

FORCING THEORY: EXERCISE 1

BOAZ TSABAN

1. Compute the ranks of:

- (a) $\bigcup x$, $P(x)$, and $\{x\}$, in terms of $\text{rank}(x)$.
- (b) $x \times y$, $x \cup y$, $\{x, y\}$, (x, y) , and ${}^y x$, in terms of $\text{rank}(x)$ and $\text{rank}(y)$.
- (c) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.

2. Let $\alpha < \aleph_2$. Prove that \mathbf{V}_{\aleph_2} “knows” that $|\alpha| \leq \aleph_1$ in the sense that there is $f \in \mathbf{V}_{\aleph_2}$ such that $f : \aleph_1 \rightarrow \alpha$ is surjective.

3. Prove the *Mostowski Collapse Theorem*:

Assume that \mathbf{E} is well-founded, set-like, and extensional on the class \mathbf{P} . Then:

- (a) There is a transitive class \mathbf{M} such that $(\mathbf{M}, \in) \cong (\mathbf{P}, \mathbf{E})$.
- (b) \mathbf{M} and the isomorphism are unique.

Hint. (a) By \mathbf{E} -recursion, define $\pi(x) = \{\pi(y) : y \mathbf{E} x\}$, and $\mathbf{M} = \pi[\mathbf{P}]$.
(b) Use \mathbf{E} -induction.

Terminology. The transitive class \mathbf{M} in the Mostowski Collapse Theorem will be called the *collapse* of (\mathbf{P}, \mathbf{E}) .

4. Assume that \mathbf{E} well-orders \mathbf{P} , and is set-like and extensional on \mathbf{P} . Prove:

- (a) If \mathbf{P} is a set, then the collapse of (\mathbf{P}, \mathbf{E}) is an ordinal, namely, the order type of (\mathbf{P}, \mathbf{E}) .
- (b) If \mathbf{P} is a proper class, then the collapse of (\mathbf{P}, \mathbf{E}) is \mathbf{ON} , the class of all ordinal numbers.

Good luck!

DEPARTMENT OF MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE,
REHOVOT 76100, ISRAEL

E-mail address: boaz.tsaban@weizmann.ac.il

URL: <http://www.cs.biu.ac.il/~tsaban>