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Lemma 2.1. Sfin(O,O) is a topological property, that is, whenever 〈X1, O1〉, 〈X2, O2〉 are

topological spaces, and f : X1 → X2 is a continuous surjection, then X1 |= Sfin(O,O)

implies X2 |= Sfin(O,O).

Proof. Suppose 〈Un ⊆ O2 | n ∈ N〉 is a family of open covers of X2. For any relevant n, put

Vn := {f−1[U ] | U ∈ Un}. By continuity of f , 〈Vn ⊆ O1 | n ∈ N〉 is a family of open covers

of X1. If X1 |= Sfin(O,O), then there exists a witness in the form of 〈Gn ∈ [Vn]<ω | n ∈ N〉.

Finally, put Fn := {U | f−1[U ] ∈ Gn} and notice that 〈Fn ∈ [Un]<ω | n ∈ N〉 exemplifies

Sfin(O,O) for X2. �

Definition 2.2. For a topological space 〈X,O〉, put:

- d(X) := min{|D| | D ⊆ Xis dense in X} + ℵ0,

- w(X) := min{|B| | B is a basis to 〈X,O〉} + ℵ0,

- L(X) := min{µ ∈ ICN | every open cover of X contains a subcover of cardinality ≤ µ}.6

In the above terminology, a space 〈X,O〉 is separable iff d(X) = ℵ0, is seocond-countable

iff w(X) = ℵ0, and is Lindelöf iff L(X) = ℵ0.

Lemma 2.3. For any topological space 〈X,O〉: d(X) ≤ w(X) and L(X) ≤ w(X).

Proof. Fix a basis B ∈ [O]w(X). For any choice function f ∈
∏

U∈O U , Im(f) is a dense subset

(since its intersection with any non-trivial open sets is never empty). Also | Im(f)| ≤ w(X).

To see that L(X) ≤ w(X), fix an open cover U . Pick ψ : O → B such that U =
⋃

ψ(U)

for all U ∈ O. Now V :=
⋃

{ψ(U) | U ∈ U} ⊆ B is a cover of X and |V| ≤ |B|. For each

G ∈ V, pick G′ ∈ U such that G′ ⊆ G.

Finally, {G′ | G ∈ V} ⊆ U is a subcover of cardinality ≤ |B| = w(X). �

To complete the picture, we include the following two observations:

Observation 2.4. There exists a topological space 〈X, τ〉 with ℵ0 = d(X) < w(X) = ℵ1.

Proof. Take X := ω1 and τ :=
{

{0, α} | α < ω1

}

. Evidently {0} is a dense subset. Notice

that if B is a basis to X, then B = τ . It follows that w(X) = ℵ1. �

Observation 2.5. There exists a topological space 〈X, τ〉 with ℵ0 = L(X) < w(X) = ℵ1.

Proof. Put X = ω1 and τ := {α↑ | α < ω1}, where α↑ := {β < ω1 | β > α}. Since a

basis to this space induces an unbounded set in ω1 and a countable union of countable sets

is countable, w(X) must equal ℵ1. To see that L(X) = ℵ0, fix a cover U of X.

6ICN stands for the class of infinite cardinal numbers.
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Put γ := min{α < ω1 | ∃U ∈ U(α↑ ⊆ U)} and let Uγ be an exemplifying set, i.e., γ↑ ⊆ Uγ.

Now, for all β < γ (there are only countable many!), find Uβ ∈ U such that β ∈ Uβ.

It follows that {Uβ | β ≤ γ} ⊆ U is a countable subcover for X. �

It is not by chance that the two spaces mentioned above are not metric:

Lemma 2.6. If 〈X, d〉 is a metric space, then w(X) = d(X) = L(X).

Proof. Fix a dense subset D ∈ [X]d(X). Put B := {B 1

n
(x) | x ∈ D,n ∈ N+}. We shall show

that B is a basis, and conclude that w(X) ≤ |B| = |D| = d(x). Fix y ∈ X and δ ∈ R+.

