
Processing Queries with Metrical Constraints

in XML based IR Systems

Shmuel T. Klein

Department of Computer Science

Bar Ilan University, Ramat-Gan 52900, Israel

Tel: (972–3) 531 8865 Fax: (972–3) 736 0498

tomi@cs.biu.ac.il

Abstract: XML documents combine features from classical IR systems allowing free

text, with explicit structures as in databases. Many query languages have been specially

designed for IR applications on XML documents. This work concentrates on a special type

of language for which the problem of processing queries including metrical constraints is

investigated. The main question is how to define the distance between terms in different

locations of the XML tree in an intuitively justifiable way, without jeopardizing the ability

to get good retrieval results in terms of recall and precision. A new definition is given and

its usefulness is shown on several examples from the INEX collection.

1. Introduction and Background

The eXtensible Markup Language (XML) [20] is increasingly gaining importance as a stan-

dard way of disseminating information that may on the one hand be highly structured,

but on the other, include long stretches of free text. Classical Information Retrieval (IR)

systems have been used to process free text efficiently, whereas Database (DB) systems

and special query languages were built to deal with structured data. There is an obvi-

ous need for the development of advanced tools striving to unify these approaches, and

research on the connection between XML and IR has been flourishing lately: the ACM

Special Interest Group on Information Retrieval (SIGIR) held workshops on the topic in

its annual conferences in 2000, 2002 and 2004, JASIST published a special issue [16] and

– 1 –

the INitiative for the Evaluation of XML retrieval (INEX) convenes annually since 2002,

bringing together some forty international research groups [10, 11].

XML is a markup language in which text may be enclosed by start and end tags for

markup, the tag name providing some information on the content enclosed between the

corresponding tags. The tagging may be nested as, for example, in <date> <day> 20

</day> <month> March </month> <year> 2004 </year> </date>. One may also assign

attributes to the start tags of elements, e.g., <date style="YYMMDD"> 040320 </date>.

The nesting induces a tree structure and we shall refer interchangeably to an XML file and

its corresponding XML tree. As example, refer to the file below in Figure 1(a) and the

corresponding tree in Figure 1(c). The structural information in Figure 1(b) is explained

below in the section on data structures.

XML documents can be viewed as plausible extensions of entities dealt with by two

quite different research communities: IR experts would refer to an XML file as if it were a

regular textual document, onto which some hierarchical structure has been superimposed

by means of special tags that can be nested; the DB approach would be to consider an

XML collection as a database in which some fields are not limited to contain certain values,

but may hold free text.

Accordingly, there are two schools regarding XML search engines and query languages:

IR queries express some — often vague — information need and are formulated with the

help of keywords and possibly some Boolean operators. Since IR is an intrinsically fuzzy

process, not all the retrieved items are necessarily relevant, nor can one be assured that all

the relevant items are indeed retrieved, hence the definition of performance measures pre-

cision and recall , respectively. In the case of XML, some of the information is conveyed by

the structure of the data rather than by the data itself, which led the INEX participants to

partition their test topics into two classes: content-only queries and content-and-structure

queries. Researchers in databases, on the other hand, deal with much more focused and

well defined queries, using query languages that are in fact sophisticated programming

languages and are able to describe precisely what is being looked for.

There have been several attempts to adapt DB oriented XML query languages to an

IR environment [9, 5, 22]. The range of proposed languages and corresponding processing

– 2 –

algorithms covers from the simplest that could possibly work [15], over models for ranking

flat text queries in XML [14], to queries that refine the granularity of the retrieved items

[13] and up to an extreme model in which every single character can be retrieved [12].

One of the main problems is that an IR user has generally little knowledge of the exact

structure of the texts that are processed. The queries should therefore be able to refer

to information regardless of whether it appears explicitly as text or is implied by tags,

attributes or the structure of the XML tree.

Our main concern in this paper is the study of metrical constraints in an XML envi-

ronment. Specific limitations on the distances between keywords can indeed be a powerful

tool to enhance queries, which may improve both recall and precision. It is, however, not

always straightforward to define the distance between two terms in a given XML text,

because the linear flow may me disrupted by the presence of XML commands in brackets,

as well as by hierarchical nesting.

A preliminary investigation has been carried out in [7], which dealt with information

retrieval in the presence of annotations . These annotations may be short references to

other texts, various types of footnotes, or commentaries written by the same or a different

author, like annotations to Alice in Wonderland and the like. Similar applications could

apply to hypertext environments (see, e.g., [8]). We now wish to extend this work to the

more general XML style, which differs essentially from the above. The main divergences

are:

• when considering a main text with its annotations, the latter are considered of some-

what inferior status, whereas in an XML file, all parts are judged a priori of similar

importance, regardless of their locations within the hierarchical structure;

• an annotated text consists of only two layers: the main text and the subordinate

annotations, even though these may be of different type and nature, and are even

allowed to refer to the same point in the main text. Nested annotations were not

considered. On the other hand, XML supports nesting in a natural way and induces

a multi-layered tree structure.

One can, of course, circumvent the whole problem by restricting queries to look just

– 3 –

for the co-occurrence of certain keywords within the same document. This is probably the

approach of most users and for most search engines. Nevertheless, more sophisticated users

would try to improve the performance of their IR systems by submitting more involved

queries, which is why metrical constraints have to be defined precisely.

The example in Figure 1(a) should clarify the above. Consider a part of an XML

file (from http://www.cs.wisc.edu/niagara/data/edmunds/), and suppose we are in-

terested in Japanese cars with unlimited rust warranty . Using the italicized terms as

keywords with appropriate metrical constraints would retrieve the above passage if we

consider it as plain text, ignoring all the brackets, but it would probably retrieve many

more that are not relevant, thereby affecting precision. On the other hand, by considering

each level independently and not allowing relationships between terms in different loca-

tions in the tree, even this passage could be skipped, lowering recall. The problem here is

that XML files have a tendency to partition and label even text portions most of the users

would accept as being closely related in a free text. In our example, the keywords appear

on different levels, in different branches, and some even in the bracketed tags themselves.

There is thus a need to define distances across the possible locations in an XML tree, as

has been done in [21] in an application to ranking. Our approach concentrates on the

Boolean retrieval process itself.

2. Formal definition of the problem

XML documents are generally processed using specially designed languages, like XPath 1.0

[17], XPath 2.0 and XQuery 1.0 [18], which have been suggested by the W3C, presenting

sophisticated rules to select specific nodes in the tree. We shall, however, adopt a more IR

based approach, and henceforth deal with queries of the following type: a query consists

of m keywords and m− 1 binary distance constraints, as in

A1 [l1 : u1] A2 [l2 : u2] · · · Am−1 [lm−1 : um−1] Am. (1)

This is a conjunctive query, requiring all the keywords Ai to occur within the given metrical

constraints specified by li, ui, which are (positive or negative) integers satisfying li ≤ ui

for 1 ≤ i < m, with the couple [li : ui] imposing a lower and upper limit on the distance

– 4 –

<cars> . . .

<class>Sport Utility</class>

<bodystyle>Wagon</bodystyle>

<drivetype>RWD</drivetype>

<buildlocation>Tahara, Japan</buildlocation>

<whatsnew>Base models have been killed, leaving Limited

and SR5 trim levels equipped with a standard automatic

transmission, Vehicle Skid Control (VSC), traction control

and ABS with electronic brake force distribution and brake

assist. All 4Runners have power door locks this year, as well

as . . . </whatsnew> . . .

<warranty>

<basic><years>3</years><miles>36,000</miles></basic>

<drivetrain><years>5</years>

<miles>60,000</miles></drivetrain>

<roadside><years></years><miles></miles></roadside>

<rust><years>5</years><miles>Unlimited</miles></rust>

</warranty> . . .

</cars>

(a) The text itself

0 <cars>

1 <class>

1 <bodystyle>

1 <drivetype>

1 <buildlocation>

1 <whatsnew>

1 <warranty>

2 <basic>

3 <years>

3 <miles>

2 <drivetrain>

3 <years>

3 <miles>

2 <roadside>

3 <years>

3 <miles>

2 <rust>

3 <years>

3 <miles>

(b) Tree structure

<miles>

<buildlocation> <whatsnew> <warranty><class> <bodystyle> <drivetype>

<basic> <drivetrain> <roadside> <rust>

<years> <years> <miles> <years> <miles> <years> <miles>

<cars>

(c) XML tree

Figure 1: Example of a part of an XML file

– 5 –

from Ai to Ai+1. Negative distance means that Ai+1 may appear before Ai in the text.

The distance is measured in words.

Such a query language is used for over thirty years at the Responsa Retrieval Project

[6]. Note that similarly to DB queries, the metrical constraints allow a precise description

of the required expressions. The fuzziness of the IR approach is deferred here to user

feedback: if the number of retrieved items is too large or too small or the items themselves

are not satisfactory, the user can broaden or restrict the query iteratively by changing the

constraints and/or the keywords.

In a more general setting, one could also consider extended queries, consisting of several

disjuncts, each having a form similar to (1). The requested set of locations to be retrieved

is then simply the union of the sets of locations to be retrieved for each of the disjuncts.

We may therefore restrict our attention to queries of the form (1).

In its simplest form, the keyword Ai is a single word or a (usually very small) set of

words given explicitly by the user. In more complex cases a keyword Ai will represent a set

of words Ai =
⋃ni

j=1 Aij, all of which are considered synonymous in the context of the given

query. For example, a variable-length-don’t-care-character ∗ can be used, allowing the use

of prefix, suffix and infix truncation, or one could use a thesaurus (month representing

January, February, etc.), or some morphological processing (do representing does, did,

done, etc.).

For every word W , let C(W) be the ordered list of the coordinates of all its occurrences

in the text. The problem of processing a query of the form (1) consists then, in its most

general form, of finding all the m-tuples (a1, . . . , am) of coordinates satisfying

∀i ∈ {1, . . . , m} ∃j ∈ {1, . . . , ni} with ai ∈ C(Aij)

and

li ≤ d(ai, ai+1) ≤ ui for 1 ≤ i < m,

where d(x, y) denotes the distance in words from x to y, i.e., if I(x) denotes the index of

the word x in the sentence, then

d(x, y) =







I(y)− I(x) if x and y are in the same sentence

∞ otherwise.

– 6 –

Every m-tuple satisfying these constraints will be retrieved and the corresponding locations

in the text are presented to the user [3]. Our problem is to extend these definitions to

an XML environment. For simplicity of exposition, we shall ignore attributes in XML

nodes and refer to simple XML trees in which each node corresponds to one bracketed tag

and may contain a sequence of items, each of which being either a word or a pointer to a

child node in the tree. For example, the root of the tree in Figure 1(c) corresponds to the

sub-part of the file in Figure 1(a) enclosed between the tags <cars> and </cars>. For an

example in which a node may include both words and pointers, refer to Figure 3(b) below.

