
INFINITE COMBINATORIAL TOPOLOGY

ASSAF RINOT AND ROY TEPER

Abstract. We summarize our view on the course given by Dr. Boaz Tsaban at the Weiz-
mann Institute of Science, Fall 2006.

1. 03.11.05

Definition 1.1. Define the Baire space to be the family of all functions from N to N, and

denote it by N
N.

Definition 1.2. Assume X is a set. A family I ⊆ P(X) is an ideal over X iff it satisfies:

• ∅ ∈ I.

• A ∈ I =⇒ P(A) ⊆ I.

• A,B ∈ I =⇒ A ∪B ∈ I.

The ideal is said to be non-trivial if, additionally :

•
{

{x} | x ∈ X
}

⊆ I.

If I 6= P(X) (equivalently, if X 6∈ I) we say that I is a proper ideal.

Definition 1.3. Assume I is an ideal over N, for f, g ∈ N
N, put:

f ≤I g iff {n ∈ N | f(n) > g(n)} ∈ I.

Let Ifin := {X ⊆ N | |X| < ℵ0} be the ideal of finite subsets of N and J := {∅}.

Define two binary relations on N
N: ≤∗:=≤Ifin

and ≤:=≤J , i.e., f ≤∗ g iff there exists

some m ∈ N such that f(n) ≤ g(n) for all n > m, and f ≤ g iff f(n) ≤ g(n) holds for all n.

Lemma 1.4. 〈NN,≤∗〉 is a quasi-ordered set, that is, ≤∗ is a reflexive and a transitive binary

relation on N
N.

Definition 1.5. For a set A ⊆ N
N, define the downward closure of A:

A := {f ∈ N
N | ∃g ∈ A(f ≤∗ g)}.

Let the external cofinality of A be ecf(A) := min{|D| | D ⊆ N
N and A ⊆ D}.
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It is obvious that ecf(A) = ecf(A) ≤ |A| for all A ⊆ N
N.

Definition 1.6. A subset B ⊆ N
N is said to be bounded iff ecf(B) ≤ 1.

As expected, we say that B is unbounded iff ecf(B) > 1.

Definition 1.7. A subset D ⊆ N
N is said to be dominating (or cofinal) iff D = N

N.

Definition 1.8. We define three important cardinals:

(i) b := min{|B| | B ⊆ N
N and ecf(B) > 1}.

(ii) d := ecf(NN).

(iii) c := |NN|.

Lemma 1.9. ℵ0 < b ≤ d ≤ c = 2ℵ0.

Proof. To see that b is uncountable, we pick an arbitrary family A = {fn ∈ N
N | n < ω} and

then find some g ∈ N
N witnessing ecf(A) = 1.

Define g = gA as follows, for all n ∈ N: g(n) = max{fi(n) | 0 ≤ i ≤ n}. It is now easy to

see that A ⊆ {g} and that ecf(A) = 1.

To see that b ≤ d, it suffices to prove that if D ⊆ N
N is cofinal, then D is unbounded.

Towards a contradiction, assume there exists some dominant D ⊆ N
N such that ecf(D) = 1.

Pick g ∈ N
N such that D ⊆ {g}. It follows that N

N ⊆ D ⊆ {g}, i.e., that ecf(NN) = 1, which

is an absurd.1 �

Corollary 1.10. If CH holds (that is, if c = ℵ1), then b = d = c = ℵ1.

It is worth mentioning that an unbounded family is not necessarily cofinal, e.g., take

{f ∈ N
N | ∀n ∈ N(f(2n) = 0)}.

Lemma 1.11. There exists a b-scale, that is, a sequence 〈fα ∈ N
N | α < b〉, such that:

(a) ecf{fα | α < b} > 1;

(b) α < β < b implies fα ≤∗ fβ.

Proof. By definition of b, we may pick an unbounded family B = {gα ∈ N
N | α < b}.

We now define the b-scale by induction on α < b. Put f0 := g0.

Assume now {fβ | β < α} had already been defined. Since α < b, ecf({fβ | β < α}) = 1,

we may pick an exemplifying h ∈ N
N. Put fα := max{gα, h}.

2 End of the construction.

Put B′ := {fα | α < b}. Since gα ≤∗ fα for all relevant α, we get that B ⊆ B′, thus,

1 < ecf(B) ≤ ecf(B′) and property (a) is satisfied. Property (b) follows immediately from

the construction. �

1For each f ∈ N
N: f ≤∗ (f + 1) and (f + 1) 6≤∗ f , where (f + 1)(n) = f(n) + 1 for all n ∈ N.

2Here, max denotes the pointwise-maximum function between two functions of the same domain.
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Lemma 1.12. There exists a d-scale, that is, a sequence 〈fα ∈ N
N | α < d〉, such that:

(a) {fα | α < d} is cofinal;

(b) α < β < d implies fβ 6≤∗ fα.