Since D is dense, we may find x ∈ D ∩ Bδ(y). Since x ∈ Bδ(y) and the latter is open, then

x is an interior point, and hence for a large enough n ∈ N, we have that Bδ(y) ⊇ B 1

n
(x) ∈ B

and we are done.

We now show d(X) ≤ L(X). For n ∈ N+, it is clear that {Bδ(x) | x ∈ X, δ ∈ (0, 1
n
)} is

an open cover of X. Now, by definition of L(X), for all n ∈ N+, there exists two families

{xi,n ∈ X | i < L(X)} and {δi,n ∈ (0, 1
n
) | i < L(X)} s.t. {Bδi,n

(xi,n) | i < L(X)} covers X.

Put D := {xn
i | n ∈ N+, i < L(X)}. Evidently, |D| ≤ L(X). We are left with showing

that D is dense, that is, to show that every member of X is a limit point of D. Fix y ∈ X.

Since the above families covers X, for all n ∈ N+, there exists in such that y ∈ Bδin,n
(xin,n),

in particular, d(y, xin,n) < 1
n
, hence, limn→∞ d(y, xin,i) = 0. Since {xin,n | n ∈ N+} ⊆ D,

then we conclude that y is a limit point of D. �

Definition 2.7. For a topological space 〈X,O〉, let I(X) := {x ∈ X | {x} ∈ O} denote the

family of all isolated points of X.

It is obvious that for all Y ⊆ X, if ∃z ∈ I(X) \ Y , then z 6∈ Y as well. Hence:

Lemma 2.8. If 〈X,O〉 is a topological space and D ⊆ X is a dense subset, then I(X) ⊆ D.

In particular, |I(X)| ≤ d(X).

Theorem 2.9 (Hurewicz, Lelek). Suppose 〈X, d〉 is a metric space.

Then X |= Sfin(O,O) iff X satisfies Menger’s Basis property.

Proof. (⇒) Suppose B is a basis for the space. It follows that for all x ∈ X and n ∈ N,

we may find Bx,n ∈ B with x ∈ Bx,n and Diam(Bx,n) < 1
n+1

. Now apply Sfin(O,O) to

〈{Bx,n | x ∈ X} | n ∈ N〉 and find Fn ∈ [{Bx,n | x ∈ X}]<ω such that X is covered by

Fn for all n ∈ N. The proof now continues in the same fashion of Claim 1.25, we find an

enumeration {Bn | n ∈ N} of
⋃

n∈N
Fn such that limn→∞ Diam(Bn) = 0.

(⇐) Fix a family of open covers 〈Un | n ∈ N〉.

For x, y ∈ X and δ ∈ R+, put DBδ(x, y) := Bδ(x)∪Bδ(y). Let J(X) :=
{

{x} | x ∈ I(X)
}

.
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For all n ∈ N, define Vn to be:
{

DBδ(x, y)
∣

∣

∣
x, y ∈ X, d(x, y) >

1

n+ 1
, δ ∈ R+,∃{U ′, U ′′} ∈ [Un]≤2

(

DBδ(x, y) ⊆ U ′ ∪ U ′′
)

}

.

Claim 2.10. B :=
⋃

n∈N
Vn ∪ J(X) is a basis to 〈X, d〉.

Proof. Fix x ∈ X, ε ∈ R+ and y ∈ Bε(x). We shall find U ∈ B with y ∈ U ⊆ Bε(x).

Since J(X) ⊆ B, we may assume y 6= x. Pick n ∈ N large enough such that d(x, y) > 1
n+1

.

Now, since X =
⋃

Un, there exists {U ′, U ′′} ∈ [Un]≤2 such that x ∈ U ′, y ∈ U ′′. Since U ′

is open and U ′′ ∩ Bε(x) is open, we may find some positive δ < ε small enough such that

Bδ(x) ⊆ U ′ and Bδ(y) ⊆ U ′′ ∩ Bε(x). By the choice of δ, we have Bδ(x) ∪ Bδ(y) ⊆ Bε(x).

