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Abstract. A right [left] locally testable language S is a language with
the property that for some nonnegative integer k two words u and v in
alphabet S are equal in the semigroup if (1) the pre�x and su�x of the
words of length k� 1 coincide, (2) the set of segments of length k of the
words as well as 3) the order of the �rst appearance of these segments in
pre�xes [su�xes] coincide.
We present necessary and su�cient condition for graph [semigroup] to
be transition graph [semigroup] of the deterministic �nite automaton
that accepts right [left] locally testable language and necessary and su�-
cient condition for transition graph of the deterministic �nite automaton
with locally idempotent semigroup. We introduced polynomial time al-
gorithms for the right [left] local testability problem for transition semi-
group and transition graph of the deterministic �nite automaton based
on these conditions. Polynomial time algorithm veri�es transition graph
of automaton with locally idempotent transition semigroup.
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1 Introduction

The concept of local testability was �rst introduced by McNaughton and Papert
[12] and by Brzozowski and Simon [5]. This concept is connected with languages,
�nite automata and semigroups and has a wide spectrum of generalizations.

The necessary and su�cient condition for local testability were investigated
for both transition graph and transition semigroups of the automaton [5], [10],
[13], [16]. The polynomial time algorithms solve the problem of local testability
for transition graph [10] and for transition semigroups of the automaton [13].
They are polynomial in terms of the size of the semigroup or in the sum of
nodes and edges.

Right [left] local testability was introduced and studied by K�onig [9] and by
Garcia and Ruiz [7]. These papers use di�erent de�nitions of the conception and
we follow [7] here



Theorem 11 [7] A �nite semigroup S is right [left] locally testable i� it is locally
idempotent and locally satis�es the identity xyx = xy [xyx = yx].

For conception of local idempotency see, for instance, [6]. The varieties of semi-
groups de�ned by considered identities are located not far from atoms in the
structure of idempotent varieties [4].

We present in this work necessary and su�cient condition for right [left] lo-
cal testability for transition graph of the DFA and for the local idempotency
of the transition semigroup on the corresponding transition graph. We improve
necessary and su�cient condition for right [left] local testability from [7] for tran-
sition semigroup. On the base of these results, we introduced a polynomial time
algorithm for the right [left] local testability problem for transition semigroup
and transition graph of the deterministic �nite automaton and for checking the
transition graph of the automaton with locally idempotent semigroup.

These algorithms are implemented in the package TESTAS. The package
checks also whether or not a language given by its minimal automaton or by syn-
tactic semigroup of the automaton is locally testable, threshold locally testable,
strictly locally testable, or piecewise testable [2], [15].

2 Notation and de�nitions

Let � be an alphabet and let �+ denote the free semigroup on �. If w 2 �+, let
jwj denote the length of w. Let k be a positive integer. Let ik(w) [tk(w)] denote
the pre�x [su�x] of w of length k or w if jwj < k. Let Fk(w) denote the set of
segments of w of length k. A language L [a semigroup S] is called right [left]
k-testable if there is an alphabet � [and a surjective morphism � : �+ ! S] such
that for all u, v 2 �+, if ik�1(u) = ik�1(v); tk�1(u) = tk�1(v), Fk(u) = Fk(v)
and the order of appearance of these segments in pre�xes [su�xes] in the word
coincide, then either both u and v are in L or neither is in L [u� = v�].

An automaton is right [left] k-testable if the automaton accepts a right [left]
k-testable language.

A language L [a semigroup S, an automaton A] is right [left] locally testable
if it is right [left] k-testable for some k.

jSj is the number of elements of the set S.
A semigroup S is called semigroup of left [right] zeroes if S satis�es the

identity xy = x [xy = y].
A semigroup S has a property � locally if for any idempotent e 2 S the

subsemigroup eSe has the property �.
So a semigroup S is called locally idempotent if eSe is an idempotent sub-

semigroup for any idempotent e 2 S.

A maximal strongly connected component of the graph will be denoted for
brevity as SCC , a �nite deterministic automaton will be denoted as DFA. A
node from an SCC will be called for brevity as an SCC � node. SCC-node
can be de�ned as a node that has a right unit in transition semigroup of the
automaton.



j� j denotes the number of nodes of the graph � .
� i denotes the direct product of i copies of the graph � . The edge (p1; :::;pn)!

(q1; :::;qn) in � i is labelled by � i� for each i the edge pi ! qi in � is labelled
by �.

The graph with only trivial SCC (loops) will be called acyclic.
If an edge p! q is labelled by � then let us denote the node q as p�.
We shall write p � q if the node q is reachable from the node p or p = q

(p � q for distinct p;q).
In the case p � q and q � p we write p � q (that is p and q belong to one

SCC or p = q).