In particular, for all g ∈ N
N, there exists some α < d such that fβ 6≤∗ g whenever α < β < d.

Proof. By definition of d, we may pick a family D = {gα | α < d} such that D = N
N.

We now define the d-scale by induction on α < d. Put f0 := g0.

Assume now {fβ | β < α} had already been defined. Since α < d, we may pick hα ∈ N
N

such that hα 6∈ {fβ | β < α}. Put fα := max{gα, hα}. End of the construction.

Just like in the preceding proof, we put D′ := {fα | α < b} and notice that the two

properties holds for D′. Being user-friendly, we now give a direct proof for the last property.

Fix g ∈ N
N.

By N
N = D ⊆ D′ ⊆ N

N, we may pick α < d such that g ≤∗ fα.

Suppose there exists β > α such that fβ ≤∗ g, then, in particular fβ ≤∗ fα. It follows

from α < β that α ∈ {γ | γ < β} and fβ ∈ {fγ | γ < β}. A moment’s reflection make it

clear that this implies hβ ∈ {fβ} ⊆ {fγ | γ < β} which is obviously a contradiction to the

choice of hβ. �

Claim 1.13. b is a regular cardinal, that is, cf(b) = b.

Proof. It is obvious that cf(b) ≤ b, as this is true for any infinite cardinal number.

Fix an increasing sequence of ordinals 〈αi < b | i < cf(b)〉 converging to b. Let 〈fα | α < b〉

be a b-scale. Put B := {fαi
| i < cf(b)}. We shall show that ecf(B) > 1, and then - by

definition/minimality of b - we would have to conclude that b ≤ |B| ≤ cf(b).

Assume there exists some g ∈ N
N such that B ⊆ {g}, we reach a contradiction by showing

that fα ≤∗ g for all α < b.

Indeed, pick α < b and pick i < cf(b) such that α < αi. We get that fα ≤∗ fαi
≤∗ g. �

Claim 1.14. b ≤ cf(d).

Proof. Fix a d-scale 〈fα ∈ N
N | α < d〉, and an increasing sequence 〈αi | i < cf(d)〉 converging

to d. Put B := {fαi
| i < cf(b)}. We claim that ecf(B) > 1.

Suppose not, and let g ∈ N
N be such that B ⊆ {g}. Pick α < d such that g ≤∗ fα and

i < cf(d) such that α < αi. We get from one hand that B ∋ fαi
≤∗ g ≤∗ fα, while on the

other hand fαi
6≤∗ fα. A contradiction. �

Corollary 1.15. ℵ1 ≤ cf(b) = b ≤ cf(d) ≤ d ≤ c.

It is worth mentioning that the latter is all one can prove. That’s because for all cardinal

numbers κ, λ, µ, θ with ℵ1 ≤ cf(κ) = κ ≤ λ = cf(µ) ≤ θ and cf(θ) > ℵ0, there exists a model

of set theory satisfying b = κ, d = µ, cf(d) = λ and c = θ.
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Definition 1.16 (Menger’s Basis property). A metric space 〈X, d〉 is said to satisfy Menger’s

Basis property iff for each basis B, there exists a sequence 〈Bn ∈ B | n ∈ N〉 such that

X =
⋃

n∈N
Bn and limn→∞ Diam(Bn) = 0.

Observation 1.17. Menger’s Basis property is closed hereditary.3

Notation 1.18. For a metric space 〈X, d〉, x ∈ X and δ ∈ R
+, let Bδ(x) := {y ∈ X |

d(x, y) < δ} denote the open ball of radius δ, centered at x.

Definition 1.19. The canonical base for a metric space 〈X, d〉 is {Bδ(x) | δ ∈ R
+, x ∈ X}.

Fact 1.20. Suppose B is a family of open sets in a metric space 〈X, d〉, satisfying:

(⋆) For all relevant x, y, δ with y ∈ Bδ(x), there exists U ∈ B satisfying y ∈ U ⊆ Bδ(x).

Then B is a basis for 〈X, d〉.

Lemma 1.21. A space that satisfies Menger’s Basis property is Lindelöf.

Proof. Suppose 〈X, d〉 satisfies Menger’s Basis property and U is a given open cover. Put

B := {U ∩ B 1

n
(x) | U ∈ U , n ∈ N

+, x ∈ X}. Since B is a basis, we can find some F ∈ [B]ℵ0

such that
⋃

F = X. Finally, for each G ∈ F , pick a single G′ ∈ U such that G ⊆ G′, then

V := {G′ | G ∈ F} is a countable subcover of U . �

Corollary 1.22. The discrete space 〈X, d〉 satisfies Menger’s Basis property iff |X| ≤ ℵ0.

Lemma 1.23. If 〈X, d〉 is a compact metric space, then it satisfies Menger’s Basis property.

Proof. Suppose B is a basis for the space. X is a metric space, thus, it easy to find a family

{An ∈ B | n ∈ N} such that limn→∞ Diam(An) = 0.