It now follows that U := Bδ(x) ∪ Bδ(y) = DBδ(x, y) ∈ B and y ∈ U ⊆ Bε(x). �

Assume that X satisfies Menger’s basis property. By Lemmas 1.21,2.6,2.8, we may enu-

merate I(X) = {xi | i ∈ N}. Also, the hypothesis implies the existence of a family

F = {Bn ∈ B | n ∈ N} such that X =
⋃

n∈N
Bn and limn→∞ Diam(Bn) = 0.

Fix n ∈ N and let Fn := F ∩ Vn. Since limn→∞ Diam(Bn) = 0 and Diam(U) > 1
n+1

for all

U ∈ Vn, we must conclude that Fn is finite. Also, by the definition of B and F :

X =
⋃

F =
⋃

(

⋃

n∈N

Fn ∪ J(X)
)

=
⋃ ⋃

n∈N

(

Fn ∪ {xn}
)

.

Now, for all U ∈ Fn, find U ′, U ′′ ∈ Un such that U ⊆ U ′ ∪ U ′′, and also find Gn ∈ Un such

that xn ∈ Gn. Put F ′
n := {U ′, U ′′ | U ∈ Fn} ∪ {Gn} ⊆ Un.

It easy to see that |F ′
n| ≤ 2 · |Fn| + 1 < ℵ0 and that

⋃

n∈N
F ′

n covers X. �

Corollary 2.11. Menger’s basis property does not depend on the choice of metric for any

given metric space.

Definition 2.12. Suppose I is some index set and 〈Xi | i ∈ I〉 is a sequence of sets.

The Cartesian product of 〈Xi | i ∈ I〉 is:

∏

i∈I

Xi =
{

f : I →
⋃

i∈I

Xi | f(i) ∈ Xi for all i ∈ I
}

In practice, for x ∈
∏

i∈I Xi, we usually write xi instead of x(i), and xi is referred as the

i-th coordinate of x.

The map πj :
∏

i∈I Xi → Xj, defined by πj(x) = xj, is called the projection map of
∏

i∈I Xi

on Xj.

Remark: we need the axiom of choice to ensure that the cartesian product of a non-empty

collection of non-empty sets is indeed non-empty.
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Definition 2.13. Suppose A is some index set. Assume that 〈〈Xα, Oα〉 | α ∈ A〉 is a family

of topological spaces. The product topology (or Tychonoff topology) on
∏

α∈AXα is obtained

by taking as a (canonical) base for the space 〈
∏

α∈AXα, O〉, the family :

B :=
{

∏

α∈A

Uα

∣

∣

∣

Uα ∈ Oα for each α ∈ A
{α ∈ A | Uα 6= Xα} is finite

}

.

Notice that the set
∏

α∈A Uα, where Uα = Xα except for α = α1, ..., αn, can be written as:
∏

Uα = π−1
α1

(Uα1
) ∩ · · · ∩ π−1

αn
(Uαn

),

Thus, the product topology is precisely that topology which has for a subbase the collection

{π−1
α (Uα) | α ∈ A,Uα is open in Xα}. Moreover, the sets Uα can be restricted to be taken

from some fixed subbases for each of the spaces 〈Xα, Oα〉 (think why?).

Example 2.14. Consider now the Baire space NN :=
∏

n∈N
N where N is equipped with the

discrete topology. A subbase for this product topology is of the form {π−1
n ({k}) | n, k ∈ N}.

The canonical base for NN is B := {σ↑ | ∃I ∈ [N]<ω(σ is a function from I to N)}, where

σ↑ := {g ∈ NN | g ↾ dom(σ) = σ}. It is a nice observation that the following is also a base:
{

{(n1, . . . , nk)} × NN

∣

∣

∣
n1, . . . , nk, k ∈ N

}

=
{

σ↑
∣

∣k ∈ N(σ is a function from {1, .., k} to N)
}

.

An easy proposition to formulate is the following,

Proposition 2.15. The βth projection is continuous and open, and the Tychonoff topology

is the weakest topology on
∏

Xα for which each projection πβ is continuous.

Proof. The first part is trivial by definitions. Let O be a topology on the product in which

each projection is continuous, then for each β, if Uβ is open in Xβ, we get that π−1
β (Uβ) ∈ O.

