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Lemma 2.1. Sy;,,(O,O) is a topological property, that is, whenever (Xi,Oy), (Xa, Os) are
topological spaces, and f : X1 — Xy is a continuous surjection, then X; = Spin(O,O)
implies Xy = Stin (O, O).

Proof. Suppose (U, C Oy | n € N) is a family of open covers of X,. For any relevant n, put
V, :={f"'U] | U € U,}. By continuity of f, (V,, C O; | n € N) is a family of open covers
of Xy. If X = S4in(O, O), then there exists a witness in the form of (G, € [V,]<¥ | n € N).
Finally, put F, := {U | f~![U] € G.} and notice that (F, € [U,]~% | n € N) exemplifies
Srin(0,O) for Xs. O
Definition 2.2. For a topological space (X, O), put:

-d(X) :==min{|D| | D C Xis dense in X} + N,

- w(X) :=min{|B| | B is a basis to (X, 0)} + Ny,

- L(X) := min{u € ICN | every open cover of X contains a subcover of cardinality < u}.°

In the above terminology, a space (X, O) is separable iff d(X) = Ny, is seocond-countable
iff w(X) =N, and is Lindeldf iff L(X) = N,.

Lemma 2.3. For any topological space (X,0): d(X) < w(X) and L(X) < w(X).

Proof. Fix a basis B € [0]*X). For any choice function f € [];co U, Im(f) is a dense subset
(since its intersection with any non-trivial open sets is never empty). Also | Im(f)| < w(X).
To see that L(X) < w(X), fix an open cover Y. Pick ¢ : O — B such that U = |J¢(U)
for all U € O. Now V := |J{¢(U) | U € U} C B is a cover of X and |V| < |B|. For each
G €V, pick G' € U such that G' C G.
Finally, {G' | G € V} C U is a subcover of cardinality < |B| = w(X). O

To complete the picture, we include the following two observations:
Observation 2.4. There exists a topological space (X, T) with Xy = d(X) < w(X) = N;.

Proof. Take X := w; and 7 := {{0,a} | @ < wi}. Evidently {0} is a dense subset. Notice
that if B is a basis to X, then B = 7. It follows that w(X) = 8. O

Observation 2.5. There exists a topological space (X, T) with Xy = L(X) < w(X) = N;.

Proof. Put X = w; and 7 := {a! | a < w;}, where o := {3 < w; | B > a}. Since a
basis to this space induces an unbounded set in w; and a countable union of countable sets
is countable, w(X) must equal 8;. To see that L(X) = N, fix a cover U of X.

6ICON stands for the class of infinite cardinal numbers.
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Put v := min{a < w; | 3U € U(a' CU)} and let U, be an exemplifying set, i.e., v1 C U.,.
Now, for all 3 < v (there are only countable many!), find Uz € U such that § € Ug.
It follows that {Us | 8 <~} C U is a countable subcover for X. O

It is not by chance that the two spaces mentioned above are not metric:
Lemma 2.6. If (X,d) is a metric space, then w(X) = d(X) = L(X).

Proof. Fix a dense subset D € [X]*X). Put B := {Bi(z) | z € D,n € N*}. We shall show
that B is a basis, and conclude that w(X) < |B| :7L|D| = d(z). Fix y € X and 6 € R™.
Since D is dense, we may find € D N Bs(y). Since z € Bs(y) and the latter is open, then
x is an interior point, and hence for a large enough n € N, we have that Bs;(y) O B1(z) € B
and we are done. !

We now show d(X) < L(X). For n € N, it is clear that {Bs(z) | z € X,6 € (0,2)} is
an open cover of X. Now, by definition of L(X), for all n € NT, there exists two families
{zine X |i< L(X)} and {6;, € (0,2) | i < L(X)} s.t. {Bs,, (@in) | © < L(X)} covers X.

Put D := {2z} | n € N*,i < L(X)}. Evidently, |[D| < L(X). We are left with showing
that D is dense, that is, to show that every member of X is a limit point of D. Fix y € X.

