

3. 24.11.05

We now aim at developing tools to be able to prove the following.

Theorem 3.1 (Luzin). *Assuming CH, there exists a Luzin set, that is, an uncountable set $L \subseteq \mathbb{R}$ such that for any meager set $M \subseteq \mathbb{R}$: $|L \cap M| \leq \aleph_0$.*

Definition 3.2. Suppose X is a set. For an ideal $I \subseteq \mathcal{P}(X)$. Put:

- $\text{add}(I) := \min\{|\mathcal{A}| \mid \mathcal{A} \subseteq I \text{ and } \bigcup \mathcal{A} \notin I\}$.
- $\text{cov}(I) := \min\{|\mathcal{A}| \mid \mathcal{A} \subseteq I \text{ and } \bigcup \mathcal{A} = X\}$.
- $\text{cof}(I) := \min\{|\mathcal{A}| \mid \mathcal{A} \subseteq I \text{ and } \forall B \in I \exists C \in \mathcal{A} (B \subseteq C)\}$.

If \mathcal{I} is a proper ideal, we may also define:

- $\text{non}(I) := \min\{|A| \mid A \subseteq X \text{ and } A \notin I\}$.

Since an ideal is closed under finite unions, always $\text{add}(I) \geq \aleph_0$. If I is a proper ideal, then also $\text{add}(I) \leq \text{cov}(I)$. If I is non-trivial, then also $\text{cov}(I) \leq \text{cof}(I)$.

Intuitively, an ideal is a collection of negligible sets. Two important examples are:

Definition 3.3. Let $\mathcal{M} := \{A \subseteq \mathbb{R} \mid A \text{ is meager}\}$ and $\mathcal{N} := \{A \subseteq \mathbb{R} \mid A \text{ is a null set}\}$.

We also consider $\mathcal{M}_{[0,1]} := \mathcal{M} \cap \mathcal{P}([0,1])$ and $\mathcal{N}_{[0,1]} := \mathcal{N} \cap \mathcal{P}([0,1])$.

Evidently, \mathcal{M}, \mathcal{N} are non-trivial ideals and $\text{add}(\mathcal{M}), \text{add}(\mathcal{N}) \geq \aleph_1$. $|\mathcal{M}| = |\mathcal{N}| = 2^\mathfrak{c}$, since the cantor set $C \in \mathcal{M} \cap \mathcal{N}$ is of size \mathfrak{c} and then $\mathcal{P}(C) \subseteq \mathcal{M} \cap \mathcal{N}$. However:

Lemma 3.4. $\text{cof}(\mathcal{M}) \leq \mathfrak{c}$ and $\text{cof}(\mathcal{N}) \leq \mathfrak{c}$.

Proof. As mentioned before, any meager set is contained in some F_σ meager set, and there are only \mathfrak{c} many F_σ sets, hence, $\text{cof}(\mathcal{M}) \leq \mathfrak{c}$.

If $A \in \mathcal{N}$, then for all $n \in \mathbb{N}$, there exists some open G_n containing A and of measure $< \frac{1}{n+1}$. It follows that any null set is contained in some G_δ null set, thus, $\text{cof}(\mathcal{N}) \leq \mathfrak{c}$. \square

Lemma 3.5. *Assume \mathcal{I} is an ideal over some infinite set X , then $\text{cf}(\text{add}(\mathcal{I})) = \text{add}(\mathcal{I})$.*

If $\text{non}(\mathcal{I})$ is defined, then $\text{add}(\mathcal{I}) \leq \text{cf}(\text{non}(\mathcal{I}))$.

If $\text{cof}(\mathcal{I})$ is infinite, then $\text{add}(\mathcal{I}) \leq \text{cf}(\text{cof}(\mathcal{I}))$.

Proof. Put $\lambda := \text{add}(\mathcal{I})$, $\kappa := \text{cf}(\lambda)$ and pick a family $\{\lambda_i \in \lambda \mid i < \kappa\}$ with $\sup_{i < \kappa} \lambda_i = \lambda$. Let $\{A_\alpha \in \mathcal{I} \mid \alpha < \lambda\}$ witness $\text{add}(\mathcal{I}) = \lambda$. By the definition of $\text{add}(\mathcal{I})$, for all $i < \kappa$, $B_i := \bigcup_{\alpha < \lambda_i} A_\alpha$ is in \mathcal{I} . Now if λ was a singular cardinal, i.e., if $\kappa < \text{add}(\mathcal{I})$, then $\bigcup_{\alpha < \lambda} A_\alpha = \bigcup_{i < \kappa} B_i \in \mathcal{I}$. A Contradiction.

