

FORCING THEORY: EXERCISE 4

BOAZ TSABAN

- 1.** Prove: If $V = L$, then for each $\alpha \geq \omega$, $P(L_\alpha) \subseteq L_{\alpha^+}$.

(Thus, $L \models \forall \alpha \geq \omega, P(L_\alpha) \subseteq L_{\alpha^+}$.)

Hint. Use the sketch shown in class, or read the proof in Kunen.

- 2.** Prove: $V = L \rightarrow GCH$. (Thus, $L \models ZFC + GCH$.)

Hint. By Question 1, $V = L \rightarrow P(\kappa) \subseteq L_{\kappa^+}$.

Note: Now you can prove Question 4 of Exercise 3 easily.

- 3.** Prove *Scott's Theorem*: $L \models$ “There are no measurable cardinals”.

Hint. Work in L . Assume there is a measurable cardinal, and let κ be the minimal one.

Then there is an elementary embedding $j : V \rightarrow M$ such that M is transitive and $j(\kappa) > \kappa$.

As j is an elementary embedding, $M \models V = L$, thus $M = L$. As $V = L$, $j : L \rightarrow L$.

$V = L \models$ “ κ is the first measurable cardinal”, thus $M = L \models$ “ $j(\kappa)$ is the first measurable cardinal”.

A contradiction.

Reminders.

$\kappa > \aleph_0$ is *weakly inaccessible* if it is a regular ($\kappa = \text{cf}(\kappa)$) limit cardinal ($\lambda < \kappa \rightarrow \lambda^+ < \kappa$).

$\kappa > \aleph_0$ is *inaccessible* if it is a regular and *strong* limit ($\lambda < \kappa \rightarrow 2^\lambda < \kappa$).

- 4.** Prove:

- (1) Assume that $N \subseteq M$ are transitive models of ZFC , then:

(a) If $M \models$ “ κ is a cardinal”, then so does N .

(b) If $N \models$ “ κ is a successor cardinal”, and $M \models$ “ κ is a cardinal”, then $M \models$ “ κ is a successor cardinal”.

- (2) $\text{Con}(ZFC + \exists \text{inaccessible } \kappa) \leftrightarrow \text{Con}(ZFC + \exists \text{weakly inaccessible } \kappa)$.

Hint. (1b) If $N \models \kappa = \lambda^+$, then $N \models (\forall \alpha) \lambda \leq \alpha < \kappa \rightarrow |\alpha| = \lambda$, and therefore so does M .

(2) If $M \models$ “ κ is weakly inaccessible”, then by (1) $L^M \models$ “ κ is weakly inaccessible”. $L^M \models GCH$, thus $L^M \models$ “ κ is inaccessible”.

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>