Since the above families covers X, for all n € NT, there exists ,, such that y € Bs, (i, ),
in particular, d(y,z;,,) < i, hence, lim,_ d(y,2;,;) = 0. Since {z;,, | n € N} C D,
then we conclude that y is a limit point of D. O

Definition 2.7. For a topological space (X, 0), let I[(X) :={x € X | {z} € O} denote the
family of all isolated points of X.

It is obvious that for all Y C X, if 3z € I(X) \ Y, then z ¢ Y as well. Hence:

Lemma 2.8. If (X,0) is a topological space and D C X is a dense subset, then I(X) C D.
In particular, |I(X)| < d(X).

Theorem 2.9 (Hurewicz, Lelek). Suppose (X, d) is a metric space.
Then X = Sgin(O,O) iff X satisfies Menger’s Basis property.

Proof. (=) Suppose B is a basis for the space. It follows that for all z € X and n € N,
we may find B,, € B with z € B,, and Diam(B,,) < #1 Now apply Sfin(O,O) to
({Byn | ® € X} | n € N) and find 7, € {Byn | © € X}|=¥ such that X is covered by
F, for all n € N. The proof now continues in the same fashion of Claim 1.25, we find an
enumeration {B, | n € N} of | J, .y F» such that lim,_.. Diam(B,) = 0.

(<) Fix a family of open covers (U, | n € N).

For z,y € X and § € R, put DBs(z,y) := Bs(z) UB;(y). Let J(X) := {{z} | z € I(X)}.
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For all n € N, define V, to be:
1
{DBg(fL‘,Z/) ‘ T,y € X7 d(l’,y) > n——i-1’5 € R+7E|{U/aU”} S [L{n]Q(DBg(x,y) g U/U UH)}'
Claim 2.10. B := {J,,cy Vo U J(X) is a basis to (X, d).

Proof. Fix v € X,e € Rt and y € B.(x). We shall find U € B with y € U C B.(z).

Since J(X) C B, we may assume y # x. Pick n € N large enough such that d(z,y) > n%l
Now, since X = JU,, there exists {U’,U"} € [U,]=? such that € U',y € U". Since U’
is open and U” N B.(z) is open, we may find some positive § < e small enough such that
Bs(z) C U" and Bs(y) C U” N B.(z). By the choice of §, we have Bs(z) UB;(y) C B.(x).

It now follows that U := Bs(z) UB;(y) = DBs(z,y) € B and y € U C B.(z). O

Assume that X satisfies Menger’s basis property. By Lemmas 1.21,2.6,2.8, we may enu-
merate I(X) = {x; | ¢ € N}. Also, the hypothesis implies the existence of a family
F ={B, € B|n € N} such that X = J, .y B» and lim,,_., Diam(B,) = 0.

Fix n € N and let F,, := FNV,. Since lim,,_,, Diam(B,,) = 0 and Diam(U) > #1 for all
U € V,, we must conclude that F,, is finite. Also, by the definition of B and F:

XszzU(UfnUJ(X)> - U U Fufa))
neN neN
Now, for all U € F,, find U, U" € U,, such that U C U’ U U”, and also find G,, € U,, such
that @, € Gp. Put F, := {U",U" | U € F,} U{Gn} C Uy
It easy to see that |F,| < 2-|F,| +1 < Xy and that | J, . F;, covers X. O

Corollary 2.11. Menger’s basis property does not depend on the choice of metric for any
given metric space.

Definition 2.12. Suppose I is some index set and (X; | i € I) is a sequence of sets.
The Cartesian product of (X, |7 € I) is:

HXi:{f:]HUXi | fi) € X, foralliel}
iel iel
In practice, for € [[,.; Xi, we usually write z; instead of x(i), and x; is referred as the
t-th coordinate of x.
The map 7; : [[,c; Xi — Xj, defined by 7;(x) = x;, is called the projection map of [ [,.; X;
on Xj.
Remark: we need the axiom of choice to ensure that the cartesian product of a non-empty
collection of non-empty sets is indeed non-empty.
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Definition 2.13. Suppose A is some index set. Assume that ((X,,O0,) | o € A) is a family

of topological spaces. The product topology (or Tychonoff topology) on [] ., X is obtained

by taking as a (canonical) base for the space ([],. 4 Xa,O), the family :
B = { H U,
acA

Notice that the set [], .4 Ua, where U, = X, except for a = oy, ..., o, can be written as:

H Ua = 71-;11<Ua1) M---N WCZS(U%L)?