The following example shows how users can utilize the metrical constraints to help

them retrieve relevant data, in spite of having no information on the distance between

their chosen keywords in the various occurrences in the text. Consider a query about

solving some differential equations, formulated as:

solv* [-5:9] differential [1:1] equation*

The constraint [1:1] between the last two term means that they ought to appear consec-

utively, according to our belief that differential equation is a widespread phrase that

rarely contains additional words. On the other hand, the distance between solv* (stand-

ing for solve, solving, solved, etc.) and differential could be larger, as a text may

contain a phrase like solving these differential equations, or even solving this

well known set of difficult non linear differential equations. One can obvi-

ously come up with even longer and still relevant expressions, but with increasing distance,

the occurrence of such phrases becomes very unlikely. Choosing the distance 9 as limit re-

flects a certain tradeoff depending on our knowledge (or guess) about what might appear in

the text. The negative distance li = −5 means that the term solv* may in fact occur after

differential, but that in this case it should be closer. This should capture occurrences of

phrases like differential equations solved by. . . or differential equations that

can be solved by. . ., etc. Again, larger distances are certainly possible, and the query

expresses our assertion that phrases with larger distances should not be retrieved. If one

wishes to improve recall, the distances should be increased, but this will generally come

at the price of reduced precision, and vice versa.

– 7 –

3. Possible solutions

For the special case of annotations, three approaches are possible:

1. they can be ignored, that is, marked as non-retrievable text;

2. they can be embedded as regular text;

3. they can be treated as kind of special text.

While the first possibility may be plausible for annotations due to their lower priority

and the general assumption that only a small part of the documents appear in annotations,

this is not an alternative in an XML environment. For the example in Figure 1, it would

mean that all the subtrees would be ignored, or at least all the subtrees of depth more

than 1. Thus all the details about the warranties (which kind, for how long or for how

many miles) would be lost. This could badly affect recall.

The second option is equivalent to a linearization of the XML file, which implies that

the information conveyed by the hierarchical structure is lost. All the words in the file

are taken into account, so no information should be skipped, but many irrelevant passages

will now be retrieved, lowering precision. Examples for this second option will be given

below.

We are thus left with the third alternative, which, in the XML case, would mean that

we need data structures and processing tools to permit standard full-text retrieval in spite

of the presence of XML markers. In particular, proximity searches should be processed

correctly, i.e., the numbering of the words in each layer should not be altered by the

appearance of a sub-branch of the XML tree.

Consider, for example, the following sentence and its corresponding XML tree in Fig-

ure 2:

a1 a2 a3 〈xxx〉 b1 b2 〈yyy〉 c1 c2 〈/yyy〉 b3 〈/xxx〉 a4 a5. (2)

the distance between ai and aj should be j−i, without taking the subtree 〈xxx〉 . . . 〈/xxx〉

into account. However, in a certain sense, b1 also follows immediately the term a3, and

– 8 –

a1 a2 a3

b1 b2 b3

c1 c2

<xxx>

<yyy>

a4 a5

Figure 2: XML tree of the example sentence labeled (2)

similarly c1 should be considered as following b2 at distance 1, and also a3 at distance 3.

This implies several ambiguities in the required internal relative numbering of the terms,

which can only be solved by means of some additional tags that have to be adjoined to

each coordinate in the postings list.

It should therefore be decided how to define the distance between terms belonging

to different layers of the XML tree. The problem is, that our intuitive grasp of the

relationships between such terms does not always suggest symmetrical decisions. While

most users would accept in the example in (2) defining b1 to be an immediate successor of

a3, would it be the same when trying to define the distance from b3 to a4? More generally,

should we define a distance between words x and y, when y appears after x but in a

higher layer than x? Should this distance then depend on the length of the path from

their lowest common ancestor, where the length should be considered both in terms of

number of words and in terms of number of layers? We shall advocate positive answers

to some of these questions and suggest a generalized definition of the distance function,

which is both intuitively plausible and mathematically consistent in a sense to be specified

below.

In particular, we may wish to define a distance from a term x to any other belonging

to a subtree rooted at the node to which x belongs, but restrict upward pointers, as in

the example, from c2 to a5. Obviously, such definitions require additional information

to be stored in each of the coordinates in the inverted files build upon the XML data.

– 9 –

This information must in effect encode the exact position of each term in the hierarchical

structure, which may create a serious storage problem. One should thus also deal with

practical implementation issues, like compressing such extended concordances efficiently

[2].

3.1 Extending the data structures

There are several possibilities for choosing the appropriate data structures to allow efficient

processing of the queries of an IR system, depending on the size of the underlying database.

For small systems, brute force pattern matching is often fast enough. One would then first

locate the different keywords in the query, and then check if the metrical constraints are

satisfied. For an XML environment, there is an additional need to verify if special tags in

brackets appear between the located keywords.

In the most general case, inverted files are used, generally coupled with a ranking

mechanism based on the vector space model. First, the dictionary of all the different

terms in the text is formed, then the concordance is built, which stores, for each term, the

lexicographically sorted coordinates of all its occurrences. In a typical large full-text IR

system, a coordinate is usually given by some k-tuple, such as (d, p, s, w), where d could

be the index of the document of the given occurrence, p the index of the paragraph within

the documents, s the number of sentence within the paragraph and w the number of word

in the sentence. Other hierarchies are also possible, in particular, an XML file has already

an underlying tree structure. A coordinate for a term in an XML file would then consist

of a sequence of integers giving the index of the given node in the tree, followed by the

index of the word within the text stored in the given node. For more details on the system

architecture, as well as possible weighting schemes, see, e.g., [1].