Thus, the members of a subbase for the Tychonoff topology all belong to O, hence the

Tychonoff topology is contained in O. �

Definition 2.16. Suppose 〈X,O〉 is a topological space and some A ⊆ X.

- A is Gδ iff it is the countable intersection of open sets.

- A is Fσ iff it is the countable union of closed sets.

Evidently, an open set is Gδ and a closed set is Fσ. In metric spaces, closed set is also Gδ.

Definition 2.17. Let 〈X,O〉 be a topological space. A set A ⊆ X is nowhere dense in X iff

int(A) = ∅. A set A ⊆ X is of the first category (or meager) iff A =
⋃

n∈N
An where An is

nowhere dense for all n ∈ N. All other subsets of X are said to be of the second category.7

7int(A) stands for the interior of A, that is, the family of all interior points of A.
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Remark: It is by definition that A is nowhere dense iff A is nowhere dense. Consider a

meager set A. Now, A =
⋃

n≥1An ⊆
⋃

n≥1An, and we conclude that every meager set is a

subset of some meager Fσ set.

Fact 2.18. Suppose 〈X,O〉 is a topological space and some A ⊆ X. Then:

- bnd(X \ A) = bnd(A).8

- A = A ∪ bnd(A).

- X = int(A) ⊎ bnd(A) ⊎ int(X \ A).

Lemma 2.19. Suppose 〈X,O〉 is a topological space and some A ⊆ X.

Then A is nowhere dense iff (X \ A) is dense in X.

Proof. Suppose A is nowhere dense. By X = int(A) ∪ bnd(A) ∪ int(X \ A), we get that:

X = bnd(A) ∪ int(X \ A) = bnd(X \ A) ∪ int(X \ A) = X \ A,

i.e., that X \ A is dense in X. The other direction is similar. �

Example 2.20 (The Cantor set). Beginning with the unit interval I = [0, 1], we will define

closed subsets I1 ⊃ I2 ⊃ · · · in I as follows. We obtain I1 by removing the interval (1
3
, 2

3
)

from I. I2 is obtained by removing from I1 the intervals (1
9
, 2

9
) and (7

9
, 8

9
). In general, having

In−1, In is obtained by removing the open middle third of the 2n−1 closed intervals that make

In−1.

The Cantor set is obtained by intersecting all these closed sets, C :=
⋂

n∈N
In.

We develop an interesting alternative description of the cantor set. Each x ∈ I has an

expansion (x1, x2, ...) in trinary form, that is xi ∈ {0, 1, 2} for all i ∈ N, and x =
∑

n∈N

xn

3n .

These expressions are unique, except that any number (but 1) expressible in an expansion

ending in a sequence of 2’s can be re-expressed in an expansion ending in a sequence of 0’s.

For example, 1
3

can be written as (0, 2, 2, 2, ...) and also as (1, 0, 0, 0, ...). We agree to use

only expressions of the first type. Then the Cantor set is precisely the set of points in I

having a trinary expansion without 1’s.

The Cantor set is closed, so in order to show that it is nowhere dense we are left with

showing that it has no interior. Every base set(a, b) ⊂ [0, 1] contains some element with 1 in

it’s trinary decomposition. Hence (a, b) * C, thus C is nowhere dense.

Another way of showing that is the following: assume (a, b) ⊂ C for some 0 ≤ a < b ≤ 1.

From monotonicity of the Lesbegue measure m, we get that b− a = m((a, b)) ≤ m(C) = 0,

a contradiction. To see that indeed m(C) = 0 notice that m(C) = limn→∞(2
3
)n.

8bnd(A) stands for the boundary of A.
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Definition 2.21. Let A be a set in a topological space 〈X,O〉.

A point x ∈ X is an accumulation point of A iff any U ∈ O with x ∈ U , satisfies

U ∩ A 6= {x}.

A point x ∈ A is an isolated point of A iff x ∈ A\Ad, where Ad is the set of all accumulation

points of A

Definition 2.22. A set F is perfect iff F is closed, non-empty, and dense in itself; i.e., each

point of F is an accumulation point of F (F does not contain isolated points).