Thus, the product topology is precisely that topology which has for a subbase the collection
{r Y (U,) | « € A, U, is open in X,}. Moreover, the sets U, can be restricted to be taken
from some fixed subbases for each of the spaces (X,,0,) (think why?).

acA

a€cA

U, €O, foreachac A }
{a € A| U, # X,} is finite

Example 2.14. Consider now the Baire space NY := [] _ N where N is equipped with the

neN
discrete topology. A subbase for this product topology is of the form {7 *({k}) | n,k € N}.
The canonical base for NV is B := {¢! | 3I € [N]<¥(s is a function from I to N)}, where

ol :={g €NV | g | dom(c) =0c}. It is a nice observation that the following is also a base:
{{(nl, o)y x NV g, gLk € N} = {O'T’k‘ € N(o is a function from {1, ...k} to N)}
An easy proposition to formulate is the following,

Proposition 2.15. The (Bth projection is continuous and open, and the Tychonoff topology
is the weakest topology on [ X, for which each projection s is continuous.

Proof. The first part is trivial by definitions. Let O be a topology on the product in which
each projection is continuous, then for each f, if Ug is open in Xg, we get that ’/Tﬁ_l(Ug) € 0.
Thus, the members of a subbase for the Tychonoff topology all belong to O, hence the
Tychonoff topology is contained in O. U

Definition 2.16. Suppose (X, O) is a topological space and some A C X.
- A is G iff it is the countable intersection of open sets.
- A is F iff it is the countable union of closed sets.

Evidently, an open set is G5 and a closed set is F,,. In metric spaces, closed set is also Gs.

Definition 2.17. Let (X, O) be a topological space. A set A C X is nowhere dense in X iff
int(A) = 0. A set A C X is of the first category (or meager) iff A = Unen An where Ay, is

nowhere dense for all n € N. All other subsets of X are said to be of the second category.”

int(A) stands for the interior of A, that is, the family of all interior points of A.
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Remark: It is by definition that A is nowhere dense iff A is nowhere dense. Consider a
meager set A. Now, A =J, -, 4, € U,~, An, and we conclude that every meager set is a
subset of some meager F, set.

Fact 2.18. Suppose (X, O) is a topological space and some A C X. Then:
- bnd(X \ A) = bnd(A).®

- A= AUbnd(A).

- X =int(A) Wbnd(A) Wint(X \ A).

Lemma 2.19. Suppose (X, O) is a topological space and some A C X.
Then A is nowhere dense iff (X \ A) is dense in X.

Proof. Suppose A is nowhere dense. By X = int(A) Ubnd(A) Uint(X \ A), we get that:
X =bnd(A)Uint(X \ A) = bnd(X \ A)Uint(X \ A) = X \ A,
i.e., that X \ A is dense in X. The other direction is similar. u

Example 2.20 (The Cantor set). Beginning with the unit interval I = [0, 1], we will define
closed subsets I D Iy D --- in I as follows. We obtain I; by removing the interval (%, %)
from I. I is obtained by removing from I; the intervals (3, 2) and (Z, ). In general, having
I,,_1, I, is obtained by removing the open middle third of the 2"~! closed intervals that make
I,_1.

The Cantor set is obtained by intersecting all these closed sets, C' := (o In-

We develop an interesting alternative description of the cantor set. Each z € [ has an
expansion (r1,ry,...) in trinary form, that is z; € {0,1,2} for all 7 € N, and 2 = ) 5=.
These expressions are unique, except that any number (but 1) expressible in an expansion
ending in a sequence of 2’s can be re-expressed in an expansion ending in a sequence of 0’s.
For example, % can be written as (0,2,2,2,...) and also as (1,0,0,0,...). We agree to use
only expressions of the first type. Then the Cantor set is precisely the set of points in [
having a trinary expansion without 1’s.