Consider for instance again the part of the XML file given in Figure 1. Like any tree,

the hierarchical structure can be described by listing the nodes in DFS order, giving for

each node its level and the corresponding tag. Figure 1(b) depicts this tree structure

for the XML file of Figure 1(a). Similarly to the Dewey classification scheme used in

Library systems, any node x can then be defined by a sequence of integers of the form

(k ; n1, . . . , nk), where k is the depth of x in the tree, (0 ;) represents the root of the tree,

– 10 –

and ni is the running index (starting to count from 1) of x as child of its parent, which is the

node defined by the sequence (i− 1 ; n1, . . . , ni−1). Thus the node labeled buildlocation

would be identified by (1 ; 4), and the sequence corresponding to the milage of the rust

warranty is (3 ; 6, 4, 2).

Any node in the tree can store free text, which could itself be indexed hierarchically as

described above. We shall however prefer here a flat representation, identifying each word

in the text by its running index w in the sequence of words, without taking sentences or

paragraphs into account, for the following reasons:

• Many textual entries in XML files are very short, and are in fact just a reformulation

of some tabular data in a more verbose form. The definition of sentences for such

data would be rather artificial and also wasteful from the storage point of view;

• Even for the larger textual passages, the partition into sentences is not always obvi-

ous, as relying only on punctuation signs may be misleading. To cite an example from

[7], should the phrase “Hello! I said to Mr. Jones.” really be parsed as consisting

of three sentences?

• A flat numbering will allow us below to define distances between elements at different

levels of the XML tree, a task which would otherwise require a considerable amount

of overhead storage.

The full coordinate of any word W in an XML file can thus be defined as having the

form

(k ; n1, . . . , nk ; w), (3)

where w is the running index of the word W within the node (k ; n1, . . . , nk). For example,

the coordinate of the word leaving appearing in the <whatsnew> node is (1 ; 5 ; 6), and

the coordinate of the term Unlimited is (3 ; 6, 4, 2 ; 1).

The Dewey numbering used above is not the only one possible for getting exact refer-

ences of every node of the XML tree, see [4] for a recent survey. In one of the other possible

schemes, each node is identified by a triplet (start, end, level), where start and end are the

indices of the given node in a preorder, respectively postorder, traversal of the XML tree,

– 11 –

a1 a2 a3

<a4> <a5>

b1 b2 c1

<A>

a5 a6

(a) XML tree of (4)

<p>

<fn>

<p>

<super>

*

<it>

101

105

104

102 103

... doomed to repeat them to be an antithesis! The has tried ...

Annals

Copy editor’s ... Greek philosophers

(b) Example from INEX

Figure 3: Examples of text in internal nodes

and level is the depth of the node in the tree. A recent alternative, called BIRD numbers,

yields even better properties [19]. In both schemes, ancestor-descendant relations are not

as obvious as for Dewey, but can be evaluated efficiently. On the other hand, their storage

requirements are lower than for the full hierarchical Dewey layout, but it has already been

noted in [2] that a list of hierarchical coordinates, though seeming wasteful at first sight,

might at times be more compressible than an equivalent list of more compact items. Our

proposal for defining the distance could in any case just as well be based on one of the

alternative numbering schemes, and we shall use Dewey order only for the sake of simpler

exposition.

Note that in the example in Figure 1, as well as in many common XML files, free text

is stored only in the leaves of the tree, which means that text and XML tags are not freely

intermixed. This implies that examples like that in Figure 3(a), corresponding to a text

of the form

〈A〉 a1 a2 a3 〈a4〉 b1 b2 〈/a4〉 a5 a6 〈a7〉 c1 〈/a7〉 〈/A〉, (4)

where the ai, bi and ci are single terms, do not comply with this standard, making much

of our discussion about the processing of metrical constraints across node boundaries

obsolete. It has, however, already be noted [1] that this is not a general rule, and there are

many counterexamples in the INEX collection, in particular in the presence of footnotes.

Figure 3(b) displays such an example from inex-1.4/xml/an/1995/a1003.xml. We shall

therefore stick to our more general settings, as they could be considered as a shorthand

– 12 –

way of writing in the case of empty leaves. For example, the text of the node labeled 〈A〉

of Figure 3(a) could be written in the more standard way as

〈A〉 〈a1〉〈/a1〉 〈a2〉〈/a2〉 〈a3〉〈/a3〉 〈a4〉 b1 b2 〈/a4〉 〈a5〉〈/a5〉 〈a6〉〈/a6〉 〈a7〉 c1 〈/a7〉 〈/A〉,

that is, each term a of free text within an internal node of the XML tree is considered as

representing an empty sub-branch 〈a〉〈/a〉.

3.2 Redefining the distance operator

To be consistent with the above discussion, the index of the term ai in the example sentence

labeled (4) should be i, that is, we count bracketed tags just as single words (and ignore

in this study the possibility of parameters and attributes that are adjoined to the tags, or

tags that consist of more than a single word). This is different of what we first suggested

when discussing the example sentence labeled (2). For example, if the node containing

the text of (4) is represented by (k ; n1, . . . , nk), then the coordinates of ai, for i /∈ {4, 7},

would be (k ; n1, . . . , nk ; i), the coordinates of bi would be (k + 1 ; n1, . . . , nk, 4 ; i), and

that of c1 would be (k + 1 ; n1, . . . , nk, 7 ; 1).