Definition 2.23. x ∈ X is a Condensation point of A if A ∩ Ux is not countable for all

Ux ∈ O with x ∈ Ux. We denote by cond(A) the set of all condensation points of A.

Remark: Notice that I(A) ⊆ A \ cond(A).

Theorem 2.24 (Cantor-Bendixson). Suppose 〈X,O〉 is a second-countable topological space

(i.e., w(X) = ℵ0). Then every closed set F can be written as the decomposition F = P ⊎N ,

where P is perfect, and N is countable.

Proof. The proof is technical and non-trivial. We will formulate results (and prove some of

them) towards the theorem’s proof.

Lemma 2.25. Any topological space 〈X,O〉 can be decomposed as X = P ⊎N , where P is

perfect and N is scattered (that is, N doesn’t contain any set which is dense in itself).

Proof. Put A := {A ⊆ X | A is dense in itself} and P :=
⋃

A. We claim that P is perfect.

Suppose first that
⋃

A is not dense in itself, thus, there exists a point x ∈
⋃

A which is

isolated in the relative topology of
⋃

A. In particular, x ∈ A0 for some A0 ∈ A.

Now, there is an open set Ux such that Ux ∩ (
⋃

A) = {x}, therefore Ux ∩ A0 = {x}, a

contradiction to the fact that A0 is dense in itself.

We know that P is dense in itself and left with showing that P is closed. We will do that

by proving that the closure of a set dense in itself, is a set dense in itself.

Assume A is dense in itself and x ∈ A \ A, that is, U ∩ A 6= {x} for every open set U

containing x. It follows that A is dense in itself.

Put N := X \ P . By the definition of P , N must be scattered. �

Lemma 2.26. cond(A) is a closed set and cond(A ∪B) = cond(A) ∪ cond(B).

Lemma 2.27. In a second-countable space, A \ cond(A) is countable and cond(cond(A)) =

cond(A).

Proof. Fix a countable base B and a point x ∈ A \ cond(A). There exists Ux ∈ O such that

Ux ∩ A is countable, hence Bx ∩ A is countable for all Bx ∈ B such that Bx ⊆ Ux. Now

{Bx | x ∈ A \ cond(A)} is countable, thus A \ cond(A) is countable.
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Now, A = (A \ cond(A)) ∪ cond(A). Using the previuos lemma we obtain:

cond(A) = cond(A \ cond(A)) ∪ cond(cond(A)) = ∅ ∪ cond(cond(A)) = cond(cond(A)).

�

Define P := cond(X) and N := X \ P . By definition, P is dense in itself, and from

previous results it is closed, and N is countable. Hence the theorem is proved. �

Definition 2.28. Assume that X and Y are topological spaces. A function f : X → Y is

an homeomorphism iff f is a continuous open bijection.

If there exists an homeomorphism from X to Y , we say that X and Y are homeomorphic.

Remark: two spaces are homeomorphic if they are equipped with the ”same” topology.

Theorem 2.29. The Baire space NN is homeomorphic to (0, 1) \ Q.

Proof. We break the proof into several lemmas.

Lemma 2.30. The Baire space is homeomorphic to (0, 1) \
{

k
2n | n ∈ N, k < 2n

}

.

Proof. Put ω := N ∪ {0}, D :=
{

k
2n | n ∈ N, k < 2n

}

and let A := (0, 1) \D.

Suppose B ⊆ A is a subset of the form B = ( n
2k ,

n+1
2k ) where n ∈ ω, k ∈ N and n < 2k.

For m ∈ ω, let Bm := ( n
2k + m

2k+m ,
n
2k + m+1

2k+m+1 ). Since D ∩ A = ∅, it is easily seen that

B =
⊎∞

m=0Bm. For m1,m2, we write Bm1,m2
for (Bm1

)m2
, and so forth..

We shall now define an homeomorphism ψ : A→ ωω.9 Fix x ∈ A.

For notational simplicity, denote fx := ψ(x). We define fx(n) by recursion on n ∈ ω.

