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We now aim at developing tools to be able to prove the following.

Theorem 3.1 (Luzin). Assuming CH, there exists a Luzin set, that is, an uncountable set

L ⊆ R such that for any meager set M ⊆ R: |L ∩M | ≤ ℵ0.

Definition 3.2. Suppose X is a set. For an ideal I ⊆ P(X). Put:

• add(I) := min{|A| | A ⊆ I(
⋃

A 6∈ I)}.

• cov(I) := min{|A| | A ⊆ I(
⋃

A = X)}.

• cof(I) := min{|A| | A ⊆ I and ∀B ∈ I∃C ∈ A(B ⊆ C)}.

If I is a proper ideal, we may also define:

• non(I) := min{|A| | A ⊆ X and A 6∈ I}.

Since an ideal is closed under finite unions, always add(I) ≥ ℵ0. If I is a proper ideal,

then also add(I) ≤ cov(I). If I is non-trivial, then also cov(I) ≤ cof(I).

Intuitively, an ideal is a collection of negligible sets. Two important examples are:

Definition 3.3. Let M := {A ⊆ R | A is meager } and N := {A ⊆ R | A is a null set }.

We also consider M[0,1] := M∩P([0, 1]) and N[0,1] := N ∩ P([0, 1]).

Evidently, M,N are non-trivial ideals and add(M), add(N ) ≥ ℵ1. |M| = |N | = 2c, since

the cantor set C ∈ M∩N is of size c and then P(C) ⊆ M∩N . However:

Lemma 3.4. cof(M) ≤ c and cof(N ) ≤ c.

Proof. As mentioned before, any meager set is contained in some Fσ meager set, and there

are only c many Fσ sets, hence, cof(M) ≤ c.

If A ∈ N , then for all n ∈ N, there exists some open Gn containing A and of measure

< 1
n+1

. It follows that any null set is contained in some Gδ null set, thus, cof(N ) ≤ c. �

Lemma 3.5. Assume I is an ideal over some infinite set X, then cf(add(I)) = add(I).

If non(I) is defined, then add(I) ≤ cf(non(I)).

If cof(I) is infinite, then add(I) ≤ cf(cof(I)).

Proof. Put λ := add(I), κ := cf(λ) and pick a family {λi ∈ λ | i < κ} with supi<κ λi = λ.

Let {Aα ∈ I | α < λ} witness add(I) = λ. By the definition of add(I), for all i < κ,

Bi :=
⋃

α<λi
Aα is in I. Now if λ was a singular cardinal, i.e., if κ < add(I), then

⋃

α<λAα =
⋃

i<κBi ∈ I. A Contradiction.

Put θ := cof(I) and pick a witness C := {Cα ∈ I | α < θ}. Also, find {θi < θ | i < τ}

witnessing τ := cf(θ). By thinning-out if needed, we may assume non-redundancy of C, i.e.:

(⋆) α < β < θ → Cβ 6⊆ Cα.
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Put C′ := {Cθi
| i < τ}. Now, if τ < add(I), then

⋃

C′ ∈ I, and there must exist some

α < θ with
⋃

C′ ⊆ Cα. Find i < τ with α < θi, then in particular Cθi
⊆

⋃

C′ ⊆ Cα,

contradicting (⋆).

Put µ := non(I), σ := cf(µ) and pick some D ∈ [X]µ such that D 6∈ I. By |D| = µ, there

exists a family of sets {Di ∈ [D]<µ | i < σ} such that D =
⋃

i<σ Di. Now, by |Di| < non(I)

for all i, we know that {Di | i < σ} ⊆ I, thus, if σ < add(I), then D =
⋃

i<σ Di ∈ I. A

contradiction.

�

Corollary 3.6. Suppose I is a non-trivial proper ideal over some infinite set X, then:

ℵ0 ≤ cf(add(I)) = add(I) ≤ min
{

cov(I), cf(non(I)), cf(cof(I))
}

≤ cov(I) ≤ cof(I) ≤ 2|X|.

Theorem 3.7. Assume I is a non-trivial proper ideal over an infinite set X.

