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4. 02.12.05

Observation 4.1. For any open U ⊆ NN, |U | = c and U = NN.

Observation 4.2. For all g ∈ NN, {f ∈ NN | g ≤∗ f} is dense in NN.

Lemma 4.3. Suppose Y ⊆ NN is a compact subspace, then there exists some g ∈ NN such

that f ≤ g for all f ∈ Y .

Proof. For all n ∈ N, consider the projection πn : NN → N such that πn(f) = f(n) for all

f ∈ NN. By definition of the Baire space, each πn is continuous and by the hypothesis, Y

is compact and it follows that πn[Y ] is compact in N. Since any compact subspace of the

discrete space N is finite, we conclude that for all n ∈ N, there exists some mn ∈ N such

that πn[Y ] ⊆ {1, ..,mm}. It other words, the function g ∈ NN defined by n 7→ mn has the

property that f ≤ g for all f ∈ Y and we are done. �

Observation 4.4. For all g ∈ NN, Dg := {f ∈ NN | f ≤ g} is a closed, nowhere-dense,

subspace of NN.

Proof. Fix g ∈ NN. Assume h ∈ NN \ Dg. Then there exists some n ∈ N such that

h(n) > g(n). Then h is in the open set U = {f ∈ NN | f(n) = h(n)} and U ⊆ NN \Dg.

To see that NN\Dg is dense, we fix a base open set U , and show that U∩(NN\Dg) 6= ∅. Find

n ∈ N, and σ : {1, ..n} → N such that U = σ↑. Let h ∈ NN be such that h ↾ {1, .., n} = σ

and h(k) = g(k) + 1 for all k > n. Clearly, h ∈ U \Dg. �

Corollary 4.5. For all g ∈ NN, Eg := {f ∈ NN | f ≤∗ g} is an Fσ meager subspace of NN.

Proof. If σ is a finite sequence of natural numbers, we may consider sw(σ, g) ∈ NN such that

sw(σ, g)(n) = σ(n) if n ∈ dom(σ) and sw(σ, g)(n) = g(n) otherwise.

Then Eg =
⋃

{Dsw(σ,g) | σ is a finite sequence of natural numbers }. �

Definition 4.6. Let Ib := {X ⊆ NN | ecf(X) ≤ 1}.

It is by the definition of b that Ib is a non-trivial proper ideal, add(Ib) = b, and Ib contains

exactly all sets that are ≤∗-bounded in NN.

Also notice that Ib = {X ⊆ NN | ecf(X) < b} and cov(Ib) = cof(Ib) = d.

Corollary 4.7. Suppose that Z ⊆ NN is a b-compact topological space, then Z ∈ Ib, i.e.,

there exists some g ∈ NN such that f ≤∗ g for all f ∈ Z.

In particular (since ℵ1 ≤ b), any σ-compact subspace of NN is ≤∗-bounded.

Proof. Let 〈Zα ⊆ Z | α < κ〉 witness b-compactness of Z (in particular, κ < b). For all

α < κ, Theorem 4.3 implies that Zα ∈ Ib (and even more, but we don’t care). Now, by

κ < add(Ib), Z =
⋃

α<κ Zα ∈ Ib and we are done. �
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Observation 4.8. cov(M) ≤ d.

Proof. Pick a cofinal subset D ⊆ [NN]d and an homeomorphism ψ : NN → R\Q. By Corollary

4.5 and {{f} | f ∈ D} ⊆ Ib, we have that {ψ[{f}] | f ∈ D} ⊆ M. Finally, since

R = ψ[NN] ∪ Q = ψ[
⋃

f∈D

{f}] ∪ Q =
⋃

{ψ[{f}],Q | f ∈ D} =:
⋃

A,

and A ∈ [M]d, we conclude that cov(M) ≤ d. �

Observation 4.9. There exists X ∈ Ib with |X| = c.

In particular, if b < c, then there exists X ∈ Ib with |X| > b.

Proof. Consider X := {f} where f : N → {2} is the constant function. �

Theorem 4.10 (Hurewicz). For all X ⊆ R, TFAE:

• X |= Sfin(O,O).

• Any continuous image of X into NN is non-dominating.

Proof. We omit the proof. Instead, we prove the following two propositions. �

Theorem 4.11. If 〈X,O〉 is a topological space and X |= Sfin(O,O), then any continuous

image of X into NN is non-dominating.

Proof. By Lemma 2.1, we may assume that X ⊆ NN and X |= Sfin(O,O). Fix m ∈ N. Put

Um := {(m, k)↑ | k ∈ N} where (m, k)↑ := {f ∈ NN | f(m) = k} for all k ∈ N. Evidently, Um
is an open cover of X (and actually of NN). Fix a bijection ψ : N × N ↔ N. Fix i ∈ N.

Since X |= Sfin(O,O) and 〈Uψ(i,n) | n ∈ N〉 is a countable family of open covers of X,

there exists some 〈Fψ(i,n) ∈ [Uψ(i,n)]
<ω | n ∈ N〉 such that

⋃

n∈N
Fψ(i,n) is an open cover of X.

Define g : N → N. For m ∈ N, let g(m) := 1 + max{k ∈ N | (m, k)↑ ∈ Fm}. The definition

is good since Fm ⊆ Um = {(m, k)↑ | k ∈ N} and finite. We claim that g witnesses that X is

not-dominating. We pick f ∈ X and show that χf,g := {m ∈ N | g(m) 6≤ f(m)} is infinite.

We do this by introducing some h ∈ NN with the property that {ψ
(

i, h(i)
)

| i ∈ N} ⊆ χf,g.

Fix i ∈ N. Since
⋃

n∈N
Fψ(i,n) is an open cover of X, there exists some n ∈ N such that

f ∈ Fψ(i,n), so let h(i) := n for such an n. End of definition. It follows that f ∈ Fψ(i,h(i)) for all

i ∈ N, and hence f(ψ(i, h(i))) ≤ g(ψ(i, h(i)))−1. In particular, ∀i ∈ N
(

ψ(i, h(i)) ∈ χf,h
)

. �

Theorem 4.12 (Rec law). Suppose 〈X,O〉 is a topological space that has a base B which is

countable and composed only of clopen sets.

If any continuous image of X into NN is non-dominating, then X |= Sfin(O,O).
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Proof. By Observation 1.31, we assume a family of open covers of X, 〈Un ⊆ B | n ∈ N〉.

Since B is countable, there exists an enumeration Un = {Um
n | m ∈ N} for all n ∈ N. Now,

for all n,m ∈ N, let V m
n := Um

n \
⋃

k<m U
k
n .

By the hypothesis on B, V m
n are open for all n,m ∈ N.

It follows that we may assume for all n ∈ N that members of Un are mutually-disjoint,

thus, for all x ∈ X, there is a unique fx ∈ NN such that x ∈ U
fx(n)
n for all n ∈ N. Finally, let

ψ : X → NN be the map x 7→ fx.

To see that ψ continuous, fix some some n ∈ N and σ : {1, .., n} → N. We shall show that

ψ−1[σ↑] is open. Indeed, by definition, ψ−1[σ↑] =
⋂n

k=1 U
σ(k)
k which is a finite intersection of

open sets, thus, open.

Let g ∈ NN be a witness to the fact that ψ[X] is non-dominating. For all n ∈ N, put

Fn := {U1
n, .., U

g(n)
n }. We claim that

⋃

n∈N
Fn is an open cover of X. To see this, fix x ∈ X.

By definition of g, there must exist some n ∈ N with g(n) 6≤ fx(n), that is, there exists some

k < g(n) such that x ∈ Uk
n , and clearly Uk

n ∈ Fn. It follows that X =
⋃

n∈N

⋃

Fn. �

Corollary 4.13. If X ∈ [R]<d, then X |= Sfin(O,O).

Proof. By (⇐) of Theorem 4.10. �

We now get a result stronger than 3.19, but is only limited to subspaces of the real line.

Corollary 4.14. Suppose Y ⊆ X ⊆ R are such that:

• Y |= Sfin(O,O);

• X is d-concentrated at Y .

then X |= Sfin(O,O).

Proof. By Observation 3.17 and the preceding Corollary. �

Corollary 4.15. If X ⊆ R is d-concentrated at some Y ∈ [R]<d, then X |= Sfin(O,O).

Theorem 4.16. Suppose X ⊆ R is c-concentrated at some countable D ⊆ X, then X does

not contain a perfect subset.

Proof. Suppose not, and let X be a witness to that. By Lemma 3.26, X contains an home-

omorphic copy of {0, 1}N, thus it suffices to prove the following. �

Lemma 4.17. {0, 1}ω is not c-concentrated at any of its countable subsets.

Proof. Let D = {fn | n ∈ ω} be a countable subset of {0, 1}ω.

For n ∈ ω, Un := (fn ↾ {2n, 2n+ 1})↑ is an open set containing fn. It follows that D ⊆ U

where U :=
⋃

n∈ω Un. We are left with showing that {0, 1}ω \ U is of cardinality c.
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Indeed, for each a : ω → {0, 1}, let fa : ω → {0, 1} be the function satisfying for all n ∈ ω:

fa(2n+ a(n)) = fn(2n+ a(n)) and:

fa(2n+ 1 − a(n)) = 1 − fn(2n+ 1 − a(n)).

It follows that {k ∈ ω | fn(k) = fa(k)} and {k ∈ ω | fn(k) 6= fa(k)} are both non-empty

for all n ∈ ω. More importantly, a 7→ fa is injective. Thus, {fa | a ∈ ω{0, 1}} is a subset of

{0, 1}ω of cardinality c and disjoint from the open set U containing D. �

Corollary 4.18. If X ⊆ R is uncountable and d-concentrated at some Y ∈ [R]ℵ0, then X is

a counter-example to Menger’s conjecture 1.30.

Proof. By Corollary 4.15, Lemma 3.23 and Theorem 4.16. �

Corollary 4.19. For all X ⊆ R, if ℵ0 < |X| < d, then X is a counter-example to Menger’s

conjecture 1.30.

In particular, if d > ℵ1, then there exists a counter-example to the conjecture.

Theorem 4.20 (Fremlin-Miller). Menger’s conjecture 1.30 is false.

Proof by Bartoszyński-Tsaban. Let D ⊆ NN be a d-scale (see Lemma 1.12) and ψ : NN ↔

[0, 1] \ Q be an homemorphism (see Theorem 2.29). Consider M := ψ[D] ∪ (Q ∩ [0, 1]).

We shall show that M is d-concentrated at Q ∩ [0, 1]. Suppose that U ⊆ R is open and

U ⊃ (Q ∩ [0, 1]). It follows that:

|M \ U | = |ψ[D] ∩ ([0, 1] \ U)| = |D ∩K|,

where K := ψ−1([0, 1] \ U).

Since ([0, 1] \ U) is a closed subset of the bounded interval [0, 1], it is compact, and hence

K is compact. Applying Lemma 4.3 on K, we find some g ∈ NN such that K ⊆ {g}. Finally,

since D is a d-scale we conclude that |M \ U | = |D ∩K| ≤ |D ∩ {g}| < d. �

Similarly, If B ⊆ NN is a b-scale, then H := ψ[B]∪(Q∩[0, 1]) is b-concentrated at Q∩[0, 1],

thus, H ⊆ R is another counter-example to Menger’s conjecture.

We next give a little background on connectedness.

Definition 4.21. A space X is disconnected iff there are disjoint open sets H,K such that

X = H ∪K. When no such disconnection exists, X is connected.

A space X is totally disconnected iff for every x ∈ X the only connected set containing x

is {x}.

Note that we can replace ”open” in the definition by ”closed”. It is apparent, then, that

X is connected iff there are no clopen (open-closed) subsets of X but X itself and ∅.

The Cantor set, the rationals and the irrationals, are all totally disconnected spaces.
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Definition 4.22. A space X is 0-dimensional iff X has a base consisting of only clopen sets.

Equivalently, X is 0-dimensional iff for each x ∈ X and a closed set A ⊂ X not containing

x, there is a clopen set containing x and disjoint from A. By this, the following is immediate.

Proposition 4.23. Every 0-dimensional T1 space 13 is totally disconnected.

Lemma 4.24. If X is a compact, totally disconnected Hausdorff space, then whenever x 6= y

in X, there is a clopen set in X containing x but not y.

Definition 4.25. A space 〈X,O〉 is locally compact iff whenever x /∈ A where A is closed,

there is an open set with a compact closure disjoint from A.

Observation 4.26. If 〈X,O〉 is a compact topological space and Y ⊆ X is a closed subspace,

then Y is compact.

Corollary 4.27. Locally compact is an hereditary property.

Theorem 4.28. A locally compact, Hausdorff space is 0-dimensional iff it is totally discon-

nected.

Proof. It suffices to that prove a locally compact, totally disconnected Hausdorff space is

0-dimensional.

Assume A is a closed set in X, where x /∈ A. Let U be an open set with compact closure

such that x ∈ U ⊆ U ⊆ Ac. For each p ∈ U \ U , let Vp be a clopen subset of U containing

x but not p. The sets X \ Vp form an open cover of U \ U so a finite subcover exists ,

say corresponding to the points p1, ..., pn. Let V := Vp1 ∩ · · · ∩ Vpn
. Then V is clopen in

U containing x and disjoint from U \ U . But then V ⊂ U and hence is a clopen set in X

containing x and disjoint from A. We conclude that X is 0-dimensional. �

13X is T1 iff for every x 6= y in X there is an open set containing x but not y.


