

FORCING THEORY: EXERCISE 6

BOAZ TSABAN

For all of this exercise, fix a countable transitive model M of ZFC, a poset $\langle \mathbb{P}, \leq, 1 \rangle \in M$, and an M -generic filter G (for \mathbb{P}).

1. Prove the Extension Lemma for \Vdash^* : If $p \Vdash^* \varphi$ and $q \leq p$, then $q \Vdash^* \varphi$, either.
2. Complete the remaining cases in the inductive proof of the Truth Lemma for \Vdash^* :

$$M[G] \models \varphi \Leftrightarrow \exists p \in G, p \Vdash^* \varphi.$$

- (a) Case 1(b): $p \Vdash^* \tau \neq \sigma$.
- (b) Case 2(a): $p \Vdash^* \varphi \vee \psi$.
- (c) Case 2(b): $p \Vdash^* \exists v \varphi(v)$.

3. Kunen, Chapter VII, Exercise (A9).

Definitions. $A \subseteq \mathbb{P}$ is an *antichain* if for each distinct $a, b \in A$, a, b are incompatible. A is a *maximal antichain* if it is an antichain and no antichain properly contains it.

4. Kunen, Chapter VII, Exercise (A12), not including the “Furthermore” part.

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE,
REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il
URL: <http://www.cs.biu.ac.il/~tsaban>