The Cantor set is closed, so in order to show that it is nowhere dense we are left with
showing that it has no interior. Every base set(a,b) C [0, 1] contains some element with 1 in
it’s trinary decomposition. Hence (a,b) € C, thus C' is nowhere dense.

Another way of showing that is the following: assume (a,b) C C for some 0 < a < b < 1.
From monotonicity of the Lesbegue measure m, we get that b —a = m((a,b)) < m(C) =0,

a contradiction. To see that indeed m(C) = 0 notice that m(C) = lim,,_..(3)".

8bnd(A) stands for the boundary of A.
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Definition 2.21. Let A be a set in a topological space (X, O).

A point € X is an accumulation point of A iff any U € O with ¢ € U, satisfies
UNA#{x}.

A point x € A is an isolated point of Aiff x € A\ A4, where A is the set of all accumulation
points of A

Definition 2.22. A set F'is perfect iff I’ is closed, non-empty, and dense in itself; i.e., each
point of F'is an accumulation point of F' (F' does not contain isolated points).

Definition 2.23. x € X is a Condensation point of A if AN U, is not countable for all
U, € O with z € U,. We denote by cond(A) the set of all condensation points of A.

Remark: Notice that I(A) C A\ cond(A).

Theorem 2.24 (Cantor-Bendixson). Suppose (X, O) is a second-countable topological space
(i.e., w(X) =Ng). Then every closed set F' can be written as the decomposition ' = PW N,
where P is perfect, and N is countable.

Proof. The proof is technical and non-trivial. We will formulate results (and prove some of
them) towards the theorem’s proof.

Lemma 2.25. Any topological space (X,0) can be decomposed as X = P W N, where P is
perfect and N is scattered (that is, N doesn’t contain any set which is dense in itself).

Proof. Put A:={A C X | Ais dense in itself} and P :=|J.A. We claim that P is perfect.

Suppose first that | J.A is not dense in itself, thus, there exists a point = € | J.A which is
isolated in the relative topology of | J.A. In particular, z € Ay for some A, € A.

Now, there is an open set U, such that U, N (|JA) = {z}, therefore U, N 4y = {z}, a
contradiction to the fact that Ay is dense in itself.

We know that P is dense in itself and left with showing that P is closed. We will do that
by proving that the closure of a set dense in itself, is a set dense in itself.

Assume A is dense in itself and z € A\ A, that is, UN A # {x} for every open set U
containing x. It follows that A is dense in itself.

Put N := X \ P. By the definition of P, N must be scattered. O

Lemma 2.26. cond(A) is a closed set and cond(A U B) = cond(A) U cond(B).

Lemma 2.27. In a second-countable space, A\ cond(A) is countable and cond(cond(A)) =
cond(A).

Proof. Fix a countable base B and a point z € A\ cond(A). There exists U, € O such that
U, N A is countable, hence B, N A is countable for all B, € B such that B, C U,. Now
{B; |z € A\ cond(A)} is countable, thus A\ cond(A) is countable.
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Now, A = (A \ cond(A)) U cond(A). Using the previuos lemma we obtain:
cond(A) = cond(A \ cond(A)) U cond(cond(A)) = ) U cond(cond(A)) = cond(cond(A)).

O
Define P := cond(X) and N := X \ P. By definition, P is dense in itself, and from
previous results it is closed, and N is countable. Hence the theorem is proved. (l

Definition 2.28. Assume that X and Y are topological spaces. A function f: X — Y is
an homeomorphism iff f is a continuous open bijection.
If there exists an homeomorphism from X to Y, we say that X and Y are homeomorphic.

Remark: two spaces are homeomorphic if they are equipped with the ”same” topology.
Theorem 2.29. The Baire space NV is homeomorphic to (0,1) \ Q.
Proof. We break the proof into several lemmas.
Lemma 2.30. The Baire space is homeomorphic to (0,1)\ {£ | n € N,k < 2"}.

Proof. Put w:=NU{0}, D:={& |n €N,k <2"} and let A:=(0,1)\ D.

Suppose B C A is a subset of the form B = (2, %) where n € w,k € N and n < 2",
For m € w, let By, = (% + 7%, 5 + yi7). Since DN A = 0, it is easily seen that
B = _, Bm. For my, my, we write By, m, for (B, )m,, and so forth..

We shall now define an homeomorphism v : A — w*.? Fix x € A.

For notational simplicity, denote f, :=1(x). We define f,(n) by recursion on n € w.

For n = 0, let f.(1) be the unique m € w such that x € A,,. For the recursive step, let
fz(n + 1) be the unique m € w such that x € Ay o), r(n)m-

Evidently, the above defines a bijection. We prove that i) is open and leave the proof of
continuity for the reader, since the idea of the proof is essentially the same.

Pick an open set U C A and f € ¢[U]. We shall show that f is an interior point of
Y[U]. Let z := ¢~!(f). Since z is an interior point of U, we may pick n € w,k € N
such that x € (&, %) C U. Since {x} equals the intersection of the decreasing chain

2k 9k
{As0),...7m) | m € w}, there must exist some m € w such that Agq),. rom) = (3r, ”2—*,;1) Now,
put o := f | {0,..,m}. Clearly, f € o' C ¢[U], where o' is like in Example 2.14. O

Lemma 2.31 (Cantor). Any two dense countable sets in (0,1) are homeomorphic.

Proof. Suppose D = {d,}n>1 and E = {e, },>1 are dense in (0, 1).
We define by induction on n € N an increasing chain of partial functions {¢,, : D, — F |
n € N} where D,, € [D]" for any relevant n.

9Clearly ¢ would induce an homeomorphism from A to NN,
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Induction base: for n =1, let Dy := {d;} and 91(d;) := e;.

Induction hypothesis : 1), is order-preserving.

Inductive step: We divide into two case.

For n + 1 where n is even, Put j := min{j € N | d; € D, }, and let ji, j» be such that:

dj, :=min{d € D,, | d > d;} and d;, := max{d € D,, | d < d,}.

Now, since E is a dense subset, (wn(djl),wn(dh)) N E is non-empty. So let ¢ := min{i €
N | e; € (¥nl(d)y),¥n(ds,))}. Let Dyyq := D, U{d;} and extend ¢, to ¥,11 such that
Yn+1(d;) = e;. By the hypothesis, 1, is order-preserving bijection, thus ), is order-
preserving, e; & Im(1,), and 1,1 is bijective.

For n + 1 where n is odd, Put j := min{j € N | ¢; € Im(¢(D,,)}, and let ji, jo be such
that:

dj, :=min{d € D,, | ¥(d) > e;} and d;, := max{d € D,, | ¥(d) < e;}.

Now, since D is a dense subset, we may define i := min{i € N | d; € (d;,,d;,)}. Let
D41 := D, U{d;} and extend 1, to 9,11 such that ¢,,1(d;) = e;. End of the construction.

Clearly, the construction ensures that for all d € D and e € F, there exists some large
enough n € N such that d € dom(v,,) and e € Im(¢),) and we are done by letting 1) :=
UneN szn

Finally, since v is an order-preserving bijection, then v is also an homeomorphism.
O

Lemma 2.32. The complements of two dense countable sets in (0,1) are homeomorphic.

Proof. Let D¢ and E° be the complements of some two dense countable sets in (0,1), and
let v : D — E be an homeomorphism.

We shall now define an homeomorphism ¢ : D¢ — E°. Fix x € D°. Fix a convergent
sequence {d,}n,>1 € D such that limd, = x and let ¢(x) := lim(d,). Now, {¢(d,)}n>1
is Cauchy in E, but assume that lim(d,) € E. % is an homeomorphism hence ™! is
continuous, so ¢~ (lim(d,)) = lim(¢y~'¢(d,)) = limd, = = ¢ D, a contradiction to the
fact that the range of ¢! is D.

¢ is well defined (think why?), and since it is an order-preserving bijection, then ¢ is an
homeomorphism. U

This completes the proof of 2.29. U



