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 פתרון לנוסחת נסיגה מסדר שני 
 עם מקדמים ליניאריים

 
 :הצורה הכללית של משוואה זאת היא
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 .והתוצאה נובעת

 
 .  נשאיר כתרגיל. דומה. 2
 

 ).המשך, עליית מדרגות(דוגמה 
  מדרגות ניתן על ידיn לעלות nFהסדרה של מספר הדרכים 

( )1 2 1 21, 2, 3n n nF F F F F n− −= = = + ≥ . 

 ת ניתנת על ידי המשוואה האופייני
2 1 0x x− − =  . 

 שני השורשים של פולינום זה הם 

( )
2

1,2
4 1 1 5

2 2
b b acx

a
− ± −

= = ± . 

 כך ש

1 2
n n

nF K Kα β= + 

)כאשר  ) ( )1 11 5 , 1 5
2 2

α β= + = 1תנאי ההתחלה .  − 21, 2F F=   נותן ש)3( יחד עם =

1 2
2 2

1 2

1
2

K K
K K

α β
α β

+ =
+ =

 

1 2,
5 5

K Kα β−
=  :סך הכול.  =

1 1

1 1

1 1
5 5

1 1 5 1 1 5
2 25 5

n n
n

n n

F α β+ +

+ +

= −

   + −
= −   

   

)4( 

בדוק .   אמור להיות מספר שלםnFאולי זה נראה משונה כי .  nF המדויק ליהיא הביטו

 כך ש,  מצטמצמים5שהפיתוח לפי המשפט הבינומי נותן שכל הביטויים שמכילים 

21 1 11 5 5
1 3 52n n

n n n
F

+ + +      
= + + +      

      
. 

: שים לב.  2nגם זה מפתיע כי זה אינו ברור למה סכום של מקדמים בינומיים הוא מתחלק ב

1βכיוון ש 1כך ש, ∞→n כאשר 0ף ל שוא)4(הביטוי השני ב, > 1 5
2

n

n

F
F
+ +
היחס , →

 .הזהב
1במקום  21, 2F F= 2 אפשר לבחור כל  שני מספרים  = 2F a=1 ו 1F a=כתנאי התחלה   . 

 



 אוניברסיטת בר אילן  ,  יונתן בק, מתמטיקה בדידה,  ד'' תשס  ,7שבוע   ,3דף  

 

  יש אז חישוב ישיר

( ) ( )
1 2 1 2

1 2,a a a aK Kβ α
α β α β α β

− −
= =

− −
 .)5( 

 
1אם . פתרון למשוואת נסיגה הוא  ליניארית בתנאי ההתחלה:  שים לב 1F a=2 ו 2F a= תנאי 
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