3 Transition graph of deterministic �nite automaton

3.1 Graph of DFA with locally idempotent transition semigroup

Lemma 31 Let S be the transition semigroup of a deterministic �nite automa-
ton and let � be its transition graph. Let us suppose that for three distinct nodes
p;q; r from � the node (p;q; r) in � 3 is SCC-node, and (p;q) � (q; r) in � 2.

Then S is not locally idempotent.

Proof. Let us suppose that for the nodes p;q; r from � the conditions of
lemma hold. Therefore the nodes p;q; r have a right unit e = e2, whence pe =
p, qe = q, re = r. In view (p;q) � (q; r), there exists an element s 2 S
such that ps = q and qs = r. Therefore pese = q and qese = r, whence
p(ese)2 = r 6= q = pese. So p(ese)2 6= pese and (ese)2 6= ese. Semigroup eSe is
not an idempotent semigroup and therefore S is not locally idempotent.

Lemma 32 Let S be the locally idempotent transition semigroup of a deter-
ministic �nite automaton and let � be its transition graph.

For any SCC-node (p;q) 2 � 2 and s 2 S from ps � q follows qs � q.

Proof. Let us consider SCC-node (p;q) from � 2 such that ps � q. The
node (p;q) has a right unit e = e2, so pe = p, qe = q. For some b 2 S we have
psb = q. We can assume s = es, b = be. esbe = (esbe)2 in locally idempotent
semigroup S. Therefore q = pesbe = p(esbe)2 = qesbe = qsbe. Thus we have
qs � q.

Lemma implies

Corollary 33 Let S be the locally idempotent transition semigroup of a deter-
ministic �nite automaton and let � be its transition graph.

Let us suppose that in � 2 we have (p;q) � (q; r) and the node (p;q) is an
SCC-node. Then r � q.

Lemma 34 Let S be transition semigroup of a deterministic �nite automaton
and suppose that in � 2 we have (p;q) � (q;p) for two distinct nodes p;q.

Then S is not locally idempotent.



Proof. We have ps = q and qs = p for some s 2 S. So ps2 = p 6= ps = q
and p = ps2n 6= ps2n�1 = q. Therefore s2n 6= s2n�1 for any integer n because
of p 6= q. Finite semigroup S contains therefore non-trivial subgroup, whence S
is not locally idempotent.

Let us formulate the necessary and su�cient conditions for graph to be tran-
sition graph of DFA with locally idempotent transition semigroup.

Theorem 35 Transition semigroup S of a deterministic �nite automaton is
locally idempotent i�

1. (p;q) 6� (q;p) in � 2 for any two distinct nodes p;q,
2. for any SCC-node (p;q) 2 � 2 and s 2 S from ps � q follows qs � q and
3. for any SCC-node (p;q; r) of � 3 with distinct components holds (p;q) 6�

(q; r) in � 2.

Proof. If S is locally idempotent then the condition 1 follows from lemma 34,
condition 2 follows from lemma 32, condition 3 follows from lemma 31.

Suppose now that S is not locally idempotent. Then for some node p from � ,
idempotent e and element s from S we have p(ese)2 6= pese. Hence pe 6= pese
and at least one of two nodes p(ese)2, pese exists. If exists the node p(ese)2 then
the node pese exists too. So pese exists anyway. Therefore pe exists too and from
(pe;pese)ese = (pese;p(ese)2) in view of condition 2 follows p(ese)2 � pese,
whence the node p(ese)2 exists.

The node (pe;pese;p(ese)2) is an SCC-node of � 3 because all components
of the node have common right unit e. Let us notice that p(ese)2 6= pese and
pe 6= pese. We have (pe;pese) � (pese;p(ese)2). In the case pe = p(ese)2 we
have contradiction with condition 1, in opposite case we have contradiction with
condition 3.

3.2 Right local testability

Theorem 36 Let S be transition semigroup of deterministic �nite automaton
with state transition graph � . Then S is right locally testable i�

1. for any SCC-node (p;q) from � 2 such that p � q holds p = q.
2. for any SCC-node (p;q) 2 � 2 and s 2 S from ps � q follows qs � q.

Proof. Suppose semigroup S is right locally testable.
Condition 1. Let (p;q) be an SCC-node with distinct components. Then for

some idempotent e 2 S holds (p;q)e = (p;q). If p � q then for some a; b 2 S
holds qa = p and pb = q, whence qeae = p and pebe = q. So qeaebe = q and
pebeae = p. Semigroup S is right locally testable and therefore the subsemigroup
eSe satis�es identity xyx = xy [7]. Consequently, q =qeaebe = qeaebeae =
pebeae = p.

