FORCING THEORY: EXERCISE 4

BOAZ TSABAN

For all of this exercise, fix a countable transitive model of (enough of) ZFC, a poset $\langle P, \leq, 1 \rangle \in M$, and an *M*-generic filter *G* (for *P*).

1. Prove that M[G] is a transitive set.

2. M[G] satisfies the axioms of Extensionality, Foundation, Pairing, and Union.

Hint. For Pairing, interpret the name $\{(\sigma, 1), (\tau, 1)\}$.

For Union, let dom $(\tau) = \{\sigma : \exists p \ (\sigma, p) \in \tau\}$, and interpret $\bigcup \operatorname{dom}(\tau)$ to get a set containing τ_G .

Definition. $p \in P$ is called an *atom* if for all q, r stronger than p, we have that q, r are compatible.

Recall that if there are no atoms in P, then for each M-generic filter $G, G \notin M$.

3. If $p \in P$ is an atom, then there is a filter G intersecting all dense subsets of P, and such that $G \in M$.

4. Let \mathbb{C} be Cohen's forcing, G be \mathbb{C} -generic over M, and $F = \bigcup G$. Let $A = \{n \in \omega : F(n) = 1\}$. Prove that for each k, A contains an arithmetic progression of length k, and is disjoint from (another) arithmetic progression of length k.¹

Good luck!

DEPARTMENT OF MATHEMATICS, BIU & WIS URL: http://www.cs.biu.ac.il/~tsaban

¹In fact, your proof—which should use a density argument—shows things are even more flexible.