n ∈ N〉 ր X, we conclude that {
⋃

Fn | n ∈ N} is a γ-cover of X

(it is infinite because each Un does not contain a finite subcover). �

Conjecture 5.17 (Hurewicz). Ufin(O,Γ) is equivalent to σ-compactness.

The reader might want to compare the above with Conjecture 1.30. To continue the

research, we need the following reduction theorem, an analogue of Theorem 4.10.

Theorem 5.18 (Hurewicz). For all X ⊆ R, TFAE:

• X |= Ufin(O,Γ).

• Any continuous image of X into NN is ≤∗-bounded.

Proof. We omit the proof. Instead, we prove the following two propositions. �

Theorem 5.19. If 〈X,O〉 is a topological space and X |= Ufin(O,Γ), then any continuous

image of X into NN is ≤∗-bounded.

Proof. By Observation 5.13, we may assume that X ⊆ NN and X |= Ufin(O,Γ). Fix n ∈ N.

Put Un := {(n, k)↑ | k ∈ N}. Evidently, 〈Un | n ∈ N〉 ∈ O, so let 〈Fn ∈ [Un]<ω | n ∈ N〉

witness Ufin(O,Γ). Define g : N → N. For n ∈ N, let g(n) := 1+max{k ∈ N | (n, k)↑ ∈ Fn}.

To see that X ⊆ {g}, we pick f ∈ X and show that f ≤∗ g.

Since {
⋃

Fn | n ∈ N} ∈ Γ, there exists some N ∈ N, such that f ∈
⋃

Fn for all n ≥ N ,

that is, f(n) ≤ g(n) for all n ≥ N , and we are done. �

Theorem 5.20 (Rec law). Suppose 〈X,O〉 is a topological space that has a base B which is

countable and composed only of clopen sets.

If any continuous image of X into NN is ≤∗-boudned, then X |= Ufin(O,Γ).
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Proof. By Observation 5.13, we assume a family of open covers of X, 〈Un ⊆ B | n ∈ N〉,

each do not contain a finite subcover. Since B is countable, there exists an enumeration

Un = {Um
n | m ∈ N} for all n ∈ N. We may also assume that members of Un are mutually-

disjoint for all n ∈ N, thus, for all x ∈ X, there is a unique fx ∈ NN such that x ∈ U
fx(n)
n for

all n ∈ N. Finally, let ψ : X → NN be the map x 7→ fx.

Since ψ is continuous, we may pick g ∈ NN witnessing that ψ[X] is ≤∗-boudned. For all

n ∈ N, put Fn := {U1
n, .., U

g(n)
n }. To see that {

⋃

Fn | n ∈ N} is a γ-cover, fix x ∈ X. By

definition of g, there exists some N ∈ N such that fx(n) ≤ g(n) for all n ≥ N , and hence,

x ∈
⋃

Fn for all n > N . As usual, {
⋃

Fn | n ∈ N} is infinite because each Un does not

contain a finite subcover. �

Corollary 5.21. If X ∈ [R]<b, then X |= Ufin(O,Γ).

Proof. By (⇐) of Theorem 5.18. �

The next is similar to Corollary 4.19.

Corollary 5.22. Any uncountable X ∈ [R]<b is a counter-example to Hurewicz’s conjecture.

In particular, Hurewicz’s conjecture 5.17 is consistently false.

Proof. Suppose b > ℵ1 (this assumption is consistent) and X ∈ [R]<b is uncountable. If X

was σ-compact, then by Lemma 3.23, it had contained a perfect subset and by Lemma 3.26,

X had to contained a set of size c, contradicting |X| < b ≤ c. �

Observation 5.23. Consistently, there exists X ⊆ NN such that:

(a) X |= Sfin(O,O),

(b) X 6|= Ufin(O,Γ) (and in particular, X is not σ-compact).

Thus, consistently: Menger’s conjecture 1.30 has a counter-example already inside NN, and

Observation 5.14 cannot be improved.

Proof. Put J := {Y ⊆ NN | Y is meager }. By Corollary 5.7, J is a proper ideal. Assume

c = ℵ1 (this is consistent), or even the weaker assumption that cov(J ) = cof(J ).

For X := A, the set given by Theorem 3.7 by taking I = J , the same argument of the

proof of Claim 3.25 shows that A is cov(J )-concentrated on one of its countable (dense)

subsets. Now, since Ib ⊆ J , we have cov(J ) ≤ cov(Ib) = d. Thus, we noticed that there

exists D ∈ [X]ℵ0 such that X is d-concentrated at D, and hence X |= Sfin(O,O).

To see that X 6|= Ufin(O,Γ), notice that X 6∈ J implies X 6∈ Ib and recall Theorem

5.19. �

With the notation the above proof, it is very interesting to notice that even if c = ℵ1 (and

hence b = d), then still, somehow, the diagonalization process of Theorem 3.7 will generate

X ⊆ [NN] (of cardinality b = d), which is ≤∗-unbounded, but not ≤∗-dominating.
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Definition 5.24. A function f : X → Y between two topological spaces is a Borel function

iff the preimage of an open set (in Y ) is Borel (in X).