Put $\theta := \text{cof}(\mathcal{I})$ and pick a witness $\mathcal{C} := \{C_\alpha \in \mathcal{I} \mid \alpha < \theta\}$. Also, find $\{\theta_i < \theta \mid i < \tau\}$ witnessing $\tau := \text{cf}(\theta)$. By thinning-out if needed, we may assume non-redundancy of \mathcal{C} , i.e.:

$$(\star) \quad \alpha < \beta < \theta \rightarrow C_\beta \not\subseteq C_\alpha.$$

Put $\mathcal{C}' := \{C_{\theta_i} \mid i < \tau\}$. Now, if $\tau < \text{add}(\mathcal{I})$, then $\bigcup \mathcal{C}' \in \mathcal{I}$, and there must exist some $\alpha < \theta$ with $\bigcup \mathcal{C}' \subseteq C_\alpha$. Find $i < \tau$ with $\alpha < \theta_i$, then in particular $C_{\theta_i} \subseteq \bigcup \mathcal{C}' \subseteq C_\alpha$, contradicting (\star) .

Put $\mu := \text{non}(\mathcal{I})$, $\sigma := \text{cf}(\mu)$ and pick some $D \in [X]^\mu$ such that $D \notin \mathcal{I}$. By $|D| = \mu$, there exists a family of sets $\{D_i \in [D]^{<\mu} \mid i < \sigma\}$ such that $D = \bigcup_{i < \sigma} D_i$. Now, by $|D_i| < \text{non}(\mathcal{I})$ for all i , we know that $\{D_i \mid i < \sigma\} \subseteq \mathcal{I}$, thus, if $\sigma < \text{add}(\mathcal{I})$, then $D = \bigcup_{i < \sigma} D_i \in \mathcal{I}$. A contradiction. \square

Corollary 3.6. *Suppose \mathcal{I} is a non-trivial proper ideal over some infinite set X , then: $\aleph_0 \leq \text{cf}(\text{add}(\mathcal{I})) = \text{add}(\mathcal{I}) \leq \min \{ \text{cov}(\mathcal{I}), \text{cf}(\text{non}(\mathcal{I})), \text{cf}(\text{cof}(\mathcal{I})) \} \leq \text{cov}(\mathcal{I}) \leq \text{cof}(\mathcal{I}) \leq 2^{|X|}$.*

Theorem 3.7. *Assume \mathcal{I} is a non-trivial proper ideal over an infinite set X .*

Suppose $\text{cov}(\mathcal{I}) = \text{cof}(\mathcal{I}) = \kappa$, then there exists some set $A \subseteq X$ such that $|A| = \kappa$ and for all $B \in \mathcal{I}$, $|B \cap A| < \kappa$.

Proof. Fix $\langle B_\alpha \mid \alpha < \kappa \rangle$ witnessing $\text{cof}(\mathcal{I}) = \kappa$. We define $A = \{a_\alpha \mid \alpha < \kappa\}$ by induction on $\alpha < \kappa$. Assume $\{a_\beta \mid \beta < \alpha\}$ had already been defined. Since \mathcal{I} is non-trivial, $\{a_\beta\} \in \mathcal{I}$ for all $\beta < \alpha$. It follows from $\alpha < \text{cov}(\mathcal{I})$ and properness of \mathcal{I} that $(\bigcup_{\beta < \alpha} \{a_\beta\} \cup \bigcup_{\beta < \alpha} B_\beta) \neq X$, so let us pick $a_\alpha \in X \setminus (\{a_\beta \mid \beta < \alpha\} \cup \bigcup_{\beta < \alpha} B_\beta)$. End of the construction.

Clearly, the construction ensures that $|A| = \kappa$. To see the other property, fix $B \in \mathcal{I}$.

