FORCING THEORY: EXERCISE 5

BOAZ TSABAN

For all of this exercise, fix a countable transitive model M of ZFC, a poset $\langle \mathbb{P}, \leq, 1 \rangle \in M$, and an \mathbb{P} -generic filter G over M.

1. Prove the Extension Lemma for \Vdash^* : If $p \Vdash^* \varphi$ and $q \leq p$, then $q \Vdash^* \varphi$, either.

2. Complete the remaining cases in the inductive proof of the Truth Lemma for \Vdash^* :

 $M[G]\models\varphi\Leftrightarrow \exists p\in G,p\Vdash^*\varphi.$

- (a) Case 1(b): $p \Vdash^* \tau \neq \sigma$.
- (b) Case 2(a): $p \Vdash^* \varphi \lor \psi$.
- (c) Case 2(b): $p \Vdash^* \exists v \varphi(v)$.

3. Kunen, Chapter VII, Exercise (A9).

Definitions. $A \subseteq \mathbb{P}$ is an antichain if for each distinct $a, b \in A$, a, b are incompatible. A is a maximal antichain if it is an antichain and no antichain properly contains it.

4. Kunen, Chapter VII, Exercise (A12), not including the "Furthermore" part.

Good luck!

DEPARTMENT OF MATHEMATICS, BIU & WIS URL: http://www.cs.biu.ac.il/~tsaban