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Definition 11.1. An open cover U is an ω-cover of X iff:

• For every finite set F ⊆ X there exist U ∈ U such that F ⊆ U .

• X /∈ U .

We denote the family all ω-covers of X by Ω.

Observation 11.2. If U is an ω-cover of X, then for every finite subset F ⊆ X there are

infinitely many U ∈ U such that F ⊆ U . In particular, U is infinite.

Proof. For all U ∈ U , pick xU ∈ X \ U arbitrarily. Fix F ∈ [X]<ω.

We define an infinite family {Un | n ∈ N} by induction. Let U1 be such that F ⊆ U1, and

let Un+1 be such that F ∪ {XU1
, .., XUn

} ⊆ Un+1. �

We denote by C(X) the set of all continuous functions from X to R. We will consider this

as a topological space, and the topology will be inherited from R
X ⊇ C(X). This topology

is determined by pointwise convergence, that is, fn → f iff fn(x) → f(x) for all x ∈ X. This

topological space is not metrizable, thus the closure operator is not easy to figure.

Definition 11.3. A topological space X satisfies the Frèchet-Urysohn (FU) property iff for

every A ⊂ X and every a ∈ A there exist a sequence 〈an|n ∈ N〉 such that an → a.31

Definition 11.4. A topological space satisfies the property
(

A

B

)

iff for every U ∈ A there

exist V ⊆ U such that V ∈ B.

For example, denote by Φ all finite open covers. The property
(

O

Φ

)

is compactness.

Theorem 11.5 (Gerlitz-Nagy). C(X) satisfies the FU property iff X |=
(

Ω
Γ

)

.

The property
(

Ω
Γ

)

is also known as the γ-property and is equivalent to S1(Ω, Γ):

Lemma 11.6. S1(Ω, Γ) implies
(

Ω
Γ

)

.

Proof. Suppose 〈X,O〉 is a topological space. Ω := ΩX , Γ := ΓX , and X |= S1(Ω, Γ).

Fix U ∈ Ω. For all n ∈ N, let Un := U . It follows from X |= S1(Ω, Γ) that there exists

〈Un ∈ Un | n ∈ N〉 such that {Un | n ∈ N} ∈ Γ. Since {Un | n ∈ N} ⊆ U , we are done. �

Theorem 11.7. S1(Ω, Γ) =
(

Ω
Γ

)

.

31In a general topological space, a sequence 〈an | n ∈ N〉 converges to a iff every open set containing a,

contains the tail of the sequence.
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Definition 11.8. The Rothberger space is [N]ℵ0 := 〈A ⊆ N | |A| = ℵ0〉.

• For A,B ⊆ N: A ⊆∗ B iff |A \ B| < ω.

• F ⊆ [N]ℵ0 is centered iff every A1, ..., Ak ∈ F satisfies
⋂

i≤k Ak is infinite.

• A ∈ [N]ℵ0 is almost intersection of F iff for every B ∈ F , A ⊆∗ B.

• p := min
{

|F| | F ⊆ [N]ℵ0 is centered and F does not have an almost intersection
}

.

Lemma 11.9. p > ℵ0.

Proof. Suppose F := {Bn ∈ [N]ℵ0 | n ∈ N} is centered. For all n ∈ N, put An := B1∩ ...∩Bn,

by the hypothesis on F , An 6= ∅, so pick xn ∈ An \ {x1, .., xn−1}. It is now obvious that

A = {xn | n ∈ N} is an almost intersection of F . �

Lemma 11.10. Suppose 〈X,O〉 is a topological space, and the product space Xk is Lindelöf

for all k ∈ N, then any ω-cover contains a countable ω-cover.

Theorem 11.11. non(
(

Ω
Γ

)

) = p.

Proof. Suppose X ∈ [R]<p and U ∈ Ω. By the preceding lemma, we may assume an enumer-

ation U := {Un | n ∈ N}. For all x ∈ X, let Ax := {n ∈ N | x ∈ Un}. By Observation 11.2,

Ax ∈ [N]ℵ0 for all x ∈ X and F := {Ax | x ∈ X} is centered.

Since |F| ≤ |X| < p, we may pick an almost intersection B ∈ [N]ℵ0 .

We claim that {Un | n ∈ B} ∈ Γ. Indeed, if x ∈ X then B \ Ax is finite, that is,

{n ∈ B | x 6∈ Un} is finite.

We shall now introduce a set X ⊆ N
N of cardinality p with X 6|=

(

Ω
Γ

)

.

By definition of p, there exists a centered family X ⊆ [N]ℵ0 of cardinality p with no almost

intersection. For each n ∈ N, let Un := {A ∈ [N]ℵ0 | n ∈ A}, this is an open set and

U := {Un | n ∈ N} ∈ ΩX , because if F ⊆ X is finite, then centeredness of X implies that

I =
⋂

F is infinite, and hence I ⊆ {n ∈ N | F ⊆ Un}.

Finally, suppose there exists a strictly increasing function k : N → N such that {Uk(n) | n ∈

N} ∈ ΓX . We claim that B := Im(k) is an almost-intersection of X which is a contradiction.

Indeed, for A ∈ X, if {n ∈ N | A 6∈ Uk(n)} is finite, then B \ A is finite. �
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Figure 3.