When defining the distance between two words C1 and C2, which has to be evaluated

as some function of their coordinates, the easiest would be to require both words to belong

to the same node of the XML tree, but that would be too restrictive. We wish to extend

this definition also to more general cases. For example, we could define the distance from

C1 to C2 also when:

1. the words belong to sibling nodes, i.e., the nodes they belong to have a common

parent node; this reflects our intuition that many texts wouldn’t have been disrupted

by tags and thereby forcefully (and often possibly unnecessarily) layered, had they

not appeared in an XML environment. In the example of Figure 3(a), we would

like to define a distance between bi and c1. This extension should be optional, and

controlled by a parameter L, to be defined below;

2. C1 belongs to a node which is an ancestor of the node C2 belongs to, unless the dif-

ference in levels between the two nodes is larger than some predetermined parameter

– 13 –

D. As additional constraint we require that C1 should precede, within its node x,

the tag B which is the root within x of the subtree to which C2 belongs. The reason

for this restriction is that if C1 follows B, its distance to B would be negative, so it

is not clear how to define the distance to an element in a lower level: partitioning

the path from C1 to C2 into parts and adding the partial distances would not be

consistent, in the sense described below, in the presence of negative distances.

In all other cases, the distance should not be defined, or equivalently, set to infinity. Note

that this definition is not always symmetrical, and while d(x1, x2) = −d(x2, x1) if x1 and

x2 belong to the same level, it does not hold in the other cases.

x

y

(a) for sibling nodes (b) for nodes on different levels

Figure 4: Schematic representation of coordinates for which a distance is defined

Figure 4 is a schematic representation of the above definitions. The double-sided

boldface arrow in Figure 4(a) represents the distance between words belonging to sibling

nodes and corresponds to the first case above. For the second case, the one-sided arrow

in Figure 4(b) represents the distance from a node x to a node y, which belongs to a

lower level in the tree. The additional constraint implies that such arrows will always go

top-down, left to right.

As example, refer to the trees in Figure 3. For the first case, we would like to define

both distances d(b2, c1) and d(c1, b2) in the tree of Figure 3(a). For the second case, in

Figure 3(b), the distance from the word antithesis in node 101 to the word Annals in node

103 should be defined, but not the distance from the same word antithesis to the word Greek

– 14 –

in node 104; indeed, the black dot between the words them and to in node 101, which is the

tag acting as root of the subtree to which the term Greek belongs, precedes, rather than

follows, the term antithesis and thus violates the constraint.

Distance function d(C1 = (k1 ; n1, . . . , nk1
; w1), C2 = (k2 ; m1, . . . , mk2

; w2))

d(C1, C2) ←− ∞ /* set default */

if k1 = k2 = k then /* nodes on same level */

if ni = mi for all 0 ≤ i ≤ k − L then

if L = 0 then

d(C1, C2) ←− w2 − w1

else if L = 1 /* siblings allowed */

if nk = mk then

d(C1, C2) ←− w2 − w1

else if nk < mk then

d(C1, C2) ←− ℓ(n1, . . . , nk)− w1 +
mk−1
∑

j=nk+1

ℓ(n1, . . . , nk−1, j) + w2

else /* here mk < nk */

d(C1, C2) ←− −
(

ℓ(m1, . . . , mk)− w2 +
nk−1
∑

j=mk+1

ℓ(m1, . . . , mk−1, j) + w1

)

else if k1 < k2 and k1 + D ≥ k2 then

if ni = mi for all 0 ≤ i ≤ k1 and w1 < mk1+1 then

d(C1, C2) ←− mk1+1 − w1 +
k2∑

t=k1+2

mt + w2

Figure 5: Distance definition function

The parameter L indicates the number of levels allowed to the lowest common ancestor

of the two coordinates, which means in our case that either L = 0 (same node required) or

L = 1 (could be in sibling nodes), but L could also be chosen larger for certain applications,

in particular when the underlying database is known to have a deep structure with many

nesting levels. The parameter D controls the depth of what we still consider to be logically

connected, with D = 0 prohibiting any level differences. The definition of a query should

therefore be amended by allowing it to be preceded by an optional pair (L, D). If omitted,

– 15 –

some reasonable default could be assumed, e.g., (1, 2).

Since the definition of the distance may also depend on the length of the text within a

given node, we introduce the notation ℓ(n1, . . . , nk) as representing the number of words

(text and tags) stored in the node (k ; n1, . . . , nk). In particular, if in node

(k − 1 ; n1, . . . , nk−1), the ith element is a word and not a bracketed tag, we define

ℓ(n1, . . . , nk−1, i) = 1. The formal definition of the distance operator is then given in

Figure 5. We assume two coordinates are given, C1 = (k1 ; n1, . . . , nk1
; w1) and C2 =

(k2 ; m1, . . . , mk2
; w2). We deal here only with the cases L ≤ 1, as suggested above, but

the definition could be extended, for certain applications, also to L > 1, which would

mean that a distance should not only be defined for siblings (L = 1), but also for cousins

(L = 2), second degree cousins (L = 3), etc.

The definition, though, would get increasingly complex. For example, for L = 2, the

distance from C1 to C2 in the case when C1 precedes C2, would be given by:

d(C1, C1) ←− ℓ(n1, . . . , nk) − w1

︸ ︷︷ ︸

A

+
ℓ(n1,...,nk−1)∑

j=nk+1

ℓ(n1, . . . , nk−1, j)

︸ ︷︷ ︸

B

+
mk−1−1

∑

r=nk−1+1

ℓ(n1,...,nk−2,r)
∑

j=1

ℓ(n1, . . . , nk−2, r, j)

︸ ︷︷ ︸

C

+
mk−1
∑

j=1

ℓ(n1, . . . , nk−2, mk−1, j)

︸ ︷︷ ︸

D

+ w2

︸︷︷︸

E

.