For n = 0, let fx(1) be the unique m ∈ ω such that x ∈ Am. For the recursive step, let

fx(n+ 1) be the unique m ∈ ω such that x ∈ Af(0),..,f(n),m.

Evidently, the above defines a bijection. We prove that ψ is open and leave the proof of

continuity for the reader, since the idea of the proof is essentially the same.

Pick an open set U ⊆ A and f ∈ ψ[U ]. We shall show that f is an interior point of

ψ[U ]. Let x := ψ−1(f). Since x is an interior point of U , we may pick n ∈ ω, k ∈ N
such that x ∈ ( n

2k ,
n+1
2k ) ⊆ U . Since {x} equals the intersection of the decreasing chain

{Af(0),..,f(m) | m ∈ ω}, there must exist some m ∈ ω such that Af(0),..,f(m) = ( n
2k ,

n+1
2k ). Now,

put σ := f ↾ {0, ..,m}. Clearly, f ∈ σ↑ ⊆ ψ[U ], where σ↑ is like in Example 2.14. �

Lemma 2.31 (Cantor). Any two dense countable sets in (0, 1) are homeomorphic.

Proof. Suppose D = {dn}n≥1 and E = {en}n≥1 are dense in (0, 1).

We define by induction on n ∈ N an increasing chain of partial functions {ψn : Dn → E |

n ∈ N} where Dn ∈ [D]n for any relevant n.

9Clearly ψ would induce an homeomorphism from A to NN.
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Induction base: for n = 1, let D1 := {d1} and ψ1(d1) := e1.

Induction hypothesis : ψn is order-preserving.

Inductive step: We divide into two case.

For n+ 1 where n is even, Put j := min{j ∈ N | dj 6∈ Dn}, and let j1, j2 be such that:

dj2 := min{d ∈ Dn | d > dj} and dj1 := max{d ∈ Dn | d < dj}.

Now, since E is a dense subset,
(

ψn(dj1), ψn(dj2)
)

∩ E is non-empty. So let i := min{i ∈

N | ei ∈
(

ψn(dj1), ψn(dj2)
)

}. Let Dn+1 := Dn ∪ {dj} and extend ψn to ψn+1 such that

ψn+1(dj) = ei. By the hypothesis, ψn is order-preserving bijection, thus ψn+1 is order-

preserving, ei 6∈ Im(ψn), and ψn+1 is bijective.

For n + 1 where n is odd, Put j := min{j ∈ N | ej 6∈ Im(ψ(Dn)}, and let j1, j2 be such

that:

dj2 := min{d ∈ Dn | ψ(d) > ej} and dj1 := max{d ∈ Dn | ψ(d) < ej}.

Now, since D is a dense subset, we may define i := min{i ∈ N | di ∈
(

dj1 , dj2

)

}. Let

Dn+1 := Dn ∪{dj} and extend ψn to ψn+1 such that ψn+1(dj) = ei. End of the construction.

Clearly, the construction ensures that for all d ∈ D and e ∈ E, there exists some large

enough n ∈ N such that d ∈ dom(ψn) and e ∈ Im(ψn) and we are done by letting ψ :=
⋃

n∈N
ψn.

Finally, since ψ is an order-preserving bijection, then ψ is also an homeomorphism.

�

Lemma 2.32. The complements of two dense countable sets in (0, 1) are homeomorphic.

Proof. Let Dc and Ec be the complements of some two dense countable sets in (0, 1), and

let ψ : D → E be an homeomorphism.

We shall now define an homeomorphism ϕ : Dc → Ec. Fix x ∈ Dc. Fix a convergent

sequence {dn}n≥1 ⊆ D such that lim dn = x and let ϕ(x) := limψ(dn). Now, {ψ(dn)}n≥1

is Cauchy in E, but assume that limψ(dn) ∈ E. ψ is an homeomorphism hence ψ−1 is

continuous, so ψ−1(limψ(dn)) = lim(ψ−1ψ(dn)) = lim dn = x /∈ D, a contradiction to the

fact that the range of ψ−1 is D.

ϕ is well defined (think why?), and since it is an order-preserving bijection, then ψ is an

homeomorphism. �

This completes the proof of 2.29. �


