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T. RaitaComp. Sci. Dept.University of Turku20520 TurkuFinlandraita@euroni.cs.utu.�AbstractAn earlier paper developed a procedure for compressing concordances, assuming that allelements occurred independently. The models introduced in that paper are extended here totake the possibility of clustering into account. The concordance is conceptualized as a set ofbitmaps, in which the bit locations represent documents, and the 1-bits represent the occurrenceof given terms. Hidden Markov models (HMM) are used to describe the clustering of the 1-bits. However, for computational reasons, the HMM is approximated by traditional Markovmodels. A set of criteria is developed to constrain the allowable set of n-state models, and afull inventory is given for n � 4. Graph theoretic reduction and complementation operationsare de�ned among the various models, and are used to provide a structure relating the modelsstudied. Finally, the new methods were tested on the concordances of the English Bible and oftwo of the world's largest full-text retrieval system: the Tr�esor de la Langue Fran�caise and theResponsa Project.1. IntroductionWith increasing attention being given to the digital library|massive amounts of information, muchof it in textual format, stored and widely accessible by computer| data compression is assuming anew degree of importance. As noted before [16], e�ective compression of a text-based informationretrieval system (IRS) involves far more than compressing the text itself: it is often overlooked thatto be able to access and manipulate text, auxiliary data-structures must also be created and stored.Most large information retrieval systems depend on inverted �les for access to their information.In this approach, query processing does not directly involve the original text �les (in which keywords might be located using some pattern matching technique), but rather auxiliary dictionaryand concordance �les. The dictionary is a list of all the di�erent words appearing in the textand is usually ordered alphabetically. For each entry in the dictionary, there is a pointer into theconcordance, which lists each occurrence of the word. While the dictionary is only moderatelylarge, the exact size of a concordance depends on a number of parameters, such as the omissionor inclusion of the most frequent words (the so-called stop-words) and whether stemming is �rstdone | in our experiments, all words, as they appear in the text, are used. However, the size of anuncompressed concordance is generally of the same order of magnitude of that of the text itself.�Two of the authors (A.B. and S.T.K.) wish to acknowledge that the material in this paper is based upon researchsupported by the U.S. National Science Foundation under award number IRI-9307895, and by grant No. 92-00163from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel. T.R. acknowledges supportby the Academy of Finland under grant No. 18587. { 1 {



Compressing the concordance serves several purposes. Not only does it save space, but it alsosaves processing time by reducing the number of I/O operations needed to fetch parts of the con-cordance into main memory (see [16, 6, 25]). Thus, to distribute a functional, full-text IRS, con-sideration must be given how to store the concordance e�ciently. But concordance compressionhas theoretical interest as well. Current approaches to data compression tend to take a two stageapproach: �rst one models the source, de�ning the message set and the probability of each message;then one creates the code for each message [2]. The concordance of a full text information retrievalsystem is the ideal entity on which to test this approach. As a well structured component of the IRsystem, it would seem particularly susceptible to modeling.When choosing an appropriate compression scheme, we note that in a static IRS, compressionand decompression are not symmetrical tasks. Compression is done only once, while building thesystem, whereas decompression is needed during the processing of every query and directly a�ectsthe response time. One may thus use extensive and costly preprocessing for compression, providedreasonably fast decompression methods are possible. Moreover, in an IRS, while we compress full�les (text, concordance, etc.), we decompress only (though possibly many) short pieces on demand;these may be accessed at random by means of pointers to their exact locations. This limits thevalue of adaptive methods based on tables that systematically change from the beginning to theend of the �le.This paper is based on the following conceptualization of a concordance: every occurrence of aword in the database can be uniquely characterized by a sequence of numbers that gives its exactposition in the text. Typically, such a sequence would consist of the document number d, theparagraph number p (in the document), the sentence number s (in the paragraph) and the wordnumber w (in the sentence). This de�nes a hierarchy of four levels: to identify the location of aword, we need give only the quadruple (d; p; s; w), containing the coordinate of the occurrence. Theconcordance contains, for every word of the dictionary, the lexicographically ordered list of all itscoordinates in the text.In our implementation, we translate this model to an equivalent one, which we describe for asimpler two level hierarchy. In this represention, we indicate 1) the index