

FORCING THEORY: EXERCISE 5

BOAZ TSABAN

For all of this exercise, fix a countable transitive model of (enough of) ZFC, a poset $\langle P, \leq, 1 \rangle \in M$, and an M -generic filter G (for P).

1. Prove:

- (a) “ τ is a P -name” is absolute for transitive models of ZFC.
- (b) The interpretation function $\tau \mapsto \tau_G$ is absolute for transitive models of ZFC.

2. Prove:

- (a) Assume that M' is a countable transitive model of (enough of) ZFC, such that $M \subseteq M'$ and $G \in M'$. Then $M[G] \subseteq M'$.
- (b) $M[G]$ is a countable and transitive set.

3. $M[G]$ satisfies the axioms of Extensionality, Foundation, Pairing, and Union.

Hint. For Pairing, interpret the name $\{(\sigma, 1), (\tau, 1)\}$.

For Union, let $\text{dom}(\tau) = \{\sigma : \exists p (\sigma, p) \in \tau\}$, and interpret $\bigcup \text{dom}(\tau)$ to get a set containing τ_G .

Definition. $p \in P$ is called an *atom* if for all q, r stronger than p , we have that q, r are compatible.

Recall that if there are no atoms in P , then for each M -generic filter G , $G \notin M$.

4. If $p \in P$ is an atom, then there is a filter G intersecting *all* dense subsets of P , and such that $G \in M$.

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE,
REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>