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Observation 4.1. For any open U C NN, |U| = ¢ and U = NV,
Observation 4.2. For all g € NY, {f € NY | g <* 1} is dense in NV,

Lemma 4.3. Suppose Y C NY is a compact subspace, then there exists some g € NY such
that f < g for all f €Y.

Proof. For all n € N, consider the projection 7, : N¥ — N such that m,(f) = f(n) for all
f € N, By definition of the Baire space, each 7, is continuous and by the hypothesis, ¥
is compact and it follows that ,[Y] is compact in N. Since any compact subspace of the
discrete space N is finite, we conclude that for all n € N, there exists some m,, € N such
that 7,[Y] C {1,..,m,,}. It other words, the function g € NY defined by n + m,, has the
property that f < g for all f € Y and we are done. O

Observation 4.4. For all g € NN, D, := {f € NV | f < g} is a closed, nowhere-dense,
subspace of NN,

Proof. Fix g € NY. Assume h € NV \ D,. Then there exists some n € N such that
h(n) > g(n). Then h is in the open set U = {f € NV | f(n) = h(n)} and U C N¥\ D,.

To see that NY\ D, is dense, we fix a base open set U, and show that UN(NY\D,) # 0. Find
n €N, and o : {1,..n} — N such that U = ¢'. Let h € N¥ be such that h | {1,...,n} =0
and h(k) = g(k) + 1 for all k > n. Clearly, h € U \ D,. O

Corollary 4.5. For all g e NV, E,:={f € NV | f <* g} is an F, meager subspace of N".

Proof. If o is a finite sequence of natural numbers, we may consider sw(o, g) € NY such that
sw(o, g)(n) = o(n) if n € dom(o) and sw(o, g)(n) = g(n) otherwise.
Then Ey; = |J{Dsw(o) | 0 is a finite sequence of natural numbers }. d

Definition 4.6. Let Z, := {X C NV | ecf(X) < 1}.

It is by the definition of b that Zj is a non-trivial proper ideal, add(Z,) = b, and Z, contains
exactly all sets that are <*-bounded in N,
Also notice that Z, = {X C NY | ecf(X) < b} and cov(Zy) = cof (Z,) = 0.

Corollary 4.7. Suppose that Z C NN is a b-compact topological space, then Z € Ty, i.e.,
there exists some g € NN such that f <* g for all f € Z.
In particular (since Xy < b), any o-compact subspace of NN is <*-bounded.

Proof. Let (Z, C Z | a < k) witness b-compactness of Z (in particular, x < b). For all
a < K, Theorem 4.3 implies that Z, € Z, (and even more, but we don’t care). Now, by
x < add(Ze), Z = ., Za € Lo and we are done. O
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Observation 4.8. cov(M) < 0.

Proof. Pick a cofinal subset D C [NN]° and an homeomorphism ¢ : NY¥ — R\ Q. By Corollary
4.5 and {{f} | f € D} C T, we have that {s/[{f}] | f € D} C M. Finally, since

R =¢NUQ = {1ue =R el s e ph = JA

feb

and A € [M]°, we conclude that cov(M) < 0. O

Observation 4.9. There ezists X € Iy, with | X| = c.
In particular, if b < ¢, then there exists X € T, with |X| > b.

Proof. Consider X := {f} where f: N — {2} is the constant function. O

Theorem 4.10 (Hurewicz). For all X C R, TFAE:
o X =5/,(0,0).

o Any continuous image of X into NV is non-dominating.
Proof. We omit the proof. Instead, we prove the following two propositions. O

Theorem 4.11. If (X, 0) is a topological space and X = St (O, O), then any continuous
image of X into NN is non-dominating.

Proof. By Lemma 2.1, we may assume that X C NY and X | S},(0,0). Fix m € N. Put
Uy :={(m, k)" | k € N} where (m, k)" := {f € NV | f(m) =k} for all k € N. Evidently, U,,
is an open cover of X (and actually of NV). Fix a bijection ¢ : N x N «» N. Fix i € N.
Since X = Spin(0,0) and (Uyin | n € N) is a countable family of open covers of X,
there exists some (Fyn) € Uypan) < | n € N) such that (J, o Fygin) is an open cover of X.
Define g : N — N. For m € N, let g(m) := 1+ max{k € N | (m, k)" € F,,}. The definition
is good since F,,, C U,, = {(m, k)" | k € N} and finite. We claim that g witnesses that X is
not-dominating. We pick f € X and show that x;, :={m € N| g(m) £ f(m)} is infinite.
We do this by introducing some h € NY with the property that {¢ (¢, h(i)) | i € N} C xy,.
Fix i € N. Since |J,,cy Fu(in) is an open cover of X, there exists some n € N such that
[ € Fy(iny, solet h(i) := n for such an n. End of definition. It follows that f € Fy; n) for all
i € N, and hence f(1 (i, h(i))) < g(¢(i, h(i)))—1. In particular, Vi € N(¢(i, h(2)) € xpp). O

Theorem 4.12 (Rectaw). Suppose (X, O) is a topological space that has a base B which is
countable and composed only of clopen sets.
If any continuous image of X into NN is non-dominating, then X | Spin(O,O).
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Proof. By Observation 1.31, we assume a family of open covers of X, (U, C B | n € N).
Since B is countable, there exists an enumeration U,, = {U}* | m € N} for all n € N. Now,
for all n,m € N, let V" := U™\ U,,, UF.

By the hypothesis on B, V" are open for all n,m € N.

It follows that we may assume for all n € N that members of i, are mutually-disjoint,
thus, for all x € X, there is a unique f, € NV such that x € U™ for all n € N. Finally, let
¥ : X — NN be the map = — f,.

To see that ¢ continuous, fix some some n € N and o : {1,..,n} — N. We shall show that
o] is open. Indeed, by definition, ¥ ~2[o1] = OF_, U7* which is a finite intersection of
open sets, thus, open.

Let ¢ € NN be a witness to the fact that [X] is non-dominating. For all n € N, put
Fp = {U, .., U™}, We claim that U e
By definition of g, there must exist some n € N with g(n) € f.(n), that is, there exists some
k < g(n) such that « € U, and clearly UF € F,. Tt follows that X = J,,cy U Fn- O

F, is an open cover of X. To see this, fix z € X.

Corollary 4.13. If X € [R]<°, then X = Stin (O, O).
Proof. By (<) of Theorem 4.10. O
We now get a result stronger than 3.19, but is only limited to subspaces of the real line.

Corollary 4.14. Suppose Y C X C R are such that:
oY |: Sfin(07 O);
e X is 0-concentrated at Y .

then X = Spin(O,0).
Proof. By Observation 3.17 and the preceding Corollary. O
Corollary 4.15. If X C R is d-concentrated at some Y € [R]<?, then X |= Spin(O, O).

Theorem 4.16. Suppose X C R is c-concentrated at some countable D C X, then X does
not contain a perfect subset.

Proof. Suppose not, and let X be a witness to that. By Lemma 3.26, X contains an home-
omorphic copy of {0, 1}, thus it suffices to prove the following. O

Lemma 4.17. {0,1}* is not c-concentrated at any of its countable subsets.

Proof. Let D = {f, | n € w} be a countable subset of {0, 1}*.
For n € w, U, := (fn | {2n,2n + 1})" is an open set containing f,,. It follows that D C U
where U :=J, ., U,. We are left with showing that {0,1}* \ U is of cardinality c.

new
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Indeed, for each a : w — {0, 1}, let f, : w — {0, 1} be the function satisfying for all n € w:
fa@2n+a(n)) = fu(2n+a(n)) and:
fa@Cn+1—a(n))=1- f,(2n+1—a(n)).
It follows that {k € w | fu(k) = fu(k)} and {k € w | fu(k) # fu(k)} are both non-empty

for all n € w. More importantly, a — f, is injective. Thus, {f, | a € “{0,1}} is a subset of
{0,1}* of cardinality ¢ and disjoint from the open set U containing D. |

Corollary 4.18. If X C R is uncountable and d-concentrated at some Y € [R]*, then X is
a counter-example to Menger’s conjecture 1.30.

Proof. By Corollary 4.15, Lemma 3.23 and Theorem 4.16. ]

Corollary 4.19. For all X C R, if Xy < |X| <, then X is a counter-ezample to Menger’s
conjecture 1.30.
In particular, if 0 > Xy, then there exists a counter-example to the conjecture.

Theorem 4.20 (Fremlin-Miller). Menger’s conjecture 1.30 is false.

Proof by Bartoszyniski-Tsaban. Let D C NN be a d-scale (see Lemma 1.12) and ¢ : NV «
[0,1] \ Q be an homemorphism (see Theorem 2.29). Consider M := ¢[D]U (Q N[0, 1]).

We shall show that M is d-concentrated at Q N [0, 1]. Suppose that U C R is open and
U D> (QnJo0,1]). It follows that:

[MAU] = [$[DIN ([0, 1]\ U)] = [DN K],

where K := ¢~ 1([0,1] \ U).

Since ([0,1]\ U) is a closed subset of the bounded interval [0, 1], it is compact, and hence
K is compact. Applying Lemma 4.3 on K, we find some g € NY such that K C {g}. Finally,
since D is a d-scale we conclude that [M \ U| =[DN K| <[DnN{g}| <. o O

Similarly, If B C NV is a b-scale, then H := ¢)[B]U(QN][0, 1]) is b-concentrated at QN0 1],
thus, H C R is another counter-example to Menger’s conjecture.
We next give a little background on connectedness.

Definition 4.21. A space X is disconnected iff there are disjoint open sets H, K such that
X = HU K. When no such disconnection exists, X is connected.
A space X is totally disconnected iff for every x € X the only connected set containing x

is {x}.

Note that we can replace "open” in the definition by ”closed”. It is apparent, then, that
X is connected iff there are no clopen (open-closed) subsets of X but X itself and ().
The Cantor set, the rationals and the irrationals, are all totally disconnected spaces.
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Definition 4.22. A space X is 0-dimensional iff X has a base consisting of only clopen sets.

Equivalently, X is O-dimensional iff for each € X and a closed set A C X not containing
x, there is a clopen set containing = and disjoint from A. By this, the following is immediate.

Proposition 4.23. Every 0-dimensional T} space '3 is totally disconnected.

Lemma 4.24. If X is a compact, totally disconnected Hausdorff space, then whenever x # vy
m X, there is a clopen set in X containing x but not y.

Definition 4.25. A space (X, O) is locally compact iff whenever x ¢ A where A is closed,
there is an open set with a compact closure disjoint from A.

Observation 4.26. If (X, O) is a compact topological space andY C X is a closed subspace,
then Y 1s compact.

Corollary 4.27. Locally compact is an hereditary property.

Theorem 4.28. A locally compact, Hausdorff space is 0-dimensional iff it is totally discon-
nected.

Proof. 1t suffices to that prove a locally compact, totally disconnected Hausdorft space is
0-dimensional.

Assume A is a closed set in X, where = ¢ A. Let U be an open set with compact closure
such that x € U C U C A°. For each p € U\ U, let V, be a clopen subset of U containing
z but not p. The sets X \ V, form an open cover of U \ U so a finite subcover exists ,
say corresponding to the points pi,...,p,. Let V :=V, Nn---NV, . Then V is clopen in
U containing = and disjoint from U \ U. But then V C U and hence is a clopen set in X
containing = and disjoint from A. We conclude that X is O-dimensional. U

13X is Ty iff for every & # y in X there is an open set containing  but not .