of the next documentcontaining the word, 2) the number of times the word occurs in the document, followed by 3) thelist of word indices of the various occurrences:word1 : (d1; m1 ; w1;1; w1;2; : : : ; w1;m1)(d2; m2 ; w2;1; : : : ; w2;m2)� � �(dN ; mN ; wN;1; : : : ; wN;mN )word2 : � � �where di is the document number, mi the number of occurrences of the given word in the i-thdocument, and wi;j the index within di of the j-th occurrence of the word. To fully represent theconcordance, we must model each of the components of the coordinate, and develop compressionmethods appropriate for each entity.We see that the concordance can be a rather complicated data structure, especially if it permitshierarchical access to the database. But one or more components indicated above can usually beconceptualized as a bitmap (for example, the values indicating which documents a term appears in,or which paragraphs within a document contain a term), with auxiliary information indicating thenumber of terms in a unit of the hierarchy. Some of the global auxiliary information can be storedin the dictionary; other mechanisms may be needed for other.In this paper we shall focus on compressing those components of the concordance that canbe represented as bitmaps. Thus, when we refer to a concordance below, we are thinking of aset of bitmaps, each indicating, for example, the documents (or other textual units) in which aword occurs. Formally, each vector is the occurrence map of a given word W . Each bit positioncorresponds to one document, and the bit in position i is 1 if and only if the word W appears in{ 2 {



document i, i.e., there is at least one coordinate of W which has i in its d-�eld. In the sequel, weshall use the languages of bits or documents interchangeably.In order to encode the values of successive bits of the bitmap e�ciently, we must obtain a goodunderlying model for the bit-generation process. A variety of methods have been used [7, 24, 18, 25]to compress concordances. The model of [3] assumed that all documents are approximately of thesame size, that there is no between-document clustering of term occurrences, and that within a sin-gle document, words are independently distributed. On the basis of these assumptions, probabilitydistributions were derived for each term, describing the behavior of the variables comprising coordi-nates in the concordance. The probabilities corresponding to the actual coordinate values were thentransformed to bits by using arithmetic encoding, though Hu�man or Shannon-Fano codes couldhave been used as well.In this paper we generalize the independence models to incorporate a tendency of terms tocluster. This is a natural extension of the independence model, since textual data contains inherentdependencies. For example, if the documents of an Information Retrieval system are groupedby author or some other criterion, the d-values of many terms will tend to appear in clustersbecause of the speci�c style of the author, or because adjacent documents might treat similarsubjects. Similarly, term-occurrences will cluster within documents, reecting content variationsover a document.In the next part of this paper, we begin our study of various models of clustering by introducing aHidden Markov model (HMM) to represent bitmap generation. For computational reasons, we thenswitch to traditional Markov models which approximate the HMM. A set of criteria is developedin Section 2.3 to constrain the allowable set of n-state models, and a full inventory is given forn � 4. Graph oriented operations among the various models are de�ned in Section 3., and are usedto simplify the organization of the models. Section 4. concentrates on 4-state-models. One of themodels is analyzed in detail in 4.3. Similar results can be derived for the other models, and aregiven without the proofs in 4.4.Section 5. presents the details of the experimental evaluation. The encoding algorithm is formallystated in Section 5.1. The following sections suggest ways for parameter and performace estimation.Finally, the new methods were tested on the concordances of the English Bible and of two largefull-text retrieval systems: the Tr�esor de la Langue Fran�caise (TLF) and the Responsa RetrievalProject (RRP). The results, including comparisons with other compression methods that appearedin the literature, are presented in Section 5.4.2. Models of ClusteringThe most common method for compressing a concordance is a form of run-length encoding, perhapsusing a variable length encoding scheme for representing the run lengths [21, 26]. In e�ect thisassumes a model of statistically independent term occurrence. But terms don't occur independently.They tend to cluster over authors and over time. Within documents, they cluster over text segmentsdiscussing the concept represented by the term. We thus expect a model recognizing term clusteringto represent more accurately the occurrences of terms, and to o�er more e�ective compressioncapability.Should the tendency for clustering be pronounced, codes based on assumptions of term indepen-dence will produce poor compression. In this section we look at some Markov models of clusteringthat potentially can be used to improve compression. The simpler independence model examined in[3], which ignores clustering e�ects, can be considered a degenerate Markov model with one state.We shall conceptualize our bitmap as being generated as follows. At any bitmap site we are inone of two states: a cluster state (C), or a between-cluster state (B). Initially we are in one of thesestates, as determined by an initial probability distribution. Subsequently, governed by probabilities{ 3 {