By defining properties of $\langle B_\alpha \mid \alpha < \kappa \rangle$, there exists some $\beta < \kappa$ such that $B \subseteq B_\beta$. By the construction, for all $\alpha < \kappa$ with $\alpha > \beta$, $a_\alpha \in X \setminus B_\beta$ and hence $B \cap A \subseteq \{a_\delta \mid \delta \leq \beta\}$, that is, $|B \cap A| \leq |\beta| < \kappa$. \square

Corollary 3.8. *If $\mathfrak{c} = \aleph_1$, then there exists a Sierpinski set, that is, an uncountable set $S \subseteq \mathbb{R}$ such that for any null set $N \subseteq \mathbb{R}$: $|S \cap N| \leq \aleph_0$.*

Proof. Trivially, \mathcal{N} is a proper ideal. Applying $\text{add}(\mathcal{N}) \geq \aleph_1$ and Corollary 3.6, we get that:

$$\aleph_1 \leq \text{add}(\mathcal{N}) \leq \text{cov}(\mathcal{N}) \leq \text{cof}(\mathcal{N}) \leq \mathfrak{c} = \aleph_1.$$

\square

Corollary 3.9 (Luzin). *If $\mathfrak{c} = \aleph_1$, then there exists a Luzin set.*

Proof. By now, the only missing ingredient is the following. \square

Theorem 3.10 (Baire). *\mathcal{M} is a proper ideal.*

Proof. We give a proof in a wider context. See Theorem 3.16. \square

Thus, we yield the consistency of existence of a Luzin set. It is worth mentioning that the non-existence of a Luzin set is also consistent.

Definition 3.11. A set A is *comeager* iff A^c is meager.

Remark: Assume that A is meager, then there exist a sequence of nowhere dense sets $\{F_i\}_{i \in \mathbb{N}}$ such that $A = \bigcup_{i \geq 1} F_i$, therefore $A \subseteq \bigcup_{i \geq 1} \overline{F_i}$. We conclude that $\bigcap_{i \geq 1} \overline{F_i}^c \subseteq A^c$, where $\{\overline{F_i}^c\}_{i \in \mathbb{N}}$ are dense and open.

Since the converse is also true, we get that a set is comeager iff it contains a G_δ subset, such that each open set in the intersection is dense. We will see that in complete metric spaces, such sets are dense.

Definition 3.12. A metric space is *complete* iff every Cauchy sequence converges.

Lemma 3.13. Every compact subspace of a metric space is complete.

Proof. If C is compact, then any sequence from C has a converging subsequence, in particular if the sequence is Cauchy, its (unique) limit is in C . \square

Lemma 3.14. Every closed set in a complete space is complete.

Proof. Assume X is complete, $F \subseteq X$ is closed, and $\{f_n\}_{n \in \mathbb{N}} \subseteq F$ is Cauchy.

$\{f_n\}_{n \in \mathbb{N}} \subseteq X$ is also Cauchy (since the metric on F is induced by the metric on X), thus converges to some $x \in X$. On the other hand, F is closed, so x must be in F . \square

Definition 3.15. X is a *Baire space* iff the intersection of any countable family of dense open sets in X is dense.¹⁰

A generalization of Theorem 3.10 is the following.

Theorem 3.16. Every complete metric space is a Baire space.

Proof. Assume $\langle F_i \mid i \in \mathbb{N} \rangle$ is a family of closed and nowhere dense subsets in a complete metric space $\langle X, d \rangle$. We will show that $G := (\bigcup F_i)^c$ is dense in X .

Pick an arbitrary open ball B . Now, $B \setminus F_1 \neq \emptyset$ (since F_1 is nowhere dense and has no interior), so we pick $x_1 \in B \setminus F_1$. X is metric hence regular, therefore there exist an open ball B_1 , such that $x_1 \in B_1 \subseteq \overline{B_1} \subseteq B \setminus F_1$, and $\text{Diam}(B_1) < \frac{1}{2}$. Once again, $B_1 \setminus F_2 \neq \emptyset$, $x_1 \in B_1 \setminus F_2$ is picked and we can find some open ball B_2 that satisfies $x_2 \in B_2 \subseteq \overline{B_2} \subseteq B_1 \setminus F_2$ and $\text{Diam}(B_2) < \frac{1}{3}$.

We continue likewise and construct a downward chain $\{B_n\}_{n \in \mathbb{N}}$ and a sequence $\{x_n\}_{n \in \mathbb{N}}$, such that $\text{Diam}(B_n) < \frac{1}{n+1}$, and $x_n \in B_n$ for all $n \in \mathbb{N}$. $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy in $\overline{B_1}$ which is a complete space, thus converges to some $x \in \overline{B_1}$. Now, $x \in B \cap G$, and since B is an arbitrary ball, we get that G is dense. \square

¹⁰Notice that a Baire space can not be a countable union of nowhere dense sets.

Observation 3.17. Suppose $\langle X, O \rangle$ is a topological space and $Y \subseteq X$ is such that :

- $Y \models S_{fin}(\mathcal{O}, \mathcal{O})$;
- If U is an open set containing Y , then $X \setminus U \models S_{fin}(\mathcal{O}, \mathcal{O})$

then $X \models S_{fin}(\mathcal{O}, \mathcal{O})$.

Proof. Assume X, Y are like in the statement. Let $\langle \mathcal{U}_n \subseteq O \mid n \in \mathbb{N} \rangle$ be a countable family of open covers of X . By $Y \models S_{fin}(\mathcal{O}, \mathcal{O})$ and $\langle \mathcal{U}_{2n} \subseteq O \mid n \in \mathbb{N} \rangle$ being a countable family of open covers of Y , there exists some $\langle \mathcal{F}_{2n} \in [\mathcal{U}_{2n}]^{<\omega} \mid n \in \mathbb{N} \rangle$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{2n}$ is an open cover of Y . Put $U := \bigcup \bigcup_{n \in \mathbb{N}} \mathcal{F}_{2n}$. Finally, since $Y \subseteq U$ and $\langle \mathcal{U}_{2n+1} \subseteq O \mid n \in \mathbb{N} \rangle$ is an open cover of $X \setminus U$, there exists $\langle \mathcal{F}_{2n+1} \in [\mathcal{U}_{2n+1}]^{<\omega} \mid n \in \mathbb{N} \rangle$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_{2n+1}$ is an open cover of $X \setminus U$ and it follows that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ is an open cover of X exemplifying $S_{fin}(\mathcal{O}, \mathcal{O})$. \square

Definition 3.18. Suppose $\langle X, O \rangle$ is a topological space and κ is an infinite cardinal number.

For $Y \subseteq X$, we say that X is κ -concentrated at Y iff for any open $U \supseteq Y$: $|X \setminus U| < \kappa$.

Corollary 3.19. Suppose $\langle X, O \rangle$ is a topological space and $Y \subseteq X$ is such that:

- $Y \models S_{fin}(\mathcal{O}, \mathcal{O})$;
- X is concentrated (i.e. \aleph_1 -concentrated) at Y .

then $X \models S_{fin}(\mathcal{O}, \mathcal{O})$.

Proof. By Observation 3.17 and the fact that any countable set satisfies Menger's property. \square

In special cases, we can prove a stronger result. We first need another definition.

Definition 3.20. For a topological space $\langle X, O \rangle$, we denote by $S_1(\mathcal{O}, \mathcal{O})$ the property that for any countable sequence of open covers of X , $\langle \mathcal{U}_n \subseteq O \mid n \in \mathbb{N} \rangle$, there exists some $\langle U_n \in \mathcal{U}_n \mid n \in \mathbb{N} \rangle$ such that $X = \bigcup_{n \in \mathbb{N}} U_n$.

Observation 3.21. Suppose $\langle X, O \rangle$ is a topological space and $Y \subseteq X$ is such that:

- $Y \models S_1(\mathcal{O}, \mathcal{O})$;
- X is concentrated at Y .

then $X \models S_1(\mathcal{O}, \mathcal{O})$.

Proof. Same as 3.17. \square

Corollary 3.22. Suppose $\langle X, O \rangle$ is a topological space and is concentrated at some countable $Y \subseteq X$, then $X \models S_1(\mathcal{O}, \mathcal{O})$.

It is worth mentioning that $S_1(\mathcal{O}, \mathcal{O})$ is indeed stronger than $S_{fin}(\mathcal{O}, \mathcal{O})$. $[0, 1] \subseteq \mathbb{R}$ is compact, hence, satisfies Menger's property. However, for any family of open covers $\langle \mathcal{U}_n \mid n \in \mathbb{N} \rangle$ with $\text{Diam}(U) < \frac{1}{2^{n+17}}$ for all $n \in \mathbb{N}$ and $U \in \mathcal{U}_n$, we get that $\sum_{n \in \mathbb{N}} \text{Diam}(U_n) < 1 = \text{Diam}([0, 1])$ for all $\langle U_n \in \mathcal{U}_n \mid n \in \mathbb{N} \rangle$. In particular $[0, 1]$ cannot satisfy $S_1(\mathcal{O}, \mathcal{O})$.

Lemma 3.23. *If $X \subseteq \mathbb{R}$ is uncountable and σ -compact, then X contains a perfect set.*

Proof. Assuming $X = \bigcup_{n \in \mathbb{N}} K_n$, where $\langle K_n \mid n \in \mathbb{N} \rangle$ are compact, we know that there must exist some $m \in \mathbb{N}$, with $|K_m| > \aleph_0$, thus, K_m is an uncountable closed set. Applying Theorem 2.24, we conclude that K_m (and hence, also X) contains a perfect subset. \square

Theorem 3.24. *Menger's conjecture 1.30 is consistently false.*

Proof. Since the existence of a Luzin set is consistent, it suffices to prove that a Luzin set $L \subseteq \mathbb{R}$ satisfies Menger's property but is not σ -compact.

Claim 3.25. *L is concentrated at some $A \in [L]^{\leq \aleph_0}$.*

In particular, $L \models S_1(\mathcal{O}, \mathcal{O})$.

Proof. Since $L \subseteq \mathbb{R}$, we have that $w(L) \leq w(\mathbb{R}) \leq \aleph_0$. It follows from Lemma 2.6 that L is separable, so let $A \subseteq L$ be a countable dense subset of L . To see that L is concentrated at A , pick some open set $U \subseteq \mathbb{R}$ with $U \supseteq A$. To see $|L \setminus U| \leq \aleph_0$, notice that $L \setminus U = L \cap (\overline{A} \setminus U)$. Now, $\mathbb{R} \setminus (\overline{A} \setminus U) = \mathbb{R} \setminus (\overline{A} \setminus U) = (\mathbb{R} \setminus \overline{A}) \cup (\overline{A} \cap U) \supseteq (\mathbb{R} \setminus \overline{A}) \cup A$, and the latter is surely dense in \mathbb{R} .¹¹ It follows from Lemma 2.19 that $\overline{A} \setminus U$ is nowhere dense. Recalling that L is a Luzin set, we conclude that $L \cap (\overline{A} \setminus U)$ is countable. \square

It follows that $L \models S_{fin}(\mathcal{O}, \mathcal{O})$. We are left with showing that L is not σ -compact. Using Lemma 3.23, this reduces to showing that L does not contain a perfect subset. In the following, we prove that any perfect set contains a meager subset of cardinality \mathfrak{c} , and hence, L cannot contain a perfect subset. \square

Lemma 3.26. *If $P \subseteq \mathbb{R}$ is perfect, then there exists some $X \subseteq P$ such that:*

- X is perfect;
- X is a null set.
- X is nowhere dense and homeomorphic to the product space $\{0, 1\}^{\mathbb{N}}$;

In particular, any perfect subset of \mathbb{R} is of cardinality \mathfrak{c} .

Proof. We first need the following Observation:

¹¹Simply because $\overline{(\mathbb{R} \setminus \overline{A}) \cup A} = \overline{(\mathbb{R} \setminus \overline{A})} \cup \overline{A} = \mathbb{R}$.

Observation 3.27. Suppose $\langle L, \leq \rangle$ is a linearly-ordered set.

Put $\mathcal{B}_\leq := \{(\alpha, \beta) \mid \alpha, \beta \in L, \alpha < \beta\}$,¹² and let $\langle L, \mathcal{O}_\leq \rangle$ be the topological space generated by the base \mathcal{B}_\leq (This is called the interval topology).

For any perfect $P \subseteq L$ and a closed interval $I \subseteq L$ with $I \cap P \neq \emptyset$, there exists some closed interval $J \subseteq I$ such that $J \cap P$ is perfect.

Proof. Assume P is perfect and $I = [a, b]$ is an interval with $I \cap P \neq \emptyset$. If $I \cap P$ is perfect, we are done, so assume this is not the case, that is, at least one of the elements a, b are isolated at $I \cap P$. Note that no elements of (a, b) can be isolated in $[a, b] \cap P$. If a is isolated (and b is not), then we can find some $a < c < b$ such that $[c, b] \cap P = I \cap P \setminus \{a\}$, so take $J := [c, b]$. If b is isolated (and a is not), then we can find some $a < d < b$ such that $[a, d] \cap P = I \cap P \setminus \{b\}$, so take $J := [a, d]$. If both a and b are isolated we can find $a < c < d < b$ such that $[c, d] \cap P = I \cap P \setminus \{a, b\}$, so take $J := [c, d]$. \square

Assume $P \subset \mathbb{R}$ is a perfect set.

Let $\mathcal{S} := \{s : \{1, \dots, k\} \rightarrow \{0, 1, 2\} \mid k \in \mathbb{N}\}$ denote the family of finite ternary sequences. Define a function $\varphi : \mathcal{S} \rightarrow \{I \subseteq \mathbb{R} \mid I \text{ is a closed interval}\}$. By induction on n - the length of $s \in \mathcal{S}$. For $s \in \mathcal{S}$, we sometime write I_s for $\varphi(s)$ whenever defined.

Induction base ($n = 1$): Let $s_0 = \{(1, 0)\}, s_1 = \{(1, 1)\}, s_2 = \{(1, 2)\}$, and find a family of mutually disjoint intervals $\{I_{s_1}, I_{s_2}, I_{s_3}\}$ such that $\text{Diam}(I_{s_i}) < \frac{1}{3}$ and $I_{s_i} \cap P$ is perfect for all $i \in \{0, 1, 2\}$. (E.g. take some interval $I \subseteq P$. Since P is perfect, I is infinite, so split it into three mutually disjoint intervals, and apply the preceding observation on each one of them).

Induction step ($n + 1$): For $s \in \mathcal{S}$ of length n , find a family of mutually disjoint intervals $\mathcal{F} = \{I_{s^1}, I_{s^2}, I_{s^3}\}$ such that $\mathcal{F} \subseteq \mathcal{P}(I_s)$ and $\text{Diam}(I_{s^i}) < (\frac{1}{3})^i$ for all $i \in \{0, 1, 2\}$.

Put $\varphi(s^i) := I_{s^i}$ for all $i \in \{0, 1, 2\}$.

Finally, we define a function $\psi : \{0, 2\}^{\mathbb{N}} \rightarrow P$. For $f \in \{0, 2\}^{\mathbb{N}}$, $\cap_{n=1}^{\infty} I_{f \upharpoonright \{1, \dots, n\}}$ is a single element of P , so let $\psi(f)$ be this single element. Clearly, ψ is one-to-one.

Viewing $\{0, 2\}^{\mathbb{N}}$ as the product of length ω of the discrete space $\{0, 2\}$, we already met the type of arguments justifying why ψ is an homeomorphism on $M := \text{Im}(\psi)$ (see, e.g., Lemma 2.30). Furthermore, it is not hard to see that $\text{int}(M) = \emptyset$. Since M is closed, it is also nowhere dense. The choice of diameters in the definition of φ also ensures that M is a null set.

Finally, to see that M is perfect, assume towards a contradiction there exists some $f \in \{0, 2\}^{\mathbb{N}}$ and interval $(a, b) \subseteq \mathbb{R}$ such that $M \cap (a, b) = \{x\}$ where $x = \psi(f)$. However, by the choice of x , there exists some length $n \in \mathbb{N}$ such that $x \in I_{f \upharpoonright \{1, \dots, n\}} \subseteq (a, b)$ and $I_{f \upharpoonright \{1, \dots, n\}} \cap P$ is perfect. A contradiction. \square

¹² $(\alpha, \beta) := \{\gamma \in L \mid \alpha < \gamma < \beta\}$ is the open interval. $[\alpha, \beta] := \{\gamma \in L \mid \alpha \leq \gamma \leq \beta\}$ is a closed interval, and so on..

Proposition 3.28. *The Cantor set is homeomorphic to $\{0, 1\}^{\mathbb{N}}$.*

Remark: Once the proposition is proved, we get that the cantor set is a subspace of the Baire space.

Proof. Fix $x \in C$. $x = \sum_{n \geq 1} \frac{x_n}{3^n}$, where for all $n \in \mathbb{N}$, $x_n \in \{0, 2\}$.

Define $\psi : C \rightarrow \{0, 1\}^{\mathbb{N}}$ by $\psi(x) := \{\frac{x_n}{2}\}_{n \geq 1}$. ψ is obviously a bijection. Using similar methods from the proof of Lemma 2.30, we get that ψ is open and continuous as well. \square

A more probabilistic point of view of the set $\{0, 1\}^{\mathbb{N}}$ is the following: a coin with equiprobable outcome is tossed endlessly. We define Ω to be all infinite sequences of coin tosses, i.e., $\Omega = [0, 1]$ (where *heads* is 1 and *tails* is 0, and we consider the binary representation of elements of $[0, 1]$). The event "the first outcome is 0" is of probability 1/2. The event "the first two outcomes are 0" is of probability 1/4, etc.

It follows that $P([a, b]) = b - a$ whenever $0 \leq a \leq b \leq 1$ and a, b are of the form $k/2^n$. Such numbers are dense, and using monotonicity of probability measure we get that $P([a, b]) = b - a$ whenever $0 \leq a \leq b \leq 1$. This is of course the Lebesgue measure.

Example 3.29. Is \mathbb{Q} a G_δ set?

Assume $\mathbb{Q} = \bigcap_{n \geq 1} G_n$ where G_n is open for all $n \in \mathbb{N}$. Obviously, G_n is dense for all $n \in \mathbb{N}$, since $\mathbb{Q} \subseteq G_n$. We get that $\mathbb{R} \setminus \mathbb{Q} = \bigcup_{n \geq 1} G_n^c$ where G_n^c is nowhere dense for all $n \in \mathbb{N}$, thus $\mathbb{R} \setminus \mathbb{Q}$ is meager. But, \mathbb{Q} is also meager, hence \mathbb{R} is meager, a contradiction to Baire's Theorem 3.10.

Definition 3.30. Assume X is a set. A family $F \subseteq \mathcal{P}(X)$ is a *filter over X* iff it satisfies:

- $X \in F$, and $\emptyset \notin F$.
- $A \in F$ and $A \subseteq B \subseteq X \implies B \in F$.
- $A, B \in F \implies A \cap B \in F$.

Intuitively, a filter is a collection of "fat" sets. It is not hard to see that if I is a proper ideal over X , then $I^* := \{X \setminus A \mid A \in I\}$ forms a filter.

It is very often that we call sets that comes from an ideal as "sets of measure zero", sets that comes from a filter as "sets of measure one", and sets that comes from outside a given ideal as "sets of positive measure".

However, this terminology might sometimes be misleading. In the following we show that it is possible for a set to be "of measure zero" from one ideal's point of view, and "of measure one" in the view of another filter.

Proposition 3.31. $\mathcal{N} \cap \mathcal{M}^* \neq \emptyset$, that is, \mathbb{R} can be decomposed as $\mathbb{R} = D \uplus M$, where M is meager and D is a null set.

Proof. Write \mathbb{Q} as $\{q_n\}_{n \geq 1}$. Let $\{\varepsilon_k\}_{k \geq 1}$ be a sequence converging to 0. For all $k \in \mathbb{N}$ pick a sequence $\{r_{k,n}\}_{n \geq 1}$ such that $r_{k,n} < r_{k-1,n}$ for all $n \in \mathbb{N}$ and $\sum_n r_{k,n} < \varepsilon_k$.

For every $k \in \mathbb{N}$, define $D_k := \bigcup_n B_{r_{k,n}}(q_n)$. $D := \bigcap_k D_k$ is a null set and is comeager (By the above example). Now, define $M := \mathbb{R} \setminus D$. \square

The example we give next is typical of an existence theorem based on the Baire's theorem. We show that some element of a space must have a given property by showing that the space is second category while the elements which do not have a given property form a set of first category.

Definition 3.32. For an interval $I \subseteq \mathbb{R}$, let $C(I)$ denote the family of all continuous real-valued function on I .

It is a well-known fact that a uniform limit of continuous function is continuous, thus, if we regard $C(I)$ as a metric space with $\rho(f, g) := \sup_{x \in I} |f(x) - g(x)|$ (for all $f, g \in C(I)$), then $\langle C(I), \rho \rangle$ is a complete metric space.

It is nice to see that if $\langle f_1, f_2, \dots \rangle$ is a Cauchy sequence in $C(I)$, then, for each $x \in I$, $\{f_n(x)\}_{n \geq 1}$ is a Cauchy sequence of real numbers, hence converges.

Theorem 3.33. *There is a continuous real-valued functions on I (some closed interval) having a derivative at no point.*

Proof. Denote by \mathcal{D} the set of all functions in $C(I)$ having a derivative somewhere.

Define for all $n \in \mathbb{N}$:

$$\mathcal{D}_n := \left\{ f \in C(I) \mid \text{for some } x \in [0, \frac{n-1}{n}], \text{ whenever } h \in (0, 1/n], \left| \frac{f(x+h) - f(x)}{h} \right| \leq n \right\}.$$

If $f \in C(I)$ has a derivative at some point, then for some large enough $n \in \mathbb{N}$, $f \in \mathcal{D}_n$. Hence $\mathcal{D} = \bigcup \mathcal{D}_n$. By showing that \mathcal{D}_n is closed and has no interior (for all n) we will conclude that $C(I) \setminus \mathcal{D}$ is of the second category.

1. \mathcal{D}_n has no interior: Given $f \in \mathcal{D}_n$ we will find a continuous function $g \notin \mathcal{D}_n$ such that $d(f, g) < \varepsilon$, that is, for all $x \in [0, \frac{n-1}{n}]$ there is some $h \in (0, 1/n]$ with $\left| \frac{g(x+h) - g(x)}{h} \right| > n$. Find a polynomial function $P(x)$ on $[0, 1]$ such that $d(f, P) < 1/2$ (that is possible since polynomials functions are dense in $C(I)$ with the uniform metric). Let M be the maximum slope of P in $[0, 1]$, and let $Q(x)$ be a continuous function consisting of straight line segments of slope $\pm(M + n + 1)$ constrained so that $|Q(x)| < \varepsilon/2$. Now, define $g(x) := P(x) + Q(x)$. Then $d(f, g) < d(f, P) + d(P, Q) < \varepsilon$ and:

$$\left| \frac{g(x+h) - g(x)}{h} \right| = \left| \frac{P(x+h) + Q(x+h) - P(x) - Q(x)}{h} \right| \geq \left| \frac{Q(x+h) - Q(x)}{h} \right| - \left| \frac{P(x+h) - P(x)}{h} \right|$$

But for $x \in [0, \frac{n-1}{n}]$, an $h \in (0, 1/n]$ can be found for which the latter is greater than $(M+n+1) - M = n+1$. Thus, $g \notin \mathcal{D}_n$.

2. \mathcal{D}_n is closed: The map $e : C(I) \times I \rightarrow \mathbb{R}$ defined by $e(f, x) := f(x)$ is continuous. It follows that if h_0 is a fixed element of $(0, 1/n]$, the map $E_{h_0} : C(I) \times [0, \frac{n-1}{n}] \rightarrow \mathbb{R}$ defined by $E_{h_0}(f, x) := \left| \frac{f(x+h_0) - f(x)}{h_0} \right|$ is continuous. Thus $E_{h_0}^{-1}[0, n]$ is closed in $C(I) \times [0, \frac{n-1}{n}]$. Define $D_{h_0} := \{f \in C(I) \mid (f, x) \in E_{h_0}^{-1}[0, n], \text{ for some } x \in [0, \frac{n-1}{n}]\}$. Then D_{h_0} is closed in $C(I)$. For if $\{f_m\}_m \subseteq D_{h_0}$ where $f_m \rightarrow f$, then $\{x_m\}_m \subseteq [0, 1 - 1/n]$ such that $\{f_m, x_m\}_m \subseteq E_{h_0}^{-1}[0, n]$ has a cluster point x . Now, $(f, x) \in E_{h_0}^{-1}[0, n]$, so that $f \in D_{h_0}$.

Now, $\mathcal{D}_n = \bigcap_{h_0 \in (0, 1/n]} D_{h_0}$, establishing that \mathcal{D}_n is closed. □