INFINITE COMBINATORIAL TOPOLOGY

ASSAF RINOT AND ROY TEPER

ABSTRACT. We summarize our view on the course given by Dr. Boaz Tsaban at the Weiz-
mann Institute of Science, Fall 2006.

1. 03.11.05

Definition 1.1. Define the Baire space to be the family of all functions from N to N, and
denote it by NN
Definition 1.2. Assume X is a set. A family Z C P(X) is an ideal over X iff it satisfies:

e )cT.
e AcT=P(A)CT.
e ABel—=— AUBE€T.

The ideal is said to be non-trivial if, additionally :
e {z}|zeX} CT.
If Z # P(X) (equivalently, if X ¢ Z) we say that Z is a proper ideal.
Definition 1.3. Assume Z is an ideal over N, for f,g € NY, put:
f<zgift{fn eN|f(n)>g(n)} el

Let Zsin :={X C N ||X| < Ro} be the ideal of finite subsets of N and J := {0}.
Define two binary relations on NN: <"=<z,., and <:=<g, ie., f <* g iff there exists
some m € N such that f(n) < g(n) for all n > m, and f < g iff f(n) < g(n) holds for all n.

Lemma 1.4. (N <*) is a quasi-ordered set, that is, <* is a reflevive and a transitive binary
relation on NV,

Definition 1.5. For a set A C NY, define the downward closure of A:
A={feN"|3ge A(f <" g)}.
Let the external cofinality of A be ecf(A) := min{|D|| D C NN and A C D}.

Date: December 14, 2005.

By "our view” we mean that sometimes we omit material given in class, sometimes we give alternative
definitions or proofs, and sometimes we include our own additional propositions. However, we are always
consistent with the material given in class.
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It is obvious that ecf(A) = ecf(A) < |A] for all A C NV

Definition 1.6. A subset B C NN is said to be bounded iff ecf(B) < 1.
As expected, we say that B is unbounded iff ecf(B) > 1.

Definition 1.7. A subset D C NV is said to be dominating (or cofinal) iff D = NN,

Definition 1.8. We define three important cardinals:
(i) b:=min{|B| | B C NY and ecf(B) > 1}.
(ii) 0 := ecf(NV).
(iii) ¢ := |NN|.

Lemma 1.9. X; < b <0 < ¢ = 2%,

Proof. To see that b is uncountable, we pick an arbitrary family A = {f, € N¥ | n < w} and
then find some g € NN witnessing ecf(A) = 1.

Define g = g4 as follows, for all n € N: g(n) = max{f;(n) | 0 < < n}. It is now easy to
see that A C {g} and that ecf(A) = 1.

To see that b < 9, it suffices to prove that if D C NV is cofinal, then D is unbounded.
Towards a contradiction, assume there exists some dominant D C NN such that ecf(D) = 1.
Pick g € N¥ such that D C {g}. It follows that N¥ C D C {g}, i.e., that ecf(N") = 1, which
is an absurd.! o o U

Corollary 1.10. If CH holds (that is, if ¢ = W), then b =0 = ¢ = N;.

It is worth mentioning that an unbounded family is not necessarily cofinal, e.g., take

{f € NV | Vn € N(f(2n) = 0)}.

Lemma 1.11. There exists a b-scale, that is, a sequence {fo, € NV | ao < b), such that:
(a) ecf{fs | @ < b} > 1;
(b) a < B < b implies f, <* f3.

Proof. By definition of b, we may pick an unbounded family B = {g, € NV | a < b}.

We now define the b-scale by induction on o < b. Put fj := go.

Assume now {fg | 8 < a} had already been defined. Since v < b, ecf({fs | f < a}) =1,
we may pick an exemplifying h € NY. Put f, := max{g,, h}.? End of the construction.

Put B := {f, | @« < b}. Since g, <* f, for all relevant «, we get that B C B’, thus,
1 < ecf(B) < ecf(B’) and property (a) is satisfied. Property (b) follows immediately from
the construction. O

IFor each f € NY: f <* (f+1) and (f +1) £* f, where (f + 1)(n) = f(n) + 1 for all n € N.