Condition 2 follows from lemma 32 because right locally testable semigroup
S is locally idempotent.

Suppose now that both conditions of the theorem are valid. Let us begin
from the local idempotency of S.



If the identity x2 = x is not valid in eSe for some idempotent e then for some
node v 2 � and some element a 2 S we have veae 6= veaeae. At least one of
two considered nodes exists. In view of ve � veae � veaeae the nodes veae;ve
exist. Let us denote p = ve;q = veae. Therefore (p;q) is an SCC-node. Notice
that peae � q. Hence, by condition 2, qeae � q. Now, by by condition 1, in view
of q � qeae, we have qeae = q. So veae = veaeae in spite of our assumption.

Thus the transition semigroup S is locally idempotent.
If the identity xyx = xy [7] is not valid in eSe then for some node v 2 � ,

some idempotent e and elements a; b 2 S holds veaebe 6= veaebeae. So the node
veaebe exists. Let us denote p = veaebe. S is locally idempotent and therefore
p = veaebeaebe. Consequently, the node q = veaebeae exists too. We have p 6=
q. The node (veaebe;veaebeae) = (p;q) is an SCC-node from � 2. It is clear that
p = veaebe � veaebeae = q. Then q = veaebeae � veaebeaebe = veaebe = p.
So p � q and p 6= q in spite of the condition 1.

3.3 Left local testability

Lemma 37 Let reduced DFA A with state transition graph � and transition
semigroup S be left locally testable. Suppose that for SCC-node (p;q) of � 2

holds p � q.
Then for any s 2 S holds ps � q i� qs � q.

Proof. Suppose A is left locally testable. Then the transition semigroup S of
the automaton is �nite, aperiodic and for any idempotent e 2 S the subsemi-
group eSe is idempotent [7].

For some a; e = e2 2 S holds pa = q, (p;q)e = (p;q). So we have pes = ps
and qes = qs.

If we assume that ps � q, then for some b from S holds psb = q, whence
pesbe = q. In idempotent subsemigroup eSe we have esbe = (esbe)2. Therefore
qesbe = p(esbe)2 = pesbe = q and qes = qs � q.

If we assume now that qs � q, then for some d 2 S holds qsde = q. For some
a 2 S holds pa = q because of p � q. So qsde = qesde = q and peaesde = q.
The subsemigroup eSe satis�es identity xyx = yx, therefore eaesde = esdeaesde.
So q = peaesde = pesdeaesde. Hence, pes = ps � q.

Lemma 38 Let reduced DFA A with state transition graph � be left locally
testable.

If the node (p;q; r) is an SCC-node of � 3, (p; r) � (q; r) and (p;q) � (r;q)
in � 2, then r = q.
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Proof. Suppose A is left locally testable. Then the transition semigroup S of
the automaton is �nite, aperiodic and for any idempotent e 2 S the subsemi-
group eSe is idempotent [7].

Let us consider the nodes p;q; r from � such that the conditions of lemma
are valid for them. From (p; r) � (q; r) and (p;q) � (r;q) follows (p; r)s =
(q; r) and (p;q)t = (r;q) for some s; t 2 S and (p;q; r)e = (p;q; r), for some
idempotents e 2 S. We can take s; t from eSe. Therefore

ese = s; ete = t; s2 = s; t2 = t
So ps = q, rs = r, pt = r, qt = q. Let us notice that qs = ps2 = ps = q.

Analogously, rt = r.
We have psts = qts = qs = q. Then pts = rs = r. The identity xyx = yx is

valid in subsemigroup eSe, whence q = psts = pts = r.

Let us formulate the necessary and su�cient conditions for graph to be tran-
sition graph of DFA with left locally testable transition semigroup.

Theorem 39 Let S be transition semigroup of a deterministic �nite automaton
with state transition graph � .

Then S is left locally testable i�
1. S is locally idempotent,
2. for any SCC-node (p;q) of � 2 such that p � q and for any s 2 S we

have ps � q i� qs � q and
3. If for arbitrary nodes p;q; r 2 � the node (p;q; r) is SCC-node of � 3,

(p; r) � (q; r) and (p;q) � (r;q) in � 2, then r = q.

Proof. Suppose semigroup S is left locally testable. Then S is locally idem-
potent [7]. Second and third conditions of our theorem follow from lemmas 37
and 38, correspondingly.