associated with the state we are in, we generate a bitmap-value of zero or one; then, again governedby a probability distribution determined by the current state, we enter a new state as we move tothe next bit-map site. This process is continued iteratively until the full bitmap has been generated.Such a model has been referred to as a Hidden Markov Model (HMM) in the literature, and will bede�ned in more detail below.Unfortunately, while we believe that such a model is likely to be a reasonable representationfor most bitmaps that describe concordances, it is analytically di�cult to use. The problem isthat, even if we know the initial state, we cannot know for certain which state we are in at anybitmap location; even the complete observable history of the generation process is inadequate fordetermining the state sequence. This makes parameter estimation di�cult, and also complicatesthe formulae needed for compression and decompression.However, in many situations, the one-bits are strongly associated with cluster states, and thezero-bits with the between-cluster states. Thus, while we never know for certain which state weare in, if we have just generated a sequence of ones, or of zeroes, it is very likely we are in acluster state, or between-cluster state, respectively. It is mainly when we believe we are in a cluster(between-cluster) state and generate a zero (one) that there is genuine confusion.For such situations, an approximation to the HMM seems reasonable. We shall introduce severaltraditional Markov models. These models will have a Cluster state and a Between-cluster state,reecting the underlying hidden Markov process. But if we are in a cluster (between-cluster) stateand generate a zero (one) then we enter one of the other states, which acts as a transition oruncertainty state. In this way we can introduce some of the aspects of the HMM while enjoying thesimplicity of traditional Markov analysis.2.1 Hidden Markov ModelIn a conventional Markov model, given the initial state, we always know the state we are in. Thesystem moves from one state to another governed by the model's matrix of transition probabilies.In making a transition, it emits a symbol, and the symbol uniquely determines the next state.In a HMM, if we are in a given state, there is a probability distribution describing the symbol thatis emitted, and a di�erent probability distribution determining the next state. Thus the probabilityof emitting a symbol has been separated from the probability of making a speci�c transition to thenext state.To de�ne the HMM formally, we need three probability distributions: one giving the probabilityof starting in state i (distribution �(i)); one governing transitions between states i and j (distributionA(i; j)); and for each state i, a distribution which gives the probability of generating a given symbolk (distribution B(i; k)). For our models, comprised of two states and two characters, �ve parametersare needed to de�ne the model completely. However, since the impact of the parameter determiningthe initial state-probability is quickly attenuated, we shall refer to the HMM as a four-parametermodel, allowing us to concentrate on the state transitions and character emissions.HMM's have been used widely in speech recognition [22] and recently also in the prediction ofprotein structure [1, 15] and information retrieval research [20]. In our application the model hastwo states, one for being in a cluster and another one for being between clusters. In Figure 1 wehave an example of an HMM, taken from TLF: it corresponds to the word extravagant, whichappears in 392 of the 39000 documents. The probability of starting in state S1, �(1), is 0.65 and ofstarting in state S2 is 0.35. If we are in state S1, we will stay there with probability A(1; 1) = 0:77.In state S1 the probability of emitting a zero bit is B(1; 0) = 1:00. The probability of moving fromstate S1 to state S2 is small (A(1; 2) = 0:23), but once we do move, the probability of emitting a1-bit increases from 0 to 0.03; once in S2, there is a high probability (0.72) that we return back tostate S1. Thus, the state S1 corresponds to the between-cluster state and the state S2 to the clusterstate; in this special case of low 1-bit density, the two states are quite similar in their likelihood of{ 4 {



generating a 1-bit.To use the HMMwe must �rst estimate its parameters. Initially, we choose arbitrary probabilitiesfor all parameters. We then use an iterative procedure that, in each stage, improves the values ofthe parameters. More about the procedure and the implementation issues can be found in [22].Once estimated, we store the parameter values of the model (four probabilities in the above model).Given the parameters, we can compute the equilibrium state probabilities of the model. In theactual encoding, we begin with these equilibrium state probabilities and compute the probabilitiesof a one or zero; this is used to encode the actual value|for example, with arithmetic encoding.The current state probabilities, the actual bit-value, and the transition matrix allow us to computethe state probabilities for the next bit site. The procedure continues in this manner until the entirebitmap is encoded.