2Here, max denotes the pointwise-maximum function between two functions of the same domain.
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Lemma 1.12. There exists a 0-scale, that is, a sequence {f, € NY | a <), such that:

(a) {fa | @ <0} is cofinal;
(b) a < B <0 implies fz £* fa.
In particular, for all g € NN, there exists some o < 0 such that fz £* g whenever a < 3 <.

Proof. By definition of 0, we may pick a family D = {g, | o < 0} such that D = NV,

We now define the d-scale by induction on o < 0. Put fy := go.

Assume now {f5 | 8 < a} had already been defined. Since o < 0, we may pick h, € NV
such that h, € {fs | B < a}. Put f, := max{ga, h}. End of the construction.

Just like in the preceding proof, we put D' := {f, | @ < b} and notice that the two
properties holds for D’. Being user-friendly, we now give a direct proof for the last property.
Fix g € NV,

By N¥ = D C D’ € N¥, we may pick o < 9 such that g <* f,.

Suppose there exists § > « such that fz <* g, then, in particular fz <* f,. It follows
from o < B that @ € {7y | v < 8} and fz € {f, |7 < S} A moment’s reflection make it
clear that this implies hg € {fs} C {f, | ¥ < 8} which is obviously a contradiction to the
choice of hg. g

Claim 1.13. b is a regular cardinal, that is, cf(b) = b.

Proof. 1t is obvious that cf(b) < b, as this is true for any infinite cardinal number.

Fix an increasing sequence of ordinals (o; < b | i < cf(b)) converging to b. Let (f, | @ < b)
be a b-scale. Put B := {f,, | i < cf(b)}. We shall show that ecf(B) > 1, and then - by
definition/minimality of b - we would have to conclude that b < |B| < cf(b).

Assume there exists some g € NY such that B C {g}, we reach a contradiction by showing
that f, <* g for all a < b. o

Indeed, pick o < b and pick i < cf(b) such that o < a;. We get that f, <* f,. <*g¢. O

Claim 1.14. b < cf(2).

Proof. Fix a 0-scale (f, € NN | a < 0), and an increasing sequence (o, | i < cf(9)) converging
to 0. Put B := {f,, | i <cf(b)}. We claim that ecf(B) > 1.

Suppose not, and let g € N¥ be such that B C {g}. Pick a < 0 such that g <* f, and
i < cf(d) such that a < o;. We get from one hand that B 3 f,, <* g <* f., while on the
other hand f,, £* fo. A contradiction. O

Corollary 1.15. X; < cf(b) =b <cf(d) <0 <.

It is worth mentioning that the latter is all one can prove. That’s because for all cardinal
numbers k, A, i, 8 with X; < cf(k) =k < XA =cf(p) < 0 and cf() > Ny, there exists a model
of set theory satisfying b = k,0 = p,cf(?) = A and ¢ = 0.
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Definition 1.16 (Menger’s Basis property). A metric space (X, d) is said to satisfy Menger’s
Basis property iff for each basis B, there exists a sequence (B, € B | n € N) such that
X = U,en Br and lim,,_, Diam(B,,) = 0.

Observation 1.17. Menger’s Basis property is closed hereditary.’

Notation 1.18. For a metric space (X,d), © € X and 6 € RT, let Bs(z) == {y € X |
d(z,y) < 6} denote the open ball of radius §, centered at x.

Definition 1.19. The canonical base for a metric space (X, d) is {Bs(x) | 6 € RT,z € X}.

Fact 1.20. Suppose B is a family of open sets in a metric space (X, d), satisfying:
(x) For all relevant x,y,0 with y € Bs(x), there exists U € B satisfying y € U C Bs(z).
Then B is a basis for (X,d).

Lemma 1.21. A space that satisfies Menger’s Basis property is Lindelof.

Proof. Suppose (X, d) satisfies Menger’s Basis property and U is a given open cover. Put
B:={UNBi(z) | U €lU,ne N ze X}. Since B is a basis, we can find some F € [B]*
such that U]L: = X. Finally, for each G € F, pick a single G’ € U such that G C G’, then
V :={G' | G € F} is a countable subcover of U. O

Corollary 1.22. The discrete space (X, d) satisfies Menger’s Basis property iff | X| < Vg.
Lemma 1.23. If (X,d) is a compact metric space, then it satisfies Menger’s Basis property.

