
 אוניברסיטת בר אילן  ,  יונתן בק, מתמטיקה בדידה,  ד'' תשס  ,4שבוע    1  דף

 

  מקדמים בינומיים ויותר: 6
 

המספר : הגדרה
!

!( )!
n

k n k−
0כאשר ,  k n≤   ומסומן על ידי מקדם בינומינקרא , ≥

!
!( )!

n n
k k n k
 

=  − 
   .)1( 

 
שהסדר ,  דברים ללא חזרותn דברים מתוך k הוא מספר הדרכים לבחור )1(, כפי שהוכחנו
 .  אינו חשוב

, במילים אחרות
n
k
 
 
 

 הקבוצות בנות— הוא מספר תת

k איברים של קבוצה של nאיברים . 
 ?   בנות2 בנים ו 3בכמה דרכים אפשר לבחור קבוצה של .   בנות6 בנים ו 4בכיתה יש : דוגמה

 
מספר , כיוון שבחירה של מספר בנים או בנות היא בחירה ללא חזרות שהסדר אינו חשוב

 בנים היא 3הדרכים לבחור 
4
3
 
 
 

 היא 6 בנות מה 2מספר הדרכים לבחור .  
6
2
 
 
 

יחד לפי .    

מספר הדרכים לבחור קבוצה הוא   , עקרון המכפלה
4 6

4 15 60
3 2
   

⋅ = ⋅ =   
   

   . 

 

  :1משפט 
n n
k n k
   

=   −   
  . 

  
)לב ששים :  הוכחה )n n k k− −   כך ש=

 
!

( )! !
n nn
n k kn k k
   

= =   − −   
  .)2( 
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 .ל''מש.  ןאבל זה נכו.  מתקיים
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 .תן הוכחה קומבינאטורית לזהות:  תרגיל
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 . f  הופכית מימין ומשמאל ל gלא קשה לבדוק ש
 
 משולש פסקל .7
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 : דוגמה מיידית היא.   מהמשולש ניתן לראות הרבה זהויות חשובות
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 .הוא בדיוק שקול לעובדה כל מספר הוא הסכום של שני המספרים מעליו
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 .  רואים שהמספרים בצד ימין הם המספרים בעמודה האמצעית של המשולש
 :מכאן ניתן לנחש הזהות הבאה
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קבוצות כך שכל איבר נמצא — תתkהם מספר הדרכים לחלק קבוצה להמספרים האלו 

 .  הקבוצות—באחד מתת

 