S1 S2-� 0.230.72��?0.77 ��?0.280: 1.001: 0.00 0: 0.971: 0.03���0.65 @@I0.35Figure 1: Example of the simple HMM for extravagant2.2 Traditional Markov ModelWe are conceptualizing bit-generation as a process in which we are in either a cluster or non-clusterstate, and which state we are in determines the probabities of a 1/0 bit. An advantage of the HMMis that it recognizes the possibility that we can generate zeroes while we are in a cluster state, andones in a non-cluster state.The simplest traditional Markov model permitting clustering would likewise be comprised oftwo states: one representing the high probability of generating a 1 within a cluster, the other thebetween cluster condition. However, in such a traditional Markov model, the bit generated woulddetermine the next state; thus, for example, a zero bit would cause us to leave the cluster state.To incorporate the exibility of the HMM within a traditional Markov framework, we introduceadditional states. In this paper, we investigate a family of n-state Markov chains as models of howour bitmap was generated: we assume we know the initial state of the process; then, as we traversethe bitmap from beginning to end, at each position we are in a state, and that state determines theprobability of being in any given state at the next location. Each such state transition is associatedwith a one or zero bit being generated. When we encode a bitmap, we simulate this process. Webegin in the known initial state, and the bit-values scanned determines the state we are in and theprobability of the next symbol we will scan; these probabilities are used to construct the code.2.3 Hierarchy of ModelsThe simplest traditional Markov model is the degenerate model with a single state, equivalent tothe independence model. Such a model cannot exhibit true clustering.The simplest Markov model permitting clustering is the two state model referred to above. It isbased on two states C and B, with the probability of a transition to C (that is, the probability ofgenerating a 1-bit) depending on the state we are in. The state C indicates that we are in a cluster,{ 5 {



and thus are more likely to generate occurrences of the designated term. We enter B as soon as weleave the cluster (that is, generate a zero-bit).A limitation of the traditional two-state model is that it doesn't recognize the possibility ofspurious zeroes within a cluster or spurious ones between clusters. That is, we would like toincorporate the possibility, inherent in the HMM studied above, that we may be in a cluster andgenerate zero bits without leaving the cluster, and conversely, being between clusters and generating1-bits. We accommodate these possibilities by introducing transitional states.A general n-state model has states C and B as above and n� 2 transitional states (X1; X2; : : :,Xn�2). It can be represented by a directed graph G = (V;E) in the following way:MM1. The set of vertices is V = fv0; v1; : : : ; vn�1g = fC;X1; : : : ; Xn�2; Bg;MM2. exactly two directed edges leave each vertex; one edge is labeled by 0, the other by 1,corresponding to the bit value generated in the transition represented by the nodes connectedby the edge;MM3. one node is designated as the start node; below we assume the system starts in state B;MM4. transition probabilities (going from state i to state j) are assigned to the correspondingedges.Thus, our graph resembles the transition diagram of a �nite state automaton, with the additionalassignment of transition probabilities. Such models allow us to simulate remaining in a cluster (orbetween clusters) even after generating a 0 (1), thereby preserving a very important property of theHMM. In this sense, we shall think of the transitional states as being accomplices of the C and Bstates: if generating a 0 in a C state takes us to a transitional state, this suggests that we are onlytentively leaving the C state.At �rst sight, an analysis of the graph associated with the Markov model suggests there are n2npossible structures that can represent Markov models with n states: two edges leave each node, eachof which can enter n possible nodes, so there are n2 possibilities for the outgoing edges of each node;since there are n nodes, the total number of possible graphs in (n2)n. This means that, e.g., evenfor n = 4, the number is 65536, and for n = 5 it is almost 10 million. However, almost all of theseare unreasonable as representions of our problem. We thus impose several additional conditions fora graph to be an acceptable representation of our Markov model. In summary, a legitimate Markovmodel can be represented by an edge-labeled graph, satisfying the following conditions (C1){(C5):(C1) Each node has exactly two edges leaving it, one labeled by a 1, the other by a 0.