Proof. Suppose B is a basis for the space. X is a metric space, thus, it easy to find a family
{A,, € B | n € N} such that lim,_.,, Diam(A,) = 0.

By compactness, we may pick U € [B]<“ such that X = (JU. Now, let {B, | k¥ < n}
enumerate U, and for al n > k, put B, := A,,. U

Definition 1.24. A space (X, O) is said to be o-compact iff there exists a family of compact
subsets (K, € X | n € N) such that X = J,, oy K-

It is obvious that a finite union of compact subspaces is compact, hence, we may always
assume that the family (K, | n € N) is increasing with respect to inclusion. For instance
(R, d) is o-compact, as it is the countable union of the compact intervals:

R = U[—n,n].

neN

3A property p is said to be closed hereditary, if for any topological space (X,0) and any closed subset
Y CX: X EpimpliesY | p.
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Claim 1.25. If (X, d) is a o-compact metric space, then it satisfies Menger’s Basis property.

Proof. Suppose B is a basis for the space. It follows that for all n € N and x € K,,, we may
find B,, € B with € B, ,, and Diam(B,,) < n+r1 Fix n € N.

Evidently, K,, € J,cx, Bzn, 80 by compactness, there exists f(n) € N and a family
{Bmn €B|m< f(n)} C{Ben |z € Kn} st Kn C Ui Bmn and Diam(Bp,,) < 7.

Finally, let v : N« {(m,n) | n € N,m < f(n)} be the order-preserving bijection.*

We have that X = (o Kn = U,en Umgf(n) B = U,en Byn) and lim,, o Diam(By ) =
lim,, _, HLH =0, that is, { By | n € N} witnesses Menger’s Basis property. O

Definition 1.26 (Menger’s covering). For a topological space (X, O), we denote by Sf;, (O, O)
the property that for any countable sequence of open covers of X, (U, C O | n € N), there

exists some (F;, € [U,]<“ | n € N) such that |J, .y F» is an open cover of X.

Observation 1.27. Menger’s covering is closed hereditary.
Observation 1.28. If (X, O) satisfies Spin(O, O), then X is Lindeldf.

Proof. Suppose U is an open cover. Put U,, := U for all n € N. For F,, € [U,]<* witnessing
Stin(O,0), then V := | J F, is a countable subcover of U. O

Lemma 1.29. If (X, O) is a o-compact topological space, then X = S, (O, O).

Proof. Suppose X = |,y K where each K, is compact. Assume (U, € O | n € N) is a
given family of covers. In particular K,, C | JU, for all n € N. Fix n € N.
By compactness, we may pick F,, € [U,]< such that K,, C |JF,.

Evidently, |, .y Fn is an open cover of X. O

neN

Conjecture 1.30 (Menger). Sy, (O, O) is equivalent to o-compactness.

Observation 1.31. For a space (X, 0), and a sequence (B, | n € N) of bases to X, TFAE:
() X = S5in(0,0).
(b) For any countable sequence of open covers of X, (V,, C B, | n € N), there exists
some (Fn, € [Vu]<¥ | n € N) such that |J,, .y Fr is an open cover of X.

Proof. We assume (b) and prove (a). Suppose (U, € O | n € N) is a given family of covers.
Fix n € N. Let ¢, : O — P(B,) be a function such that U = |J,(U) for all U € 0.
Put V, .= U{vn(U) | U € U,}. Clearly, V,, C B,, and UV, = UU, = X.

Now, by the hypothesis (b), we yield F,, € [V,]= for all n € N such that | J, .y F covers

X. Finally, for each n € N and G € F,,, pick a single G’ € U,, such that G C G’ and put

F={G"| G e F,}. Tt follows that |F,| < |F,| <Xy and |, . F}, covers X. O

neN

4Recall the lexicographic order on N x N: (my,n1) < (mg,ng) iff (ny < ng) or ((n1 =na) A (my < ma)).
"By definition, an open set is a union of basis-elements.