Suppose now that the conditions of the theorem are valid but for an arbitrary
node p, an arbitrary idempotent e 2 S and two elements s; t 2 eSe holds psts 6=
pts. By condition 1,

s2 = s, t2 = t, tsts = ts, stst = st, tssts = ts
At least one of two nodes psts = q and pts = r exists. Therefore pe exists

too. We have (pe;pts)sts = (psts;pts). Therefore the existence of the node
pts = r implies by condition 2 the existence of the node psts = q. Analogously,
from (pe;psts)ts = (pts;psts) and existence of the node psts = q follows by
condition 2 the existence of the node pts = r.

The node (pe;q; r) is an SCC-node because all his components have common
right unit e. We have (p; r)sts = (psts;ptssts) = (q;pts) = (q; r). Analogously,
(p;q)ts = (pts;pststs) = (r;psts) = (r;q). Thus,

(pe; r) � (q; r), (pe;q) � (r;q)
Now by the third condition of the theorem, r = q. Therefore psts = pts.

The node p is an arbitrary node, whence sts = ts for every two elements s; t 2
eSe. Consequently, the subsemigroup eSe satis�es identity xyx = yx. Thus the
semigroup S is left locally testable.



4 Semigroups

Lemma 41 Let S be a �nite locally idempotent semigroup. The following two
conditions are equivalent in S:

a) S satis�es locally the identity xyx = xy (S is right locally testable).
b) No two distinct idempotents e, i from S such that ie = e; ei = i have a

common right unit in S. That is, there is no idempotent f 2 S such that e = ef
and i = if .

Proof. Suppose the identity xy = xyx is valid in subsemigroup uSu for any
idempotent u and for some idempotents e, i in S we have ie = e, ei = i. Suppose
f is a common right unit of e, i. The identity xyx = xy in fSf and equality
ei = i imply i = ei = efefif = efefifef = eie = e. Thus the idempotents e, i
are not distinct.

Suppose now that uSu does not satisfy the identity xyx = xy for some
idempotent u. Notice that uSu is an idempotent semigroup. So for some a, b of
S, uaubuau 6= uaubu. For two distinct idempotents i = uaubuau and e = uaubu
with common right unit u we have ie = uaubuauuaubu = uaubuaubu = uaubu =
e and ei = uaubuaubuau = uaubua = i.

So two distinct idempotents e, i from S such that ie = e; ei = i have a
common right unit u in S.

The following lemma is proved analogously:

Lemma 42 Let S be a �nite locally idempotent semigroup. The following two
conditions are equivalent in S:

a) S satis�es locally the identity xyx = yx (S is left locally testable).
b) No two distinct idempotents e, i from S such that ie = i; ei = e have a

common left unit in S. That is, there is no idempotent f 2 S such that e = fe
and i = fi.

Recall that a semigroup A is a right [left] zero semigroup if A satis�es the
identity xy = y[xy = x]. A right [left] locally testable semigroup is locally
idempotent [7]. Then from the last two lemmas follows

Theorem 43 A �nite semigroup S is right [left] locally testable i� S is locally
idempotent and no two distinct idempotents e, i from right [left] zero subsemi-
group have a common right [left] unit in S.

5 An algorithm for semigroup

The following proposition is useful for the algorithm.

Lemma 51 [13] Let E be the set of idempotents of a semigroup S of size n
represented as an ordered list. Then there exists an algorithm of order n2 that
reorders the list so that the maximal left [right] zero subsemigroups of S appear
consecutively in the list.



1.Testing whether a �nite semigroup S is right [left] locally testable.

Suppose jSj = k. We begin by �nding the set of idempotents E. This is a
linear time algorithm. Then let us verify local idempotency. For every e 2 E and
every s 2 S let us check condition ese = (ese)2. If the condition does not hold
for some pair, the semigroup is not locally idempotent and therefore not right
locally testable (theorem 43). This takes O(k2) steps.

Now we reorder E according to lemma 51 in a chain such that the subsemi-
groups of right [left] zeroes form intervals in this chain. We note the bounds of
these intervals. We �nd for each element e of E the �rst element i in the chain
such that e is a right [left] unit for i. Then we �nd in the chain the next element
j with the same unit e. If i and j belong to the same subsemigroup of right [left]
zeroes we conclude that S is not right [left] testable (Lemma 41) and stop the
process. If they are in di�erent right [left] zero semigroups, we replace i by j and
continue the process of �nding a new j. This takes O(k2) steps.

Finding the maximal subsemigroup of right [left] zeroes containing a given
idempotent needs k steps. So for to reorder E we need at most k2 steps. The
time and the space complexity of the algorithm is O(k2).