(C2) There are no multiple edges: there are no states I and J such that the system can go from I toJ by either edge, emitting either a one or a zero. Otherwise, we would have states that servedonly as lag or delay states, with the symbol emitted when within such a state not providing realinformation; there is no physical justi�cation within our problem for introducing lag states.(C3) The graph is strongly connected: each node can be reached from any other node.(C4) There is a loop on C and one on B, but the intermediate states Xi cannot have loops. Thusthe transitional states are indeed transitional: we can't remain in any transitional state whilegenerating runs of 1's or 0's; the former should lead to state C, the latter to state B. And,once we are in C (B), we remain there as long as we observe 1's (0's).(C5) All edges entering C are labeled with a 1; all edges entering B are labeled with a 0. This istrue in particular for the loops on C and B.
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One can represent each graph G by an incidence matrixMG = (cij). Because of conditions (C1)and (C2), it seems natural to set cij as the label of the unique edge from vi to vj ( 0 � i; j < n)when such an edge exists; however, we want to reserve the zero value to denote the absence of anarc. We thus use the following consistent labelling:cij =8><>: 0 if (vi; vj) =2 E1 if vi 1�! vj2 if vi 0�! vjwhere, here and below, we use the notation v1 ��! v2 if there is a directed edge from node v1 tonode v2 and it is labeled � 2 f0; 1g.Thus, because of (C1), each row in MG contains a 1, a 2 and n � 2 zeros. For example, theincidence matrix corresponding to the graph labeled 4S1 in Figure 2 is � 1 2 0 00 0 1 21 2 0 00 0 1 2�, and that of 4C1 is� 1 2 0 01 0 2 01 0 0 21 0 0 2�.Condition (C5) implies that in the �rst (last) column, corresponding to C (B), there are only 1's(2's) or 0's. From (C4) and (C5) follows that c00 = 1, cn�1;n�1 = 2 and cii = 0 for 0 < i < n�1. Tocheck the strong connectivity (C3), note that (MG)k contains a non-zero value in its (i; j) position,if and only if there is a directed path from vi to vj in G of length exactly k edges. Thus G is stronglyconnected if and only if there are no null entries in the matrix Pn�1k=1 (MG)kThe above conditions impose severe constraints on the incidence matrix and permit an explicitenumeration of the legitimate graphs. Further, many are relabeling of others, with Xi and Xjinterchanged, for certain i and j. This is easily tested: if by interchanging the Xi and Xj rows andcolumns of a matrix gives another legitimate matrix, one of the two models can without loss beeliminated. For the case n = 4, this reduces the number of models from 65536 to 21. We can removean additional 8 models if we introduce, as well, the following plausible condition, which supportsour interpretation of the states Xi as transitional states.(C6) If k zeros (ones) are needed to go from C to B (from B to C), and there is a path of length` from Xi to B (C) all of whose edges are labeled by zeros (ones), then ` � k. For example,we considered a graph to be unreasonable if a zero value takes us directly from C to B, butit requires two zeros to go from a transition state to B.3. Structure of ModelsThe models described above have a structure that is best described in terms of two general sets ofoperations: Complementation and Reduction. These will be described in the following sections.3.1 Complementation OperatorThe set of resulting graphs has an interesting internal structure: It is possible to divide these graphsinto two classes if we introduce the concept of Complementation (C) functions, and thereby, of aC-symmetric graph.In general, given an edge-labeled graph, G, we de�ne its complementary graph, C(G) by meansof a pair of self inverting complementation functions C = (CS ; CL), de�ned respectively on the nodesand on the labels of G.� C(G) has the same set of nodes and labels as G. Since C is self-inverting, any node of C(G) isthe image of some v in G, and similarly for the labels.{ 7 {



� C(G) has an edge, labeled by CL(�), between nodes CS(vi) and CS(vj), for vi; vj 2 V , if andonly if G has an edge labeled � from vi to vj .Thus, if we are given a path S1S2 � � �Sr between nodes S1 and Sr of G, associated with the se-quence of labels �1�2 � � ��r�1, then a C-complementary path CS(S1)CS(S2) � � � CS(Sr), with labelsCL(�1)CL(�2) � � � CL(�r�1), exists in C(G) between nodes CS(S1) and CS(Sr). For the models we areconsidering, we insist in addition that CS(B) = C and that CL(1) = 0. With these conditions, wecan easily see that a graph G satis�es conditions (C1) to (C6) if and only if the C-complementarygraph C(G) does. Thus the complementation operator de�nes a structure of our set of models asfollows.A labeled graph is C-symmetric if C(G) = G. Thus, for every path in G, the correspondingC-complementary path also exists G. This condition is equivalent to being able to order the nodesso that complementary elements are at positions which are symmetric relative to the middle pointof the matrix, i.e., cij and cn�1�i;n�1�j are either both zero, or, if the one is 1, the other is 2, for0 � i; j < n. Thus the �rst matrix mentioned above, corresponding to 4S1, satis�es the symmetrycondition, but the second matrix does not. (A similar observation is valid for more general graphs. Ifthe entries in the incidence matrix are the actual labels of arcs, or the null value (<null>) for nodesthat aren't connected, then cij = CL(cn�1�i;n�1�j) if ci;j isn't null, and cij =<null> otherwise, for0 � i; j < n. The value <null> could be any number distinct from the arc labels.)We shall only consider cases where CL is binary complementation, though the concept can begeneralized to any self-inverting function CL. In terms of our complementation functions, we de�neCS(B) = C, and CS(X1) = X2; then the thirteen acceptable models divide into three symmetricmodels and �ve pairs of models, each pair of which is comprised of a model and its complement.While particularly useful for organizing our models, the complementation operator is gener-ally applicable to edge-labeled graphs. For example, the well-known de Bruijn diagrams are C-symmetric. In fact, the model labeled 4S1 in Figure 2 is the de Bruijn diagram G2;3 (see [11,Section 4.3]).The 13 graphs of the 4-state models satisfying the conditions (C1){(C6), grouped by comple-mentation relation, are schematically displayed in Figure 2, and the graphs for all the models withn � 3 are displayed in Figure 3. The labeling is implicit in the form of the arrows: a solid linerepresenting an edge labeled 1, and a dotted line an edge labeled zero. For ease of description, weshall refer in the sequel to the models by their labels in the �gures, which mention the number oftheir states; e.g.,M{4S1 will refer to the model in the upper leftmost corner of Figure 2.The following conventions were used for naming the various models: each model name consistsof a pair nL or a triplet nLi, where n is the number of states, L 2 fS;C;Bg indicating whether themodel is C-symmetric, i.e., states B and C play symmetric roles, or whether the model is biasedtowards the C state or the B state, respectively; i is a running index distinguishing graphs thatwould otherwise share a given name. We say that a model is C-biased, if it is harder to get fromC to B than vice versa; that is, one needs more zeros to get from C to B than one needs ones forthe opposite path. ForM{4C2 andM{4B2 these paths are both of length 2; we considerM{4C2to be C-biased because starting in C and generating the sequence 01, we get back to C, whereasstarting in B and generating 10 gets us to an intermediate state. In other words, a C-biased model,once in state C, is more reluctant to accept a 0 as an indicator of having left the cluster than wouldbe the case in the complementary situation.3.2 Reduction OperatorWe shall demonstate below how various properties of our models can be derived, given the modelparameters. However, we can save much e�ort by noting a special relation that exists between somelower and higher order models: this relationship allows us to directly derive the results for the lowerorder model given the corresponding results for the higher order model. In this section we shall{ 8 {
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More succinctly, we have:�(v1 ��! w1) ^ (v1 � v2) ^ (v2 ��! w2)� =) (w1 � w2);which is schematically represented in Figure 4(a).(R3) Whenever an arc labeled with � goes from nodes v1 to w1, then, for any v2 � v1, if an arclabeled with �, with � 6= �, connects v2 with w2, then w2 6� w1. That is, if � 6= � :�(v1 ��! w1) ^ (v1 � v2) ^ (v2 ��! w2)� =) (w1 6� w2);as in Figure 4(b). Note that for the binary case we consider, we have � = 1 � �. In otherwords, for two given classes Vi and Vj of the partition, all the edges connecting any node inVi to any node in Vj must be labeled identically.R2 and R3 tell us that all arcs between two classes have the same label, and that all arcs leavinga class with the same label go to the same target class. For example, for modelM{4S2, one couldde�ne V1 = fC;X2g and V2 = fB;X1g; then all the edges going from V1 to V2 are labeled 0, andall those going from V2 to V1 are labeled 1.(R4) If v � C, then all edges terminating on v must be labeled by 1; similarly, if v � B, then alledges terminating on v must be labeled by 0.(R5) There can be no internal edges in any component not containing either C or B.t
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W2(a) (b)Figure 4: Schematic representation of reduction partitionsIn addition, to be consistent with the Markov property, we require that:(R6) If vi � vj , then the probability of a transition to a node in Vk is the same for vi and vj .Speci�cally, vi and vj have the same probability of generating a 1 or a 0.If we are given a graph G and a reduction, then we can de�ne a reduced Markov graph G0 asfollows:(RG1) Nodes: P .(RG2) Edges: If v1 ��! v2 in G, with v1 2 V1 and v2 2 V2, then V1 ��! V2 in G0. This de�nesa single edge labeled � leaving any node of G0, because of condition (R2), and the de�nitionis independent of the speci�c nodes selected because of condition (R3). If V1 = V2, then theedge is a loop, which is possible only for a node containing C or B.{ 11 {



(RG3) Initial probabilities: In general, for a node Vi of G0, the initial probability is just the sumof the initial probabilities in G of the constituent nodes of Vi. For the case at hand, this willbe zero for all the nodes, except the one containing B, for which it is 1.(RG4) Transition probabilities: if V1 and V2 are nodes in G0, we de�ne the transition probabilitybetween V1 and V2 as TV1;V2 = Tvi;vj ;for vi 2 V1; vj 2 V2; and Tvi;vj the transition probability between vi and vj in G. (Note thatby (R6), if V1 ��! V2, then vi ��! vj for all vi 2 V1 and vj 2 V2). Below, when we deriveproperties of lower order from higher order models, we will implicitly equate the above Tvi;vjand set the transition probabilities between vi and vj to the common value.(RG5) Special vertices C and B: The component in G0 containing C of G is denoted C, andsimilarly for the component containing B. (For completeness, if there is a single component,we call the node C.)The reduction relation is very much like a congruence in algebra, with the reduced graph like afactor-structure.Several consequences follow from this de�nition, taken in conjunction with the restrictions de�n-ing a legitimate graph structure. The most important is that the reduced graph has all the propertieswe demand of a legitimate graph.We assume below that we have at least two components.(C'1) Each node in G0 has exactly two edges leaving it, one labeled by 1, the other by 0; this is aconsequence of (RG2) given the de�ning property (C1) of G.(C'2) There are no multiple edges, because of (R3).(C'3) G0 is strongly connected, because G is.