Suppose cov(I) = cof(I) = κ, then there exists some set A ⊆ X such that |A| = κ and for

all B ∈ I, |B ∩ A| < κ.

Proof. Fix 〈Bα | α < κ〉 witnessing cof(I) = κ. We define A = {aα | α < κ} by induction on

α < κ. Assume {aβ | β < α} had already been defined. Since I is non-trivial, {aβ} ∈ I for

all β < α. It follows from α < cov(I) and properness of I that (
⋃

β<α{aβ}∪
⋃

β<αBβ) 6= X,

so let us pick aα ∈ X \ ({aβ | β < α} ∪
⋃

β<αBβ). End of the construction.

Clearly, the construction ensures that |A| = κ. To see the other property, fix B ∈ I.

By defining properties of 〈Bα | α < κ〉, there exists some β < κ such that B ⊆ Bβ. By

the construction, for all α < κ with α > β, aα ∈ X \ Bβ and hence B ∩ A ⊆ {aδ | δ ≤ β},

that is, |B ∩ A| ≤ |β| < κ. �

Corollary 3.8. If c = ℵ1, then there exists a Sierpinski set, that is, an uncountable set

S ⊆ R such that for any null set N ⊆ R: |L ∩N | ≤ ℵ0.

Proof. Trivially, N is a proper ideal. Applying add(N ) ≥ ℵ1 and Corollary 3.6, we get that:

ℵ1 ≤ add(N ) ≤ cov(N ) ≤ cof(N ) ≤ c = ℵ1.

�

Corollary 3.9 (Luzin). If c = ℵ1, then there exists a Luzin set.

Proof. By now, the only missing ingredient is the following. �

Theorem 3.10 (Baire). M is a proper ideal.

Proof. We give a proof in a wider context. See Theorem 3.16. �

Thus, we yield the consistency of existence of a Luzin set. It is worth mentioning that the

non-existence of a Luzin set is also consistent.
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Definition 3.11. A set A is comeager iff Ac is meager.

Remark: Assume that A is meager, then there exist a sequence of nowhere dense sets

{Fi}i∈N such that A =
⋃

i≥1 Fi, therefore A ⊆
⋃

i≥1 Fi. We conclude that
⋂

i≥1 Fi
c
⊆ Ac,

where {Fi
c
}i∈N are dense and open.

Since the converse is also true, we get that a set is comeager iff it contains a Gδ subset,

such that each open set in the intersection is dense. We will see that in complete metric

spaces, such sets are dense.

Definition 3.12. A metric space is complete iff every Cauchy sequence converges.

Lemma 3.13. Every compact subspace of a metric space is complete.

Proof. If C is compact, then any sequence from C has a converging subsequence, in particular

if the sequence is Cauchy, its (unique) limit is in C. �

Lemma 3.14. Every closed set in a complete space is complete.

Proof. Assume X is complete, F ⊆ X is closed, and {fn}n∈N ⊆ F is Cauchy.

{fn}n∈N ⊆ X is also Cauchy (since the metric on F is induced by the metric on X), thus

converges to some x ∈ X. On the other hand, F is closed, so x must be in F . �

Definition 3.15. X is a Baire space iff the intersection of any countable family of dense

open sets in X is dense.10

A generalization of Theorem 3.10 is the following.

Theorem 3.16. Every complete metric space is a Baire space.

Proof. Assume 〈Fi | i ∈ N〉 is a family of closed and nowhere dense subsets in a complete

metric space 〈X, d〉. We will show that G :=
(
⋃

Fi

)c
is dense in X.

Pick an arbitrary open ball B. Now, B \ F1 6= ∅ (since F1 is nowhere dense and has no

interior), so we pick x1 ∈ B \ F1. X is metric hence regular, therefore there exist an open

ball B1, such that x1 ∈ B1 ⊆ B1 ⊆ B \ F1, and Diam(B1) <
1
2
. Once again, B1 \ F2 6= ∅,

x1 ∈ B1\F2 is picked and we can find some open ball B2 that satisfies x2 ∈ B2 ⊆ B2 ⊆ B1\F2

and Diam(B2) <
1
3
.