Thus, Borel function is a weakening of continuous function.

Theorem 5.25 (Kuratowski). If S ⊆ [0, 1] ⊆ R and f : S → NN is a Borel function, then

there exists an extension g : [0, 1] → NN such that g is a Borel function and g ↾ S = f .

Theorem 5.26 (Luzin). If f : [0, 1] → NN is a Borel function, then for all n ∈ N, there

exists some closed subset Cn ⊆ [0, 1] such that f ↾ Cn is continuous and Cn is of Lebesgue

measure ≥ 1 − 1
n
.

The next is similar to Theorem 3.24.

Theorem 5.27. A Sierpinski subset of [0, 1] is a counter-example to Hurewicz’s conjecture.

In particular, Hurewicz’s conjecture 5.17 is consistently false.

Proof. Let S ⊆ [0, 1] be a Sierpinski set. The consistency of existence of such set follows,

e.g., from c = ℵ1 and the proof of Corollary 3.8 applied to N[0,1] instead of to N .

Claim 5.28. S is not σ-compact.

Proof. If S was σ-compact, then by Lemma 3.23, it had contain a perfect subset and by

Lemma 3.26, S had to contained a null set of size c, contradicting the fact that S is Sierpinski

set. �

We now use Theorem 5.18 to prove that S |= Ufin(O,Γ).

Claim 5.29. Assume ψ : S → NN is a Borel function, then ψ[S] ∈ Ib.

Proof. Let ϕ : [0, 1] → NN be an extension of ψ given by Theorem 5.25. Let 〈Cn ⊆ [0, 1] |

n ∈ N〉 be like in Theorem 5.26 applied to ϕ.

For n ∈ N, the choice of Cn implies that ϕ[Cn] is compact. It follows ϕ[
⋃

n∈N
Cn] =

⋃

n∈N
ϕ[Cn] is σ-compact, and in particular, ψ[S ∩

⋃

n∈N
Cn] ∈ Ib. (Recall Lemma 4.7.)

We are left with showing that ψ[S \
⋃

n∈N
Cn] ∈ Ib, but this is trivial, because

⋃

n∈N
Cn is

of measure 1 and S is a Sierpinski set, so, S \
⋃

n∈N
Cn is countable. �

�

With the notation of the preceding proof, notice that it suffices to assume that S has the

property that any intersection of S with a null set is of cardinality < b, that is, the proof

can be carried out flawlessly had we assumed that S ⊆ [0, 1] is the set given by Theorem

3.7, whenever cov(N ) = cof(N ) = b.
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Definition 5.30. A compactification of a space X is a pair (K,h), where K is compact,

h : X → h(X) ⊂ K is an homeomorphism, and h(X) = K

We will sometimes simply say that K is a compactification of X. In many cases, h will

be an inclusion map, so that X ⊂ K.

Definition 5.31. A space 〈X,O〉 is locally-compact iff for all x ∈ X, there exists an open

U ⊆ X, with x ∈ U and U compact.

Definition 5.32 (Alexandrov compactification). Let 〈X,O〉 be locally-compact, noncom-

pact Hausdorff space, and p /∈ X. Define 〈X∗, O∗〉 by letting X∗ := X ∪ {p} and:

O∗ := O ∪
{

{p} ∪ (X \K) | K ⊆ X is compact
}

.

We call X∗ the one-point compactification of X.

Observations:

• Verifying that 〈X∗, O∗〉 is indeed a topological space is easy.

• X∗ is compact. Assume {Us}s∈S is an open cover of X∗.

It follows that there exist some sp ∈ S with p ∈ Usp
, that is, Usp

= {p} ∪ (X \K)

where K is compact in X. Now, {Us}s∈S\sp
is an open cover of K, so there is a finite

subcover {Us1
, ..., Usn

}. We conclude that {Usp
, Us1

, ..., Usn
} is a cover of X∗.

• X is open in X∗ since X is open in itself.

• X is dense in X∗. Showing that {p} is not open will do. Assume that {p} is open,

meaning {p} = {p} ∪ (X \ X) where X is compact. A contradiction, since X is

noncompact.

• X∗ is Hausdorff. Consider two distinct points x, x′ in X∗. If both are in X then we

are done since X is Hausdorff. So, assume x′ = p. X is locally compact, that is, there

is an open set x ∈ Ux such that Ux is compact in X, therefore Vp := {p} ∪ (X \ Ux)

is open and Ux ∩ Vp = ∅.

Example 5.33. (1) Consider the real line R, and define R∗ := R ∪ {∞} with the topology

as described. Now, this is actually a space homeomorphic to S1, the unit sphere in R2, which

is obviously compact.

(2) Actually, the one-point compactification of Rn is Sn.

Theorem 5.34 (Alexander). Assume 〈X,O〉 is a topological space and S is some subbase

for the topology on X.

If every cover of X with elements of S has a finite subcover, then X is compact.

Proof. For the sake of the proof, we shall use the following notation:
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A collection U of open sets is B iff it is not a cover. It is Bfin iff it does not have a finite

subcover. We say that a Bfin collection U is maximal iff there exists some open set U such

that U ∪ {U} is not Bfin.