By compactness, we may pick U ∈ [B]<ω such that X =
⋃

U . Now, let {Bn | k ≤ n}

enumerate U , and for al n > k, put Bn := An. �

Definition 1.24. A space 〈X,O〉 is said to be σ-compact iff there exists a family of compact

subsets 〈Kn ⊆ X | n ∈ N〉 such that X =
⋃

n∈N
Kn.

It is obvious that a finite union of compact subspaces is compact, hence, we may always

assume that the family 〈Kn | n ∈ N〉 is increasing with respect to inclusion. For instance

〈R, d〉 is σ-compact, as it is the countable union of the compact intervals:

R =
⋃

n∈N

[−n, n].

3A property p is said to be closed hereditary, if for any topological space 〈X,O〉 and any closed subset
Y ⊆ X: X |= p implies Y |= p.
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Claim 1.25. If 〈X, d〉 is a σ-compact metric space, then it satisfies Menger’s Basis property.

Proof. Suppose B is a basis for the space. It follows that for all n ∈ N and x ∈ Kn, we may

find Bx,n ∈ B with x ∈ Bx,n and Diam(Bx,n) <
1

n+1
. Fix n ∈ N.

Evidently, Kn ⊆
⋃

x∈Kn
Bx,n, so by compactness, there exists f(n) ∈ N and a family

{Bm,n ∈ B | m ≤ f(n)} ⊆ {Bx,n | x ∈ Kn} s.t. Kn ⊆
⋃

m≤f(n)Bm,n and Diam(Bm,n) <
1

n+1
.

Finally, let ψ : N ↔ {(m,n) | n ∈ N,m ≤ f(n)} be the order-preserving bijection.4

We have thatX =
⋃

n∈N
Kn =

⋃

n∈N

⋃

m≤f(n)Bm,n =
⋃

n∈N
Bψ(n) and limn→∞ Diam(Bψ(n)) =

limn→∞
1

n+1
= 0, that is, {Bψ(n) | n ∈ N} witnesses Menger’s Basis property. �

Definition 1.26 (Menger’s covering). For a topological space 〈X,O〉, we denote by Sfin(O,O)

the property that for any countable sequence of open covers of X, 〈Un ⊆ O | n ∈ N〉, there

exists some 〈Fn ∈ [Un]
<ω | n ∈ N〉 such that

⋃

n∈N
Fn is an open cover of X.

Observation 1.27. Menger’s covering is closed hereditary.

Observation 1.28. If 〈X,O〉 satisfies Sfin(O,O), then X is Lindelöf.

Proof. Suppose U is an open cover. Put Un := U for all n ∈ N. For Fn ∈ [Un]
<ω witnessing

Sfin(O,O), then V :=
⋃

Fn is a countable subcover of U . �

Lemma 1.29. If 〈X,O〉 is a σ-compact topological space, then X |= Sfin(O,O).

Proof. Suppose X =
⋃

n∈N
Kn where each Kn is compact. Assume 〈Un ⊆ O | n ∈ N〉 is a

given family of covers. In particular Kn ⊆
⋃

Un for all n ∈ N. Fix n ∈ N.

By compactness, we may pick Fn ∈ [Un]
<ω such that Kn ⊆

⋃

Fn.

Evidently,
⋃

n∈N
Fn is an open cover of X. �

Conjecture 1.30 (Menger). Sfin(O,O) is equivalent to σ-compactness.

Observation 1.31. For a space 〈X,O〉, and a sequence 〈Bn | n ∈ N〉 of bases to X, TFAE:

(a) X |= Sfin(O,O).

(b) For any countable sequence of open covers of X, 〈Vn ⊆ Bn | n ∈ N〉, there exists

some 〈Fn ∈ [Vn]
<ω | n ∈ N〉 such that

⋃

n∈N
Fn is an open cover of X.

Proof. We assume (b) and prove (a). Suppose 〈Un ⊆ O | n ∈ N〉 is a given family of covers.

Fix n ∈ N. Let ψn : O → P(Bn) be a function such that U =
⋃

ψn(U) for all U ∈ O.5

Put Vn :=
⋃

{ψn(U) | U ∈ Un}. Clearly, Vn ⊆ Bn and
⋃

Vn =
⋃

Un = X.

Now, by the hypothesis (b), we yield Fn ∈ [Vn]
<ω for all n ∈ N such that

⋃

n∈N
Fn covers

X. Finally, for each n ∈ N and G ∈ Fn, pick a single G′ ∈ Un such that G ⊆ G′ and put

F ′
n := {G′ | G ∈ Fn}. It follows that |F ′

n| ≤ |Fn| < ℵ0 and
⋃

n∈N
F ′
n covers X. �

4Recall the lexicographic order on N × N: (m1, n1) < (m2, n2) iff (n1 < n2) or ((n1 = n2) ∧ (m1 < m2)).
5By definition, an open set is a union of basis-elements.