We continue likewise and construct a downward chain {Bn}n∈N and a sequence {xn}n∈N,

such that Diam(Bn) < 1
n+1

, and xn ∈ Bn for all n ∈ N. {xn}n∈N is Cauchy in B1 which is a

complete space, thus converges to some x ∈ B1. Now, x ∈ B∩G, and since B is an arbitrary

ball, we get that G is dense. �

10Notice that a Baire space can not be a countable union of nowhere dense sets.
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Observation 3.17. Suppse 〈X,O〉 is a topological space and Y ⊆ X is such that :

• Y |= Sfin(O,O);

• If U is an open set containing Y , then X \ U |= Sfin(O,O)

then X |= Sfin(O,O).

Proof. Assume X,Y are like in the statement. Let 〈Un ⊆ O | n ∈ N〉 be a countable family

of open covers of X. By Y |= Sfin(O,O) and 〈U2n ⊆ O | n ∈ N〉 being a countable family

of open covers of Y , there exists some 〈F2n ∈ [U2n]<ω | n ∈ N〉 such that
⋃

n∈N
F2n is an

open cover of Y . Put U :=
⋃⋃

n∈N
F2n. Finally, since Y ⊆ U and 〈U2n+1 ⊆ O | n ∈ N〉

is an open cover of X \ U , there exists 〈F2n+1 ∈ [U2n+1]
<ω | n ∈ N〉 such that

⋃

n∈N
F2n+1

is an open cover of X \ U and it follows that
⋃

n∈N
Fn is an open cover of X exemplifying

Sfin(O,O). �

Definition 3.18. Suppose 〈X,O〉 is a topological space and κ is an infinite cardinal number.

For Y ⊆ X, we say that X is κ-concentrated at Y iff for any open U ⊇ Y : |X \ U | < κ.

Corollary 3.19. Suppose 〈X,O〉 is a topological space and Y ⊆ X is such that:

• Y |= Sfin(O,O);

• X is concentrated (i.e. ℵ1-concentrated) at Y .

then X |= Sfin(O,O).

Proof. By Observation 3.17 and the fact that any countable set satisfies Menger’s property.

�

In special cases, we can prove a stronger result. We first need another definition.

Definition 3.20. For a topological space 〈X,O〉, we denote by S1(O,O) the property that

for any countable sequence of open covers of X, 〈Un ⊆ O | n ∈ N〉, there exists some

〈Un ∈ Un | n ∈ N〉 such that X =
⋃

n∈N
Un.

Observation 3.21. Suppose 〈X,O〉 is a topological space and Y ⊆ X is such that:

• Y |= S1(O,O);

• X is concentrated at Y .

then X |= S1(O,O).

Proof. Same as 3.17. �

Corollary 3.22. Suppose 〈X,O〉 is a topological space and is concentrated at some countable

Y ⊆ X, then X |= S1(O,O).
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It is worth mentioning that S1(O,O) is indeed stronger than Sfin(O,O). [0, 1] ⊆ R

is compact, hence, satisfies Menger’s property. However, for any family of open covers

〈Un | n ∈ N〉 with Diam(U) < 1
2n+17 for all n ∈ N and U ∈ Un, we get that

∑

n∈N
Diam(Un) <

1 = Diam([0, 1]) for all 〈Un ∈ Un | n ∈ N〉. In particular [0, 1] cannot satisfy S1(O,O).

Lemma 3.23. If X ⊆ R is uncountable and σ-compact, then X contains a perfect set.

Proof. Assuming X =
⋃

n∈N
Kn, where 〈Kn | n ∈ N〉 are compact, we know that there

must exist some m ∈ N, with |Km| > ℵ0, thus, Km is an uncountable closed set. Applying

Theorem 2.24, we conclude that Km (and hence, also X) contains a perfect subset. �

Theorem 3.24. Megner’s conjecture 1.30 is consistently false.

Proof. Since the existence of a Luzin set is consistent, it suffices to prove that a Luzin set

L ⊆ R satisfies Menger’s property but is not σ-compact.

Claim 3.25. L is concentrated at some A ∈ [L]≤ℵ0.

In particular, L |= S1(O,O).

Proof. Since L ⊆ R, we have that w(L) ≤ w(R) ≤ ℵ0. It follows from Lemma 2.6 that L is

separable, so let A ⊆ L be a countable dense subset of L. To see that L is concentrated at A,

pick some open set U ⊆ R with U ⊇ A. To see |L\U | ≤ ℵ0, notice that L\U = L∩ (A\U).

Now, R \ (A \ U) = R \ (A \ U) = (R \A) ∪ (A ∩ U) ⊇ (R \A) ∪A, and the latter is surely

dense in R.11 It follows from Lemma 2.19 that A \ U is nowhere dense. Recalling that L is

a Luzin set, we conclude that L ∩ (A \ U) is countable. �

It follows that L |= Sfin(O,O). We are left with showing that L is not σ-compact. Using

Lemma 3.23, this reduces to showing that L does not contain a perfect subset. In the

following, we prove that any perfect set contains a meager subset of cardinality c, and hence,

L cannot contain a perfect subset. �

Lemma 3.26. If P ⊆ R is perfect, then there exists some X ⊆ P such that:

• X is perfect;

• X is a null set.

• X is nowhere dense and homeomorphic to the product space {0, 1}N;

In particular, any perfect subset of R is of cardinality c.

Proof. We first need the following Observation:

11Simply because (R \ A) ∪ A = (R \ A) ∪ A = R.
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Observation 3.27. Suppose 〈L,≤〉 is a linearly-ordered set.

Put B≤ := {(α, β) | α, β ∈ L, α < β},12 and let 〈L,O≤〉 be the topological space generated

by the base B≤ (This is called the interval topology).

For any perfect P ⊆ L and a closed interval I ⊆ L with I ∩ P 6= ∅, there exists some

closed interval J ⊆ I such that J ∩ P is perfect.

Proof. Assume P is perfect and I = [a, b] is an interval with P ∩I 6= ∅. If P ∩I is perfect, we

are done, so assume this is not the case, that is, at least one of the elements a, b are isolated

at P ∩ I. Note that no elements of (a, b) can be isolated in [a, b]∩P . If a is isolated (and b is

not), then we can find some a < c < b such that [c, b]∩P = I∩P \{a}, so take J := [c, b]. If b

is isolated (and a is not), then we can find some a < d < b such that [a, d]∩P = I ∩P \ {b},

so take J := [a, d]. If both a and b are isolated we can find a < c < d < b such that

[c, d] ∩ P = I ∩ P \ {a, b}, so take J := [c, d]. �

Assume P ⊂ R is a perfect set.

Let S := {s : {1, .., k} → {0, 1, 2} | k ∈ N} denote the family of finite ternary sequences.

Define a function ϕ : S → {I ⊆ R | I is a closed interval}. By induction on n - the length

of s ∈ S. For s ∈ S, we sometime write Is for ϕ(s) whenever defined.

Induction base (n = 1): Let s0 = {(1, 0)}, s1 = {(1, 1)}, s2 = {(1, 2)}, and find a family of

mutually disjoint intervals {Is1
, Is2

, Is3
} such that Diam(Isi

) < 1
3

and Isi
∩P is perfect for all

i ∈ {0, 1, 2}. (E.g. take some interval I ⊆ P . Since P is prefect, I is infinite, so split it into

three mutually disjoint intervals, and apply the preceding observation on each one of them).

Induction step (n+ 1): For s ∈ S of length n, find a family of mutually disjoint intervals

F = {Is⌢1, Is⌢2, Is⌢3} such that F ⊆ P(Is) and Diam(Is⌢i) < (1
3
)i for all i ∈ {0, 1, 2}.

Put ϕ(s⌢i) := Is⌢i for all i ∈ {0, 1, 2}.

Finally, we define a fucntion ψ : {0, 2}N → P . For f ∈ {0, 2}N, ∩∞
n=1If↾{1,..,n} is a single

element of P , so let ψ(f) be this single element. Clearly, ψ is one-to-one.

Viewing {0, 2}N as the product of length ω of the discrete space {0, 2}, we already met the

type of arguments justifying why ψ is an homeomorphism on M := Im(ψ) (see, e.g., Lemma

2.30). Furthere more, it is not hard to see that int(M) = ∅. Since M is closed, it is also

nowhere dense. The choice of diameters in the definition of ϕ also ensures that M is a null

set.

Finally, to see that M is perfect, assume towards a contradiction there exists some f ∈

{0, 2}N and interval (a, b) ⊆ R such that M ∩ (a, b) = {x} where x = ψ(f). However, by the

choice of x, there exists some length n ∈ N such that x ∈ If↾{1,..,n} ⊆ (a, b) and If↾{1,..,n} ∩ P

is perfect. A contradiction. �

12(α, β) := {γ ∈ L | α < γ < β} is the open interval. [α, β] := {γ ∈ L | α ≤ γ ≤ β} is a closed interval,
and so on..
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Proposition 3.28. The Cantor set is homeomorphic to {0, 1}N.

Remark: Once the proposition is proved, we get that the cantor set is a subspace of the

Baire space.

Proof. Fix x ∈ C. x =
∑

n≥1
xn

3n , where for all n ∈ N, xn ∈ {0, 2}.

Define ψ : C → {0, 1}N by ψ(x) := {xn

2
}n≥1. ψ is obviously a bijection. Using similar

methods from the proof of Lemma 2.30, we get that ψ is open and continuous as well. �

A more probabilistic point of view of the set {0, 1}N is the following: a coin with equiprob-

able outcome is tossed endlessly. We define Ω to be all infinite sequences of coin tosses, i.e.,

Ω = [0, 1] (where heads is 1 and tails is 0, and we consider the binary representation of

elements of [0, 1]). The event ”the first outcome is 0” is of probability 1/2. The event ”the

first two outcomes are 0” is of probability 1/4, etc.

It follows that P ([a, b)) = b − a whenever 0 ≤ a ≤ b ≤ 1 and a, b are of the form

k/2n. Such numbers are dense, and using monotonicity of probability measure we get that

P ([a, b)) = b− a whenever 0 ≤ a ≤ b ≤ 1. This is of course the Lebesgue measure.

Example 3.29. Is Q a Gδ set?

Assume Q =
⋂

n≥1Gn where Gn is open for all n ∈ N. Obviously, Gn is dense for all

n ∈ N, since Q ⊆ Gn. We get that R \ Q =
⋃

n≥1G
c
n where Gc

n is nowhere dense for all

n ∈ N, thus R \ Q is meager. But, Q is also meager, hence R is meager, a contradiction to

Baire’s Theorem 3.10.

Definition 3.30. Assume X is a set. A family F ⊆ P(X) is a filter over X iff it satisfies:

• X ∈ F , and ∅ 6∈ F .

• A ∈ F and A ⊆ B ⊆ X =⇒ B ∈ F .

• A,B ∈ F =⇒ A ∩B ∈ F .

Intuitively, a filter is a collection of ”fat” sets. It is not hard to see that if I is a proper

ideal over X, then I∗ := {X \ A | A ∈ I} forms a filter.

It is very often that we call sets that comes from an ideal as ”sets of measure zero”, sets

the comes from a filter as ”sets of measure one”, and sets that comes from outside a given

ideal as ”sets of positive measure”.

However, this terminology might sometimes be misleading. In the following we show that

it is possible for a set to be ”of measure zero” from one ideal’s point of view, and ”of measure

one” in the view of another filter.
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Proposition 3.31. N ∩M∗ 6= ∅, that is, R can be decomposed as R = D ⊎M , where M is

meager and D is a null set.

Proof. Write Q as {qn}n≥1. Let {εk}k≥1 be a sequence converging to 0. For all k ∈ N pick a

sequence {rk,n}n≥1 such that rk,n < rk−1,n for all n ∈ N and
∑

n rk,n < εk.

For every k ∈ N, define Dk :=
⋃

n Brk,n
(qn). D :=

⋂

k Dk is a null set and is comeager (By

the above example). Now, define M := R \D. �

The example we give next is typical of an existence theorem based on the Baire’s theorem.

We show that some element of a space must have a given property by showing that the space

is second category while the elements which do not have a given property form a set of first

category.

Definition 3.32. For an interval I ⊆ R, let C(I) denote the family of all continuous real-

valued function on I.

It is a well-known fact that a uniform limit of continuous function is continuous, thus, if

we regard C(I) as a metric space with ρ(f, g) := supx∈I |f(x) − g(x)| (for all f, g ∈ C(I),

then 〈C(I), ρ〉 is a complete metric space.

It is nice to see that if 〈f1, f2, ...〉 is a Cauchy sequence in C(I), then, for each x ∈ I,

{fn(x)}n≥1 is a Cauchy sequence of real numbers, hence converges.

Theorem 3.33. There is a continuous real-valued functions on I (some closed interval)

having a derivative at no point.

Proof. Denote by D the set of all functions in C(I) having a derivative somewhere.

Define for all n ∈ N:

Dn :=
{

f ∈ C(I)
∣

∣

∣
for some x ∈ [0,

n− 1

n
], whenever h ∈ (0, 1/n],

∣

∣

∣

f(x+ h) − f(x)

h

∣

∣ ≤ n
}

.

If f ∈ C(I) has a derivative at some point, then for some large enough n ∈ N, f ∈ Dn. Hence

D =
⋃

Dn. By showing that Dn is closed and has no interior (for all n) we will conclude

that C(I) \ D is of the second category.

1. Dn has no interior: Given f ∈ Dn we will find a continuous function g /∈ Dn such that

d(f, g) < ε, that is, for all x ∈ [0, n−1
n

] there is some h ∈ (0, 1/n] with
∣

∣

∣

g(x+h)−g(x)
h

∣

∣

∣
> n.

Find a polynomial function P (x) on [0, 1] such that d(f, P ) < 1/2 (that is possible since

polynomials functions are dense in C(I) with the uniform metric). Let M be the maximum

slope of P in [0, 1], and let Q(x) be a continuous function consisting of straight line segments

of slope ±(M + n+ 1) constrained so that | Q(x) |< ε/2. Now, define g(x) := P (x) +Q(x).

Then d(f, g) < d(f, P ) + d(P,Q) < ε and:
∣

∣

∣

g(x+ h) − g(x)

h

∣

∣

∣
=

∣

∣

∣

P (x+ h) +Q(x+ h) − P (x) −Q(x)

h

∣

∣

∣
≥

∣

∣

∣

Q(x+ h) −Q(x)

h

∣

∣

∣
−

∣

∣

∣

P (x+ h) − P (x)

h

∣

∣

∣
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But for x ∈ [0, n−1
n

], an h ∈ (0, 1/n] can be found for which the latter is greater than

(M + n+ 1) −M = n+ 1. Thus, g /∈ Dn.

2. Dn is closed: The map e : C(I) × I → R defined be e(f, x) := f(x) is continuous. It

follows that if h0 is a fixed element of (0, 1/n], the map Eh0
: C(I)× [0, n−1

n
] → R defined by

Eh0
(f, x) :=

∣

∣

∣

f(x+h0)−f(x)
h0

∣

∣

∣
is continuous. Thus E−1

h0
[0, n] is closed in C(I) × [0, n−1

n
]. Define

Dh0
:=

{

f ∈ C(I)
∣

∣(f, x) ∈ E−1
h0

[0, n), for some x ∈ [0, n−1
n

]
}

. Then Dh0
is closed in C(I). For

if {fm}m ⊆ Dh0
where fm → f , then {xm}m ⊆ [0, 1 − 1/n] such that {fm, xm}m ⊆ E−1

h0
[0, n]

has a cluster point x. Now, (f, x) ∈ E−1
h0

[0, n], so that f ∈ Dh0
.

Now, Dn =
⋂

h0∈(0,1/n]Dh0
, establishing that Dn is closed.

�


