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We now aim at developing tools to be able to prove the following.

Theorem 3.1 (Luzin). Assuming CH, there exists a Luzin set, that is, an uncountable set
L C R such that for any meager set M C R: |L N M| < Ny.

Definition 3.2. Suppose X is a set. For an ideal I C P(X). Put:
e add(/) :=min{|A| | ACI(JUAEI)}.
e cov(/) :==min{|A| | ACI(JA=X)}.
e cof(I) :=min{|A| | AC [ and VB € I3C € A(B C C)}.
If 7 is a proper ideal, we may also define:
e non(/) :=min{|A] | AC X and A ¢ I}.

Since an ideal is closed under finite unions, always add(l) > Ny. If I is a proper ideal,
then also add(/) < cov([). If I is non-trivial, then also cov(I) < cof(I).
Intuitively, an ideal is a collection of negligible sets. Two important examples are:

Definition 3.3. Let M := {A CR | A is meager } and N := {A CR | A is a null set }.
We also consider M1 := M NP([0,1]) and Njp1; := N NP([0,1]).

Evidently, M, N are non-trivial ideals and add(M), add(N) > X;. |[M| = |[N| = 2°, since
the cantor set C'€ M NN is of size ¢ and then P(C) € M NN. However:

Lemma 3.4. cof(M) < ¢ and cof(N) < c.

Proof. As mentioned before, any meager set is contained in some F, meager set, and there
are only ¢ many F, sets, hence, cof (M) < c.
If A € N, then for all n € N, there exists some open G, containing A and of measure

< It follows that any null set is contained in some G null set, thus, cof(N) <¢. O

—
Lemma 3.5. Assume Z is an ideal over some infinite set X, then cf(add(Z)) = add(Z).
If non(Z) is defined, then add(Z) < cf(non(Z)).
If cof (Z) is infinite, then add(Z) < cf(cof(Z)).

Proof. Put A := add(Z), x := cf(\) and pick a family {\; € A | i < k} with sup,., \; = A.
Let {A, € T | a < A} witness add(Z) = A. By the definition of add(Z), for all i < &,
B; :=U,<y, Aa is in Z. Now if A was a singular cardinal, i.e., if & < add(Z), then | J,_, Aa =
Uiz, Bi € Z. A Contradiction.

Put 6 := cof (Z) and pick a witness C := {C, € Z | a < 0}. Also, find {0; <0 |i < 7}
witnessing 7 := cf(f). By thinning-out if needed, we may assume non-redundancy of C, i.e.:

*) a<B<0—CsZCh
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Put C' := {Cy, | i < 7}. Now, if 7 < add(Z), then | JC' € Z, and there must exist some
a < 6 with C' C C,. Find i < 7 with a < 6;, then in particular Cy, C (JC' C C,,
contradicting (x).

Put pu :=non(Z), o := cf(u) and pick some D € [X]* such that D ¢ Z. By |D| = pu, there
exists a family of sets {D; € [D]** | i < o} such that D = J,_, D;. Now, by |D;| < non(Z)
for all i, we know that {D; | i < ¢} C Z, thus, if 0 < add(Z), then D = |J,_, D; € I. A
contradiction.

<o
U

Corollary 3.6. Suppose T is a mon-trivial proper ideal over some infinite set X, then:

Ny < cf(add(Z)) = add(Z) < min { cov(Z), cf(non(Z)), cf(cof (T))} < cov(Z) < cof (Z) < 21X1.

Theorem 3.7. Assume I is a non-trivial proper ideal over an infinite set X.
Suppose cov(I) = cof (I) = k, then there exists some set A C X such that |A| = k and for
al BeZ, | BNA|<k.

Proof. Fix (B, | a < k) witnessing cof(Z) = k. We define A = {a,, | @« < x} by induction on
a < k. Assume {ag | f < a} had already been defined. Since Z is non-trivial, {ag} € Z for
all 3 < a. It follows from o < cov(Z) and properness of Z that (g, {as} YUz, Bs) # X,
so let us pick a, € X \ ({ag | B < a}UUjs., Bs). End of the construction.

Clearly, the construction ensures that |A| = k. To see the other property, fix B € Z.

By defining properties of (B, | @ < k), there exists some § < k such that B C Bsz. By
the construction, for all @ < k with a > 3, a, € X \ Bz and hence BN A C {as | § < 5},
that is, |BNA| < |5] < k. O

Corollary 3.8. If ¢ = Ny, then there exists a Sierpinski set, that is, an uncountable set
S C R such that for any null set N CR: |LNN| < N,.

Proof. Trivially, N is a proper ideal. Applying add(/N') > R; and Corollary 3.6, we get that:
R; < add(N) < cov(N) < cof (V) < ¢ =Ny,

O
Corollary 3.9 (Luzin). If ¢ = Xy, then there exists a Luzin set.
Proof. By now, the only missing ingredient is the following. U
Theorem 3.10 (Baire). M is a proper ideal.
Proof. We give a proof in a wider context. See Theorem 3.16. ]

Thus, we yield the consistency of existence of a Luzin set. It is worth mentioning that the
non-existence of a Luzin set is also consistent.
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Definition 3.11. A set A is comeager iff A¢ is meager.

Remark: Assume that A is meager, then there exist a sequence of nowhere dense sets
{Fi}ien such that A = |J,», Fi, therefore A C U¢>1E" We conclude that ﬂi>1fz~c C Ac,
where {EC}Z-GN are dense and open.

Since the converse is also true, we get that a set is comeager iff it contains a G5 subset,
such that each open set in the intersection is dense. We will see that in complete metric
spaces, such sets are dense.

Definition 3.12. A metric space is complete iff every Cauchy sequence converges.
Lemma 3.13. Every compact subspace of a metric space is complete.

Proof. 1f C'is compact, then any sequence from C' has a converging subsequence, in particular
if the sequence is Cauchy, its (unique) limit is in C. OJ

Lemma 3.14. Every closed set in a complete space is complete.

Proof. Assume X is complete, F' C X is closed, and {f,}n,en C F is Cauchy.
{fn}nen € X is also Cauchy (since the metric on F' is induced by the metric on X)), thus
converges to some x € X. On the other hand, F' is closed, so x must be in F. O

Definition 3.15. X is a Baire space iff the intersection of any countable family of dense

open sets in X is dense.'?

A generalization of Theorem 3.10 is the following.
Theorem 3.16. Fvery complete metric space is a Baire space.

Proof. Assume (F; | i € N) is a family of closed and nowhere dense subsets in a complete
metric space (X, d). We will show that G := (U F,-)C is dense in X.

Pick an arbitrary open ball B. Now, B\ F; # () (since F; is nowhere dense and has no
interior), so we pick x; € B\ F;. X is metric hence regular, therefore there exist an open
ball By, such that x; € B; € B; C B\ F, and Diam(B;) < % Once again, By \ Fy # 0,
x1 € B\ Fy is picked and we can find some open ball B, that satisfies 2o € By C By C B\ F;
and Diam(B,) < 3.

We continue likewise and construct a downward chain {B, },eny and a sequence {x, }nen,
such that Diam(B,,) < n%l, and z,, € B, for all n € N. {x,},ey is Cauchy in B; which is a
complete space, thus converges to some z € By. Now, z € BN, and since B is an arbitrary
ball, we get that G is dense. O

ONotice that a Baire space can not be a countable union of nowhere dense sets.



INFINITE COMBINATORIAL TOPOLOGY 17

Observation 3.17. Suppse (X, O) is a topological space and Y C X is such that :
oY = 54,(0,0);
o [fU is an open set containing Y, then X \ U = S (O, O)

then X = Spin(O,O).

Proof. Assume XY are like in the statement. Let (U, C O | n € N) be a countable family
of open covers of X. By Y |= S5, (0, 0) and (Us, € O | n € N) being a countable family
of open covers of Y, there exists some (Fy, € [Us,]~* | n € N) such that (J, . Fon is an
open cover of Y. Put U := |JU, ey F2n- Finally, since Y C U and (Usp1 € O | n € N)
is an open cover of X \ U, there exists (Fonq1 € [Uzns1]* | n € N) such that (J, .y Fontt
is an open cover of X \ U and it follows that (J, .y F» is an open cover of X exemplifying
Stin(O, O). O

Definition 3.18. Suppose (X, O) is a topological space and k is an infinite cardinal number.
For Y C X, we say that X is k-concentrated at Y iff for any open U D Y: | X \ U] < k.

Corollary 3.19. Suppose (X, O) is a topological space and Y C X is such that:
oY |: Sfin(O> O)?

e X is concentrated (i.e. Ny-concentrated) at'Y .

then X = Spin (O, O).

Proof. By Observation 3.17 and the fact that any countable set satisfies Menger’s property.
O

In special cases, we can prove a stronger result. We first need another definition.

Definition 3.20. For a topological space (X, O), we denote by S;(O, O) the property that
for any countable sequence of open covers of X, (U, € O | n € N), there exists some
(U, € Uy | n € N) such that X = J,,cy Un-

Observation 3.21. Suppose (X, O) is a topological space andY C X is such that:
o Y E S51(0,0);

o X is concentrated at'Y .

then X = S51(0,0).
Proof. Same as 3.17. 0

Corollary 3.22. Suppose (X, O) is a topological space and is concentrated at some countable
Y C X, then X E 51(0,0).



18 ASSAF RINOT AND ROY TEPER

It is worth mentioning that S:(O, ) is indeed stronger than Sy, (O0,0). [0,1] C R
is compact, hence, satisfies Menger’s property. However, for any family of open covers
(U, | n € Ny with Diam(U) < 545 for alln € Nand U € U,, we get that Y, Diam(U,,) <
1 = Diam([0, 1)) for all (U, € U,, | n € N). In particular [0, 1] cannot satisfy S1(O, O).

Lemma 3.23. If X C R is uncountable and o-compact, then X contains a perfect set.

Proof. Assuming X = (J, oy
must exist some m € N, with |K,,| > R, thus, K,, is an uncountable closed set. Applying

K, where (K,, | n € N) are compact, we know that there

Theorem 2.24, we conclude that K, (and hence, also X) contains a perfect subset. O
Theorem 3.24. Megner’s conjecture 1.30 is consistently false.

Proof. Since the existence of a Luzin set is consistent, it suffices to prove that a Luzin set
L C R satisfies Menger’s property but is not o-compact.

Claim 3.25. L is concentrated at some A € [L]=N0.
In particular, L = S1(0,O).

Proof. Since L C R, we have that w(L) < w(R) < X,. It follows from Lemma 2.6 that L is
separable, so let A C L be a countable dense subset of L. To see that L is concentrated at A,
pick some open set U C R with U D A. To see |L\ U| < Ny, notice that L\U = LN(A\U).
Now, R\ (A\U) =R\ (A\U)= R\ A)UANU)D (R\ A)U A, and the latter is surely
dense in R.! Tt follows from Lemma 2.19 that A\ U is nowhere dense. Recalling that L is
a Luzin set, we conclude that L N (A \ U) is countable. O

It follows that L }= Sin (O, O). We are left with showing that L is not o-compact. Using
Lemma 3.23, this reduces to showing that L does not contain a perfect subset. In the
following, we prove that any perfect set contains a meager subset of cardinality ¢, and hence,
L cannot contain a perfect subset. Il

Lemma 3.26. If P C R is perfect, then there exists some X C P such that:

o X is perfect;
e X is a null set.
e X is nowhere dense and homeomorphic to the product space {0, 1}Y;

In particular, any perfect subset of R is of cardinality c.

Proof. We first need the following Observation:

HSimply because (R\ A)UA = (R\ A)UA =R.
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Observation 3.27. Suppose (L, <) is a linearly-ordered set.

Put B< :=={(a,3) | a, B € L,a < 3}, and let (L, O<) be the topological space generated
by the base B< (This is called the interval topology ).

For any perfect P C L and a closed interval I C L with I NP # 0, there exists some
closed interval J C I such that J N P s perfect.

Proof. Assume P is perfect and I = [a, b] is an interval with PN 1T # (). If PN 1 is perfect, we
are done, so assume this is not the case, that is, at least one of the elements a, b are isolated
at PN 1. Note that no elements of (a, b) can be isolated in [a,b]N P. If a is isolated (and b is
not), then we can find some a < ¢ < b such that [¢,b]NP = INP\{a}, so take J := [¢,b]. If b
is isolated (and a is not), then we can find some a < d < b such that [a,d]NP = 1N P\ {b},
so take J := [a,d]. If both a and b are isolated we can find a < ¢ < d < b such that
le,d NP =1nP\{a,b}, so take J := [c,d]. O

Assume P C R is a perfect set.

Let S :={s:{1,...,k} — {0,1,2} | £ € N} denote the family of finite ternary sequences.
Define a function ¢ : § — {I C R | I is a closed interval}. By induction on n - the length
of s € S. For s € S, we sometime write [, for ¢(s) whenever defined.

Induction base (n = 1): Let so = {(1,0)},s1 = {(1,1)},s2 = {(1,2)}, and find a family of
mutually disjoint intervals {,, Is,, I, } such that Diam(/y,) < 3 and I, N P is perfect for all
i€{0,1,2}. (E.g. take some interval [ C P. Since P is prefect, I is infinite, so split it into
three mutually disjoint intervals, and apply the preceding observation on each one of them).

Induction step (n + 1): For s € S of length n, find a family of mutually disjoint intervals
F = {I~1, Is~9, I;~3} such that F C P(I,) and Diam(I,~;) < (3)" for all i € {0,1,2}.

Put ¢(s7i) := I,~; for all i € {0,1,2}.

Finally, we define a fucntion ¢ : {0,2}" — P. For f € {0,2}N, N2, Ifi(1,. is a single
element of P, so let ¢(f) be this single element. Clearly, 1 is one-to-one.

Viewing {0, 2} as the product of length w of the discrete space {0, 2}, we already met the
type of arguments justifying why ¢ is an homeomorphism on M := Im(%)) (see, e.g., Lemma
2.30). Furthere more, it is not hard to see that int(M) = (). Since M is closed, it is also
nowhere dense. The choice of diameters in the definition of ¢ also ensures that M is a null
set.

Finally, to see that M is perfect, assume towards a contradiction there exists some f €
{0,2}" and interval (a,b) C R such that M N (a,b) = {x} where x = ¢(f). However, by the
choice of x, there exists some length n € N such that x € Iy ;1 n) C (a,b) and Ty, 3 NP
is perfect. A contradiction. O

2(q,08) :={y € L|a<~< B} is the open interval. [, 3] := {y € L | o < v < 3} is a closed interval,
and so on..



20 ASSAF RINOT AND ROY TEPER

Proposition 3.28. The Cantor set is homeomorphic to {0, 1}Y.

Remark: Once the proposition is proved, we get that the cantor set is a subspace of the
Baire space.

Proof. Fix v € C. x =7, 5=, where for all n € N, z,, € {0,2}.
Define ¢ : C' — {0,1} by 9 (z) := {2 },>1. ¥ is obviously a bijection. Using similar
methods from the proof of Lemma 2.30, we get that ¢ is open and continuous as well. [

A more probabilistic point of view of the set {0, 1} is the following: a coin with equiprob-
able outcome is tossed endlessly. We define €2 to be all infinite sequences of coin tosses, i.e.,
Q = [0,1] (where heads is 1 and tails is 0, and we consider the binary representation of
elements of [0,1]). The event "the first outcome is 0” is of probability 1/2. The event ”the
first two outcomes are 0” is of probability 1/4, etc.

It follows that P([a,b)) = b — a whenever 0 < a < b < 1 and a,b are of the form
k/2". Such numbers are dense, and using monotonicity of probability measure we get that
P([a,b)) = b — a whenever 0 < a < b < 1. This is of course the Lebesgue measure.

Example 3.29. Is Q a G set?

Assume Q = (),~,; G,, where G, is open for all n € N. Obviously, G, is dense for all
n € N, since Q C G,. We get that R\ Q = |J,., G¢ where G¢ is nowhere dense for all
n € N, thus R\ Q is meager. But, Q is also meaggr, hence R is meager, a contradiction to
Baire’s Theorem 3.10.

Definition 3.30. Assume X is a set. A family F' C P(X) is a filter over X iff it satisfies:

e XcF,and() & F.
e AcFFand ACBC X =— BelF.
e ABeFF— ANBEF.

Intuitively, a filter is a collection of ”"fat” sets. It is not hard to see that if I is a proper
ideal over X then I* := {X \ A | A € I} forms a filter.

It is very often that we call sets that comes from an ideal as ”sets of measure zero”, sets
the comes from a filter as ”sets of measure one”, and sets that comes from outside a given
ideal as "sets of positive measure”.

However, this terminology might sometimes be misleading. In the following we show that
it is possible for a set to be ”of measure zero” from one ideal’s point of view, and ”of measure
one” in the view of another filter.
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Proposition 3.31. NN M* #£ (), that is, R can be decomposed as R = D@ M, where M is
meager and D is a null set.

Proof. Write Q as {¢,}n>1. Let {ex}r>1 be a sequence converging to 0. For all k£ € N pick a
sequence {ry,}n>1 such that ry, <141, foralln € Nand > 1, < &.

For every k € N, define Dy :=J, B;, . (¢n). D := (), Dy is a null set and is comeager (By
the above example). Now, define M := R\ D. O

The example we give next is typical of an existence theorem based on the Baire’s theorem.
We show that some element of a space must have a given property by showing that the space
is second category while the elements which do not have a given property form a set of first
category.

Definition 3.32. For an interval I C R, let C(I) denote the family of all continuous real-

valued function on I.

It is a well-known fact that a uniform limit of continuous function is continuous, thus, if
we regard C(I) as a metric space with p(f,g) 1= sup,¢;|f(z) — g(x)| (for all f,g € C(I),
then (C(I), p) is a complete metric space.

It is nice to see that if (fi, fo,...) is a Cauchy sequence in C(I), then, for each x € I,
{fn(x)}n>1 is a Cauchy sequence of real numbers, hence converges.

Theorem 3.33. There is a continuous real-valued functions on I (some closed interval)
having a derivative at no point.

Proof. Denote by D the set of all functions in C'(I) having a derivative somewhere.

Define for all n € N:
D, := {f € C(I)| for some z € [0, n_—l], whenever h € (0,1/n], ‘f(x il h})L — f(x)| < n}
n

If f € C(I) has a derivative at some point, then for some large enough n € N, f € D,,. Hence

D = UD,. By showing that D,, is closed and has no interior (for all n) we will conclude
that C(I) \ D is of the second category.

1. D, has no interior: Given f € D,, we will find a continuous function g ¢ D,, such that
d(f,g) < e, that is, for all x € [0, %] there is some h € (0,1/n] with ‘w‘ > n.
Find a polynomial function P(x) on [0,1] such that d(f, P) < 1/2 (that is possible since
polynomials functions are dense in C'(I) with the uniform metric). Let M be the maximum
slope of P in [0, 1], and let Q(x) be a continuous function consisting of straight line segments
of slope £(M + n + 1) constrained so that | Q(x) |< /2. Now, define g(x) := P(z) + Q(z).
Then d(f,g) < d(f,P)+d(P,Q) < ¢ and:

g(x+h)—g($)’ _ ‘P($+h)+Q(SE+h)—P($)—Q(w)‘ S ‘Q(th)—Q(:v)‘_‘P(Hh)—P(ﬂf)
h h - h h
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But for z € [0,%2], an h € (0,1/n] can be found for which the latter is greater than
(M+n+1)—M =n+1. Thus, g ¢ D,.

2. D, is closed: The map e : C'(I) x I — R defined be e(f,z) := f(x) is continuous. It
follows that if hy is a fixed element of (0,1/n], the map Ej, : C(I) % [0, =] — R defined by
En(f,x) = ‘%ﬁfﬂx)‘ is continuous. Thus E, '[0,n] is closed in C(I) x [0, %], Define
Dy, :={f € C(D)|(f, ) € E}'[0,n), for some z € [0, %]}, Then Dy, is closed in C(I). For
it {fin}m € Dy, where f,, — f, then {z,,},, C[0,1 — 1/n] such that {f,, Zm}m C Egol [0, 7]
has a cluster point . Now, (f,x) € Egol [0,n], so that f € Dp,.

Now, D,, = ﬂhoe(o’l . Dy, establishing that D, is closed.