Figure 6 brings a typical example of a portion of an XML tree on which the distance

between the coordinates C1 and C2 (symbolized by the black dots) is partitioned into the

parts of the above formula which are labeled accordingly.

Note that the defined distance is not a metric in the mathematical sense: it is not

always positive, it is not symmetric and not even anti-symmetric, as d(x, y) might be

finite while d(y, x) = ∞. Moreover, the triangle inequality does not necessarily hold, as

can be seen in the following example referring to Figure 2: using the parameter D = 1

– 16 –

B C D EA

k − 1

k − 2

k

Figure 6: Example of a part of an XML tree to visualize the distance between

coordinates when L = 2

(i.e., allowing only adjacent levels),

∞ = d(a3, c2) > d(a3, b1) + d(b1, c2) = 2 + 4.

There is, nevertheless, some consistency rule obeyed by the distance d, namely that if

d(x, y) is finite, then for any elements z and t on the path from x to y, d(z, t) must be

smaller. More formally, if C is the set of coordinates, then

∀x, y, z, t ∈ C x � z ≺ t � y −→ d(z, t) ≤ d(x, y),

with equality only if x = z and t = y. Here x ≺ y denotes that coordinate x precedes

coordinate y in the sense defined above, that is, either x and y belong to nodes on the

same level of the XML tree and x has a (lexicographically) lower index, or y belongs to a

node that is a descendant of the node of x, and x precedes in its node the pointer to the

subbranch to which y belongs; x � y is a shortcut for x ≺ y ∨ x = y.

3.3 Implementation issues

A concordance consisting of coordinates of the form described in the displayed formula (3)

creates a serious storage problem. This can be alleviated by indexing beforehand the nodes

of the XML tree, and referring in the coordinate to the index rather than the hierarchical

sequence of numbers. For even greater storage savings, the pointers to the nodes of the tree

could be Huffman encoded, according to the frequencies of reference in the concordance

of the various nodes of the tree.

There is, however, a problem with such a compression scheme, as one looses the in-

formation about the sibling and ancestor-descendent relationships that are needed in the

– 17 –

distance evaluation. This can be solved, by adding as additional data structure, some

directed graphs Gk = (V, Ek) to the system. The vertices V are the nodes of the XML

tree, and (x, y) ∈ Ek if and only if x and y are either siblings (have a common parent

node), or there is a path of length ≤ k from x to y in the XML tree. Thus for k = 1, one

gets that G1 is the underlying tree structure of the XML file itself to which edges between

sibling nodes have been added, and the graphs Gk can be useful to process queries with

D = k. Figure 7 shows the graphs G1, G2 and G3 corresponding to the INEX example

of Figure 3(b). For example, the distance from the word doomed in node 101 to the word

Greek in node 104 should be defined for D ≥ 2, because there is an edge from node 101 to

node 104 in G2 and G3, but not for D = 1, because this edge is lacking for G1.

105

104

102 103

105

104

102 103

105

104

102 103

101 101 101

G1 G2 G3

Figure 7: The graphs Gk with k ≤ 3 for the XML tree of Figure 3(b)

Another important aspect is taking advantage of the information stored in the XML

metadata. The bracketed commands not only induce the tree structure, but also label the

nodes of this tree with tags. One should also consider defining distances between words

in different nodes of the tree, if both are labeled with the same (or even related?) tags,

and even if these nodes appear in different locations of the tree that are not connected in

an ancestor-descendent relationship. Moreover, the tags themselves often convey relevant

information and should therefore also be taken into consideration when the indices of the

words are assigned. Thus it will not suffice to store, in each coordinate of the index, an

encoding of its hierarchical position, but we need in addition also some pointer to the

– 18 –

corresponding tag.

Adding a special tag-field to each coordinate is probably too expensive and could be

an overkill. One should rather define a set of preset “important” tags, or maybe select all

those that appear more often than some chosen threshold, and build for each tag in that

set a list of pointers to its occurrences in the various nodes of the tree. Conversely, each

node corresponding to a tag of that selected list should have a pointer to the tag. Using

these pointers and the graph G we are able to reconstruct, for each coordinate in the XML

tree, the sequence of tags leading to it, which allows us to formulate sophisticated queries.

4. Examples

Our treatment has been mainly theoretical in nature. To get some examples on real

data, we ran several sample queries on the INEX database (inex-1.4/xml/) of more than

600 MB of raw XML data, and compared the retrieval performance of various levels of

sophistication of the query language.

In the first approach, the XML file is considered as flat text, the tags just being

considered as additional terms. The hierarchical structure of the file, with its implicit

information, is lost, but treating metrical constraints is easy, though probably not always

reflecting the user’s expectations. Indeed, if a phrase is disrupted by a sub-branch of the

XML tree, then terms that usually appear together may find themselves at unforeseeable

distance apart. For example, the distance between the terms them and to in Figure 3(b)

would be at least 13! The second retrieval method restricts distances to terms belonging

to a same node of the XML tree. This could be justified if the nodes contain large text

portions, but for deep trees with little text within the nodes, it might be too restrictive.

The third approach is the hybrid one described in this work and formally defined in

Figure 5.

It should be emphasized that the following examples are by no means an attempt of a

statistical validation of the suggested approach. For such a validation, the required sample

ought to be large, and one would need a set of “random” or “typical” queries, which not

only are hard to define, but would probably not be interesting from the retrieval point

– 19 –

of view. For the alternative of using some well-known large enough test set, like the

INEX queries, one would need some automatic tool translating its queries into a set of

corresponding queries including metrical constraints between some of their keywords as

advocated in this paper. However, no such automatic tool could exist, as the proper

formulation of the query — choosing the best keywords, the correct distances and how to

combine all these together — is in itself the major parameter by which recall and precision

can be controlled in the presence of metrical constraints. Typically, a user would start with

some rough approximation of what she or he believes is a good query and then gradually

refine it, based on the retrieval results.

The problem is that the performance of classical IR queries and that of queries with

metrical constraints are not directly comparable, because the basic assumptions are dif-

ferent. In the former setting, the information sought by the user is often only vaguely

described, and it is the duty of the retrieval system to appropriately extend the set of

keywords, and to select, generally by means of some ranking scheme, the part of the set

of text passages satisfying the request that will finally be presented. Usually, not all the

retrieved items are relevant, nor are all relevant items retrieved, so precision and recall are

smaller than 1, and sometimes even much smaller. When distance operators are added to

the query language, one gets a much more precise description of the information needs of

the user, and the system can be programmed to retrieve all the text locations satisfying

the constraints, and only those. One can then define relevancy as obeying precisely the

rules set by the query, so that one would always get a perfect score of 1 for both precision

and recall.

Because of these different settings, we shall not try to give a quantitative estimate by

how much the suggested approach would improve the performance on some given database

and corresponding set of queries; the results would not be reliable even for the given set,

and moreover, would say nothing about other queries on other XML files with different

global structure. We rather bring a few real life examples which support the thesis about

the usefulness of the suggested approach.

To compare the three approaches mentioned above, we used the following semi-automated

process for each given query:

– 20 –

1. Create (manually) a corresponding Boolean query, choosing the keywords and com-

bining them by and and or operators;

2. retrieve (automatically) all the paragraphs of the collection satisfying the Boolean

query — denote the text formed by the union of these paragraphs by S;

3. partition (manually) the set of retrieved items into relevant and non-relevant ones,

and denote the corresponding subsets by SR and SNR;

4. choose (manually and independently of the previous steps) the distance constraints;

5. run the new queries on the text S to obtain the set R of retrieved items (there is a

different set R for each of the three approaches);

6. define precision as
|R ∩ SR|
|R|

and recall as
|R ∩ SR|
|SR|

.

The first two examples are INEX topics, known as topic number 31: Computational

Biology , and topic number 35: Medical association rule mining . As additional topics we

chose Archival data at NASA, and Hidden Markov Models in speech processing . Bear

in mind that the title of a query seldom captures the exact definition of the relevant

documents a user might wish to retrieve, and that with a query language as the one we

deal with, it is the responsibility of the user to formulate a precise query, playing with

the metrical constraints and using appropriate search terms, so as to get precision and

recall as high as possible. The four topics above have been translated respectively into the

following queries, using for all the default (L, D) = (1, 2):

ioinformatic [-20:20] comput*

medical [-30:30] mining

(Archiv* ∨ archiv*) [-25:25] (nasa ∨ NASA)

(Speech ∨ speech ∨ *coustic*) [-15:15] (hidden ∨ Hidden ∨ HMM)

Note the use of the wild-card character * to get grammatical variants. For a long

enough term like Bioinformatics, it could also be used to get both lower and upper

case initials, but for the term hidden, these had to be given explicitly using the ∨ (OR)

operator, since *idden could also have matched non-relevant words like forbidden. Note

– 21 –

also that for these queries, the order of appearance of the keywords in the text was not

important, hence the use of symmetric distance constraints [li : ui] with li = −ui; this

is not always so, and in other queries, e.g., li could be 1, forcing the second keyword to

appear after the first.

query flat file same node new distance

recall precision recall precision recall precision

comput. biology 0.83 0.950 0.78 0.947 0.91 0.956

medical mining 0.50 0.235 0.50 0.235 0.75 0.261

archive Nasa 0.73 0.733 0.60 0.692 0.80 0.750

speech HMM 0.86 0.980 0.71 0.987 0.89 0.990

Table 1: Comparative table of retrieval performance

Table 1 summarizes the retrieval performance for each of the three models of distance

definition in terms of recall and precision as defined in step 6 above. As this definition is

not equivalent to that widely used for classical IR queries, it should not be surprising that

almost all the values in the table are rather high, whereas published INEX experiments

report quite low values. One can see that the new definition improves, on those examples,

on both recall and precision over the other two simpler models, though only slightly. The

reason for the small improvement may lie in the nature of the INEX database, which

consists mainly of scientific papers and is therefore quite homogeneous. The hierarchical

structures in INEX are generally not very deep, and since this exploits only a small part of

the potential power of the XML layout, the advantages of the proposed distance definition

over the previous ones may not appear to their full extent.

The reason for the low precision in the query on medical mining is that many retrieved

passages spoke about researchers and their interest fields, and these often included both

data mining and topics related to medicine, but were not about medical mining itself. The

query on computational biology, on the other hand, had high precision, as the appearance

of the keywords was almost always relevant. An example of a non-relevant occurrence

can be found in ex/2001/x6035.xml: . . .joined the Institute for Algorithms and Scientific

Computing at the German National Research Center for Information Technology as a

– 22 –

bioinformatics PhD student .

<bb>

“Hidden Neural Networks: A

<atl>

and Signal Processing (ICASSP−97),

<ti> <pdt>

<yr>

1997

. . .

Proc. Int’l Conf. Acoustics, Speech,
framework for (HMM/NN) Hybrids, ”

(a) Example from tp/2002/i0467.xml (retrieved)

<atl>

"Reference Model for an Open
Archival Information System";

<obi>

nost/isoas/ref_model.html
http://ssdoo.gsfc.nasa.gov/

<url>

<bb>

.

(b) Example from co/2001/r3024.xml (not retrieved)

Figure 8: Examples of relevant items with keywords in different nodes

Figure 8 shows two examples in which a relevant passage contains keywords (highlighted

in the figure) that appear in different nodes of the XML tree. In Figure 8(a) for the query

on speech and HMM, the keywords appear on the same level, but not as siblings in the

same node, and in Figure 8(b) for the query on NASA, the keywords not even appear on

the same level. According to our rules, the second item would not be retrieved, since the

nodes including the keywords, labeled <atl> and <url>, are neither siblings, nor is one a

descendant of the other. In an approach restricting the search to within a given node, even

the first item would clearly have been missed. The other extreme approach of ignoring

all structure would possibly catch these two occurrences, but miss many others, as the

distances between connected terms could be unreasonably increased by the appearance of

sub-branches of the XML tree. Moreover, this other approach would probably also retrieve

many more non-relevant items.

– 23 –

5. Conclusion

Files in XML format will become more widespread in the near future and our query

languages should be adapted to deal with more complex queries. In this study, we have

concentrated on metrical constraints, which are handled for long in classical full text IR

systems, and have tried to generalize them to the special structures induced by the XML

tree. The suggested method is more complicated, and thus consumes more time and space

than the simpler alternatives of restricting oneself to search within a given node on the

one hand, or ignoring the XML structure altogether on the other hand. The retrieval

performance in both recall and precision may be improved, so that the investment in

additional resources may be payed off.

References

[1] Anh V.N., Moffat A., Compression and an IR approach to XML retrieval, Proc.

first INEX Workshop (2002) 99–104.

[2] Choueka Y., Fraenkel A.S., Klein S.T., Compression of Concordances in

Full-Text Retrieval Systems, Proc. 11-th ACM-SIGIR Conf., Grenoble (1988) 597–

612.

[3] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved Techniques

for Processing Queries in Full-Text Systems, Proc. 10-th ACM-SIGIR Conf., New

Orleans (1987) 306–315.

[4] Gou G., Chirkova R., XML query processing: a survey, Technical report TR–

2005–22, North Carolina State University (2005).

[5] Cohen S., Kanza Y., Kogan Y., Nutt W., Sagiv Y., Serebrenik A.,

EquiX — A search and query language for XML, Journal of the American Society

for Information Science 53 (2002) 454–466.

– 24 –

[6] Fraenkel A.S., All about the Responsa Retrieval Project you always wanted to

know but were afraid to ask, Expanded Summary, Jurimetrics J. 16 (1976) 149–156.

[7] Fraenkel A.S., Klein S.T., Information retrieval from annotated texts, Journal

of the American Society for Information Science 50 (1999) 845–854.

[8] Frei H.P., Stieger D., The use of semantic links in Hypertext Information Re-

trieval, Information Processing & Management 31 (1995) 1–13.

[9] Fuhr N., Großjohann K., XIRQL: an XML query language based on Informa-

tion Retrieval concepts, ACM Trans. on Information Systems 22 (2004) 313–356.

[10] Fuhr N., Gövert N., Kazai G., Lalmas M., ed., Proc. first Workshop of the

INitiative for the Evaluation of XML Retrieval (INEX), Dec. 9–11, 2002, Schloss

Dagstuhl, http://qmir.dcs.qmul.ac.uk/inex/

[11] Fuhr N., Lalmas M., Malik S., ed., Proc. second Workshop of the INitiative

for the Evaluation of XML Retrieval (INEX), Dec. 15–17, 2003, Schloss Dagstuhl,

http://inex.is.informatik.uni-duisburg.de:2003/

[12] Geva S., Extreme file inversion, Proc. first INEX Workshop (2002) 155–161.

[13] Mass Y., Mandelbrod M., Retrieving the most relevant XML components, Proc.

second INEX Workshop (2003) 58–64.

[14] Ogilvie P., Callan J., Using language models for flat text queries in XML re-

trieval, Proc. first INEX Workshop (2002) 33–40.

[15] O’Keefe R.A., Trotman A., The simplest query language that could possibly

work, Proc. second INEX Workshop (2003) 117–124.

[16] Special Issue on XML and Information Retrieval, Journal of the American Society

for Information Science and Technology 53(6) (2002).

[17] World Wide Web Consortium, XML Path Language (XPath), Version 1.0,

W3C Recommendation 16 November 1999, http://www.w3.org/TR/xpath/.

– 25 –

[18] World Wide Web Consortium, XQuery 1.0 and XPath 2.0 Data Model, W3C

Working Draft, 29 October 2004, http://www.w3.org/TR/xpath-datamodel/.

[19] Weigel F., Schulz K.U., Meuss H., The BIRD numbering scheme for XML

and tree databases – Deciding and reconstructing tree relations using efficient arith-

metic operations, Proc. Third International XML Database Symposium, XSym–2005,

Trondheim, Norway, LNCS 3671, Springer Verlag (2005) 49–67.

[20] The XML industry portal, http://www.xml.org.

[21] Yoo S., An XML retrieval model based on structural proximities, Proc. first INEX

Workshop (2002) 125–132.

[22] Yu C., Qi H., Jagadish H.V., Integration of IR into an XML database, Proc.

first INEX Workshop (2002) 162–169.

– 26 –