6 Graph algorithms

Let n be the sum of the nodes and edges of � . The �rst-depth search ([1], [10]
or [15]) will be used for SCC search, for reachability table for triples and for
checking condition 2 of theorems 35 and 36.

Table of reachability for triples
Suppose SCC of � , � 3 and the table of reachability are known. For every

SCC-node q of the graph � let us form by help of the �rst-depth search on � 2

the following relation L [I] on � : pLr if (p;q) � (r;q) [pIr if (p;q) � (q; r)].
For every node (p;q) we form set of nodes r such that pLr [pIr]. We use an
auxiliary array for this aim: for every node (p;q) and for every node s, we form
set of pointers to nearest successors (t; s) [(s; t)] of (p;q).

If (p;q; r) is an SCC-node with distinct components and pLr [pIr] then we
add the triple (p;q; r) to the set Left [LocId]. (O(n3) time and space complex-
ity).

6.1 Graph of automaton with locally idempotent transition
semigroup

The algorithm is based on the theorem 35. Let us recognize the reachability
on the graph � and form the table of reachability for all pairs of � . The time
required for this step is O(j� j2).

We �nd graph � 2 and all SCC of the graph (O(n2) time complexity). If the
nodes (p;q) and (q;p) belong to common SCC then the transition semigroup
is not locally idempotent (condition 1).



For check the condition 2 of the theorem let us add to the graph � 2 new
node (0;0) with edges from this node to every SCC-node (p;q) from � 2 such
that p � q. Let us consider �rst-depth search from the node (0;0) (the unique
starting point of any path).

Let us �x the node q after going through the edge (0;0)! (p;q). We do not
visit edges (r; s)! (r; s)� such that r� 6� s. In the case that for the node (r; s)
from two conditions r� � q and s� � q only the �rst is valid the condition 2 does
not hold, the transition semigroup is not locally idempotent and the algorithm
stops.

Let us �nd graph � 3, all SCC of the graph � 3 and mark all SCC-nodes
with three distinct components such that the �rst component is ancestor of two
others. (O(n3) time complexity).

Let us go to the condition 3 of the theorem 35. We form a table of triples
LocId (see algorithm for table of reachability above). If some SCC-node (p;q; r)
from � 3 with distinct components belongs to LocId then the condition 3 does
not hold and the semigroup is not locally idempotent.

The whole time and space complexity of the algorithm is O(n3).

6.2 Right local testability of DFA

The algorithm is based on the theorem 36. Let us form a table of reachability
of the graph � , �nd all SCC of � , � 2 and all SCC-nodes of � 2. (O(n2) time
complexity).

Let us verify the condition 1 of the theorem. For every SCC-node (p;q)
(p 6= q) from � 2 let us check the condition p � q. If the condition holds the
automaton is not right locally testable. (O(n2) time complexity).

For check the condition 2 of the theorem let us add to the graph � 2 new
node (0;0) with edges from this node to every SCC-node (p;q) from � 2 such
that p � q. Let us consider �rst-depth search from the node (0;0) (the unique
begin of any path).

Let us �x the node q after going through the edge (0;0)! (p;q). We do not
visit edges (r; s)! (r; s)� such that r� 6� s. In the case that for the node (r; s)
from two conditions r� � q and s� � q only the �rst is valid the algorithm stops
and the condition 2 does not hold. The automaton is not right locally testable
in this case. (O(n2) time complexity).

The whole time and space complexity of the algorithm is O(n2).

6.3 Left local testability of DFA

The algorithm is based on the theorem 39. Let us form a table of reachability on
the graph � and �nd all SCC of � . Let us �nd � 2 and all SCC of � 2. (O(n2)
time complexity).

Let us check the local idempotency (O(n3) time complexity).



For check the condition 2 of the theorem let us add to the graph � 2 new
node (0;0) with edges from this node to every SCC-node (p;q) from � 2 such
that p � q. Let us consider �rst-depth search from the node (0;0).

We do not visit edges (r; s) ! (r; s)� such that r� 6� s and s� 6� s. In the
case that for the node (r; s) from two conditions r� � s and s� � s only one is
valid the algorithm stops and the condition 2 does not hold.

Condition 3 of the theorem 39. Let us �nd � 3 and all SCC-nodes of � 3

(O(n3) time complexity).
Let us recognize the relation � on the graph � 2 and �nd set Left of triples

p;q; r such that (p;q) � (r;q) (see algorithm for table of reachability above).
If for some SCC-node (p;u;v) of � 3 both triples (p;u;v) and (p;v;u)

belong to the set then the condition 3 does not hold, the automaton is not left
locally testable and the algorithm stops.

The whole time and space complexity of the algorithm is O(n3).
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