
A package TESTAS for checking some kinds of

testability

A.N. Trahtman

Bar-Ilan University, Dep. of Math. and St., 52900,Ramat Gan,Israel
email:trakht@macs.biu.ac.il

Lecture Notes in Computer Scence 2608(2003), 228-232

Abstract. We implement a set of procedures for deciding whether or
not a language given by its minimal automaton or by its syntactic semi-
group is locally testable, right or left locally testable, threshold locally
testable, strictly locally testable, or piecewise testable. The bounds on
order of local testability of transition graph and order of local testability
of transition semigroup are also found. For given k, the k-testability of
transition graph is veri�ed. Some new e�ective polynomial time algo-
rithms are used. These algorithms have been implemented as a C=C++

package.

Introduction

Locally testable and piecewise testable languages with generalizations are the
best known subclasses of star-free languages with wide spectrum of applications.

Membership of a long text in a locally testable language just depends on a
scan of short subpatterns of the text. It is best understood in terms of a kind of
computational procedure used to classify a two-dimensional image: a window of
relatively small size is moved around on the image and a record is made of the
various attributes of the image that are detected by what is observed through
the window. No record is kept of the order in which the attributes are observed,
where each attribute occurs, or how many times it occurs. We say that a class
of images is locally testable if a decision about whether a given image belongs
to the class can be made simply on the basis of the set of attributes that occur.

Kim, McNaughton and McCloskey have found necessary and su�cient con-
ditions of local testability for the state transition graph � of deterministic �nite
automaton [9]. By considering the cartesian product � � � , we modify these
necessary and su�cient conditions and the algorithms used in the package are
based on this approach.

The locally threshold testable languages were introduced by Beauquier and
Pin [1]. These languages generalize the concept of locally testable language and
have been studied extensively in recent years.

Right [left] local testability was introduced and studied by K�onig [11] and
by Garcia and Ruiz [8]. These papers use di�erent de�nitions of the conception
and we follow here [8]:

A �nite semigroup S is right [left] locally testable i� it is locally idempotent
and locally satis�es the identity xyx = xy [xyx = yx].

We introduced polynomial time algorithms for the right [left] local testability
problem for transition graph and transition semigroup of the deterministic �nite
automaton. Polynomial time algorithm veri�es transition graph of automaton
with locally idempotent transition semigroup.

There are several systems for manipulating automata and semigroups. The
list of these systems is following [7] and preprint of [3]:

REGPACK [12] AUTOMATE [5] AMoRE [13] Grail [17] The FIRE Engine
[27] LANGAGE [3]. APL package [6]. Froidure and Pin package [7]. Sutner pack-
age [20]. Whale Calf [16].

Some algorithms concerning distinct kinds of testability of �nite automata
were implemented by Caron [3], [4]. His programs verify piecewise testable, lo-
cally testable, strictly and strongly locally testable languages.

In our package TESTAS (testability of automata and semigroups), the area
of implemented algorithms was essentially extended. We consider important and
highly complicated case of locally threshold testable languages [25]. The tran-
sition semigroups of automata are studied in our package at the �rst time [22].
Some algorithms (polynomial and even in some way non-polynomial) check the
order of local testability [24]. We implement a new e�cient algorithm for piece-
wise testability improving the time complexity from O(n5) [3], [19] to O(n2)
[25]. We consider algorithms for right local testability (O(n2) time and space
complexity), for left local testability (O(n3) time and space complexity) and the
corresponding algorithms for transition semigroups (O(n2) time and space com-
plexity). The graphs of automata with locally idempotent transition semigroup
are checked too (O(n3) time complexity). All algorithms dealing with transition
semigroup of automaton have O(n2) space complexity.

Algorithms used in the package

Let the integer a denote the size of alphabet and let g be the number of nodes.
By n let us denote here the size of the semigroup.

The syntactic characterization of locally threshold testable languages was
given by Beauquier and Pin [1]. From their result follow necessary and su�cient
conditions of local threshold testability for transition graph of DFA [25] and used
in our package a polynomial time algorithm for the local threshold testability
problem for transition graph and for transition semigroup of the language.

Let us notice here that the algorithm for transition graph from [25] ([26])
is valid only for complete graph. Of course, the general case can be reduced to
the case of complete graph by adding of a sink state. Let us notice also another
error from [25] ([26]): in the Theorem 16 (17) in the list of the conditions of local
threshold testability, the property that any TSCC is well de�ned is missed.