Evidently, B ⇒ Bfin, and 〈X,O〉 is compact iff Bfin ⇒ B for all U ⊆ O.

Lemma 5.35. Every Bfin collection can be extended to a maximal Bfin collection.

Proof. Assume U0 is Bfin. Let A := {U | U0 ⊆ U ⊆ O is Bfin}. A is clearly non-empty.

Naturally, 〈A,⊆〉 is a partially ordered-set. Now, recall Zorn’s Lemma:

Lemma 5.36 (Zorn). If 〈P,≤〉 is a non-empty poset with the property:

(⋆) For all C ⊆ P such that 〈C,≤〉 is linearly-ordered, there exists some y ∈ P such that

x ≤ y for all x ∈ C.

Then, 〈P,≤〉 contains a maximal element m, that is, m 6< x for all x ∈ P .

Clearly, to complete the proof, it suffices to show that the hypothesis of Zorn’s Lemma

holds. Let {Ui}i∈I ⊆ A (where I is some index set) be a chain, and define U :=
⋃

i∈I Ui.

Assume now that U is not Bfin, that is, there are {Uk}k≤n ⊂ U such that X =
⋃

k≤n Uk.

Since there is an increasing sequence 〈ik ∈ I | 1 ≤ k ≤ n〉 such that Uk ∈ Uik , we get that

Uin is Bfin. A contradiction. �

So, assume now that U is a maximal Bfin extension of U0.

Let J be an arbitrary index set. For all j ∈ J assume Vj /∈ U is an open set, then there are

{Ujk
}k≤nj

all in U such that Vj ∪
⋃

k≤nj
Ukj

= X. Therefore
(

⋂

j Vj

)

∪
(

⋃

j

⋃

k≤nj
Uk

)

= X.

We conclude that there does not exist U ∈ U such that
⋂

j Vj ⊂ U , otherwise U would not

have been Bfin. Thus, if
⋂

j Vj ⊂ U for some U ∈ U , then there is j ∈ J with Vj ∈ U .

Define U ′ := U ∩ S. Let x ∈ U ∈ U . There are {Vj}j≤n ⊂ S such that x ∈
⋂

j≤n Vj ⊂ U ,

thus, there is j ≤ n such that Vj ∈ U , therefore Vj ∈ U ′. We conclude that
⋃

U ′ =
⋃

U .

Now, assume X =
⋃

U , meaning X =
⋃

U ′, but, by the hypothesis, U ′ has a subcover for

X, therefore so does U , in contradiction to the fact that U is Bfin.

So, X 6=
⋃

U , that is, U is a B collection, in particular, U0 is a B collection, but we

assumed U0 is Bfin.

Since U0 is an arbitrary Bfin collection, we get that X is compact. �

Theorem 5.37 (Tychonoff). A nonempty product space is compact iff each factor space (in

the product) is compact.

Proof. (⇒) If the product space is nonempty, then the projection maps are all continuous (see

proposition 2.15) and onto, and since the continuous image of a compact space is compact,

the result follows.
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(⇐) Assume {Xi}i∈I is a collection of compact spaces, and define X :=
∏

i∈I Xi. Consider

the canonical subbase to the topology of X, S := {π−1
i [U ] | i ∈ I, U ⊆ Xi is open}.

By Alexander’s theorem 5.34, it is sufficient to show that every Bfin collection U ⊆ S, is

also a B collection, so let us fix such U .

For all i ∈ I, put Ui := {U ⊆ Xi | π
−1
i [U ] ∈ U}.

Lemma 5.38. For all i ∈ I, Ui is Bfin in Xi.

Proof. Assume that Ui is not Bfin inXi, then there are U1, .., Un ∈ Ui such that
⋃

k≤n Uk = Xi,

hence X = π−1
i [Xi] = π−1

i

[
⋃

k≤n Uk

]

=
⋃

k≤n π
−1
i [Uk]. We conclude that U is Bfin. A

contradiction. �

Now, since Xi is compact, we must conclude that Ui is a B collection (for all i ∈ I),

meaning that there exist some xi ∈ Xi \
(
⋃

Ui

)

.

Let x ∈ X be the only member in X satisfying πi(x) = xi for all i ∈ I.

Lemma 5.39. x /∈
⋃

A.

In particular, U is a B collection.

Proof. Assume x ∈
⋃

U , then there exists some U ∈ U such that x ∈ U , that is, there exists

some i ∈ I and Ui ⊆ XI such that x ∈ U = π−1
i [Ui]

Now, x ∈ π−1
i [Ui] iff xi = πi(x) ∈ Ui. This is a contradiction to the fact that xi /∈

⋃

Ui. �

�

It is worth mentioning that Tychonoff’s theorem 5.37 is equivalent to the Axiom of Choice

(the C of ZFC) which is equivalent to Zorn’s Lemma 5.36.

Theorem 5.40 (Scheepers-Just-Miller-Szeptycki). Hurewicz’s conjecture 5.17 is false.

We omit the original proof. Instead, in the next lecture we shall introduce an alternative,

simpler, proof due to Bartoszyński and Tsaban.