The time complexity of the graph algorithm for local threshold testability is
O(ag5). The algorithm is based on consideration of the graphs � 2 and � 3 and

therefore has O(ag3) space complexity. The time complexity of the semigroup
algorithm is O(n3).

Polynomial time algorithms for the local testability problem for semigroups
[22] of order O(n2) and for graphs [25] of order O(ag2) are implemented in the
package too. We use in our package a polynomial time algorithm of worst case
asymptotic cost O(ag2) for �nding the bounds on order of local testability for a
given transition graph of the automaton [24] and a polynomial time algorithm of
worst case asymptotic cost O(ag3) for checking the 2-testability [24]. Checking
the k-testability for �xed k is polynomial but growing with k. For checking the
k-testability [24], we use an algorithm of worst case asymptotic cost O(g3ak�2).
The order of the last algorithm is growing with k and so we have non-polynomial
algorithm for �nding the order of local testability. The algorithms are based
on consideration of the graph � 2 and have O(ag2) space complexity. The 1-
testability is veri�ed by help of algorithm of cost O(a2g).

The situation in semigroups is more favorable than in graphs. We implement
in our package a polynomial time algorithm of worst case asymptotic cost O(n2)
for �nding the order of local testability for a given semigroup [22]. The class of
locally testable semigroups coincides with the class of strictly locally testable
semigroups [23], whence the same algorithm of cost O(n2) checks strictly locally
testable semigroups.

Stern [19] modi�ed necessary and su�cient conditions of piecewise testabil-
ity of DFA (Simon [18]) and described a polynomial time algorithm to verify
piecewise testability.

We use in our package a polynomial time algorithm to verify piecewise testa-
bility of deterministic �nite automaton of worst case asymptotic cost O(ag2)
[25]. In comparison, the complexity of Stern's algorithm [19] is O(ag5). Our al-
gorithm uses O(ag2) space. We implement also an algorithm to verify piecewise
testability of a �nite semigroup of cost O(n2)

Description of the package TESTAS

The package includes programs that analyze:
1) an automaton of the language presented as oriented labeled graph;
2) an automaton of the language presented by its syntactic semigroup,
and �nd
3) the direct product of two semigroups or of two graphs,
4) the syntactic semigroup of an automaton presented by its transition graph.
First two programs are written in C=C++ and can by used in WINDOWS

environment. The input �le may be ordinary txt �le. We open source �le with
transition graph or transition semigroup of the automaton in the standard way
and then check di�erent properties of automaton from menu bar. Both graph
and semigroup are presented on display by help of rectangular table.

First two numbers in input graph �le are the size of alphabet and the number
of nodes. Transition graph of the automaton is presented by the matrix:

nodes X labels

where the nodes are presented by integers from 0 to n-1. i-th row of the
matrix is a list of successors of i-th node according the label in column. The
(i,j) cell contains number of the node from the end of the edge with label from
the j-th column and beginning in i-th node. There exists opportunity to de�ne
the number of nodes, size of alphabet of edge labels and to change values in the
matrix.

The input of semigroup algorithms is Cayley graph of the semigroup pre-
sented by the matrix:

elements X generators

where the elements of the semigroup are presented by integers from 0 to n�1
with semigroup generators in the beginning. i-th row of the matrix is a list of
products of i-th element on all generators.

Set of generators is not necessarily minimal, therefore the multiplication table
of the semigroup (Cayley table) is acceptable too. Comments without numerals
may be placed in the input �le as well.

The program checks local testability, local threshold testability and piece-
wise testability of syntactic semigroup of the language. Strictly locally testable
and strongly locally testable semigroups are veri�ed as well. The level of local
testability of syntactic semigroup is also found. Aperiodicity and associative low
can be checked too. There exists possibility to change values of products in the
matrix of the Cayley graph.

The checking of the algorithms is based in particular on the fact that the con-
sidered objects belong to variety and therefore are closed under direct product.
Two auxiliary programs written in C that �nd direct product of two semigroups
and of two graphs belong to the package. The input of semigroup program con-
sists of two semigroup presented by their Cayley graph with generators in the
beginning of the element list. The result is presented in the same form and the
set of generators of the result is placed in the beginning of the list of elements.
The number of generators of the result is n1g2+n2g1� g1g2 where ni is the size
of the i-th semigroup and gi is the number of its generators. The components
of direct product of graphs are considered as graphs with common alphabet of
edge labels. The labels of both graphs are identi�ed according their order. The
number of labels is not necessary the same for both graphs, but the result al-
phabet used only common labels from the beginning of both alphabets. Big size
semigroups and graphs can be obtained by help of these programs.

An important veri�cation tool of the package is the possibility to study both
transition graph and semigroup of an automaton. The program written in C
�nds syntactic semigroup from the transition graph of the automaton.

Maximal size of semigroups we consider on standard PC was about some
thousands elements. Maximal size of considered graphs was about some hundreds
nodes. The program used in such case memory on hard disc and works some
minutes.

References

1. D. Beauquier, J.E. Pin, Factors of words, Lect. Notes in Comp. Sci., 372(1989),
63-79.

2. J.A. Brzozowski, I. Simon, Characterizations of locally testable events, Discrete
Math. 4(1973), 243-271.

3. P. Caron, LANGAGE: A Maple package for automaton characterization of regular
languages, Springer, Lect. Notes in Comp. Sci., 1436(1998), 46-55.

4. P. Caron, Families of locally testable languages, Theoret. Comput. Sci., 242(2000),
361-376.

5. J.M. Camparnaud, G. Hansel, Automate, a computing package for automata and
�nite semigroups, J. of Symbolic Comput., 12(1991), 197-220.

6. G. Cousineau, J.F. Perrot, J.M. Ri�et, APL programs for direct computation of a
�nite semigroup, APL Congress 73, Amsterdam, North Holl. Publ., (1973) 67-74.

7. V.Froidure,J.-E. Pin, Algorithms for computing �nite semigroups. F. Cucker and
M. Shub eds., Foundations of Comp. Math. (1997), 112-126.

8. P. Garcia, Jose Ruiz, Right and left locally testable languages, Theoret. Comput.

Sci., 246(2000), 253-264.
9. S. Kim, R. McNaughton, R. McCloskey, A polynomial time algorithm for the local

testability problem of deterministic �nite automata, IEEE Trans. Comput., N10,
40(1991) 1087-1093.

10. S. Kim, R. McNaughton, Computing the order of a locally testable automaton,
Lect. Notes in Comp. Sci., 560(1991) 186-211.

11. R. K�onig, Reduction algorithm for some classes of aperiodic monoids, R.A.I.R.O.
Theor.Inform., 19, 3(1985), 233-260.

12. E. Leiss, Regpack, an interactive package for regular languages and �nite automata,
Research report CS-77-32, Univ. of Waterloo, 1977.

13. O. Matz, A. Miller, A. Pottho�, W. Thomas, E.Valkema, Report on the program
AMoRE, Inst. inf. und pract. math., Christian-Albrecht Univ. Kiel, 1995.

14. R. McNaughton, Algebraic decision procedure for local testability, Math. Syst.
Theory, 8(1974), 60-76.

15. R. McNaughton, S. Papert, Counter-free automata, M.I.T. Press Mass., (1971).
16. A. Okhotin, Whale Calf, a parser generator for conjunctive grammars. 7-th Int.

Conf. on Impl. and Appl. of Automata, CIAA2002, Tours, 2002, 211-216.
17. D. Raymond, D. Wood, Grail, a C++ library for automata and expressions, J. of

Symb. Comp., 17(1994) 341-350.
18. I. Simon, Piecewise testable events, Lect. Notes in Comp. Sci., 33(1975), 214-222.
19. J. Stern, Complexity of some problems from the theory of automata. Inf. and

Control, 66(1985), 163-176.
20. K. Sutner, Finite State Mashines and Syntactic Semigroups, The Mathematica J.,

2(1991), 78-87.
21. A.N. Trahtman, The varieties of testable semigroups. Semigroup Forum, 27, (1983),

309-318.
22. A.N. Trahtman, A polynomial time algorithm for local testability and its level. Int.

J. of Algebra and Comp., vol. 9, 1(1998), 31-39.
23. A.N. Trahtman, Identities of locally testable semigroups. Comm. in Algebra, v. 27,

11(1999), 5405-5412.
24. A.N. Trahtman, Algorithms �nding the order of local testability of deterministic

�nite automaton and estimation of the order, Th. Comp. Sci., 235(2000), 183-204.

25. A.N. Trahtman, Piecewise and local threshold testability of DFA. Lect. Notes in
Comp. Sci., 2138(2001), 347-358.

26. A.N. Trahtman, An algorithm to verify local threshold testability of deterministic
�nite automata. Lect. Notes in Comp. Sci., 2214(2001), 164-173.

27. B.W. Watson, The design and implementation of the FIRE Engine: A C++ toolkit
for Finite Automata and Regular Expressions, Comp. Sci. Rep. 94722, Endhoven
Univ. of Techn. 1994.