(C'4) In G0, as in G, there will be a 1-loop attached to C and a 0-loop attached to B. Further,all edges labeled 1 in the C component of G0 must be internal to the C component, becauseof (R2) and the requirement that C in G has a loop; and all edges labeled by 0 and startingin the C component must leave the component, because of condition (R3): if an arc labeledwith 0 connected any vertex in C with a di�erent vertex in C, then all 0-labeled arcs startingin C must end in C; since this is true as well for 1-labeled arcs, no path starting with C couldconnect to B, contradicting the assumption that G is strongly connected. Similar conditions,for edges labeled 0 and 1 respectively, are true for the B component. Transitional states canhave no loops, because of (R5).(C'5) All edges entering C are labeled by 1 and all edges entering B are labeled by 0, by (R4).Looking forward, the notion of a reduction will allow us to deduce properties of lower ordermodels, given properties of higher order models. Intuitively, if some analysis assigns a probabilityto each node in G, the parallel probability for a node in the reduced graph should be the sum ofthe corresponding probabilities of the original graph | this is true, for example, for equilibriumprobabilities.Similarly, both the original and reduced structures de�ne a probability for any sequence of 1'sand 0's. We will be interested in properties that depend on probabilities of strings for which we candeduce the value for the reduced graph by equating the transistion probabilities in the correspondingvalue for the initial graph. This is the case for the expected number of clusters.Figure 5 displays all the possible reductions among the n-state models we consider, for n � 4.Models that are C-symmetric are indicated by a double borderline. IfM1 can be reduced toM2,{ 12 {
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this is indicated by an arrow from M1 to M2, near to which appear the states to be put in thesame class of the partition.We note that M{4S1 reduces to the 3-state model M{3C by identifying state1 X2 with stateC, and to M{3B by identifying state X1 with state B. M{4S2 reduces to M{3S by identifyingthe two transitional states X1 and X2. Thus, all the 3-state models (as well as the 2- and 1-statemodels) previously studied are special cases of the symmetric 4-state models.Note also thatM{4S2 does not reduce to another 3-state model besideM{3S; only by identifyingboth X1 with B and X2 with C do we get an acceptable partition, that corresponding to the 2-state model. ForM{4S3 and the other models appearing at the bottom of Figure 5, an acceptablepartition is obtained only when all four states are merged, yielding the independent 1-state model.We �nally draw attention to the symmetric aspect of the reduction diagram, which reects thefact that for each reduction from one model to another, there is a corresponding reduction betweenC-symmetric counterparts.Further consequences include:� If there is an edge labeled � emanating from a node in a given class Vi, and incident ontoa node outside of Vi, then there cannot be an edge labeled � from one node to another inVi. That is, if an edge labeled � connects v1 and v2, for v1 � v2, then all edges labeled �starting in the equivalence class de�ned by v1 and v2 must terminate in that class. This is inparticular true for edges labeled by 1(0) in the class containing C (B). For example, againin M{4S2, the set V 0 = fC;X1g cannot be a class in a partition, because there is an edgelabeled 0 leaving V 0, but C 0�! X1. This property is a consequence of (R2).� If from a given vertex v, there is an edge labeled 0 to w1, and another edge labeled 1 to w2,then w1 and w2 cannot possibly belong to the same class in a partition, unless v too belongsto that class. For example, inM{4S1, we have X1 0�! B and X1 1�! X2, implying that theset fX2; Bg may not be part of a partition. This is a consequence of (R3).� To any path in a reduced graph, G0, there corresponds at least one path in the original graphG. Denote a path in G0 by the sequence node (output symbol) node ... node. Then, given anysuch path P = V0(�0)V1(�1)V2(�2):::Vn, and starting with any node of G included in V0, thepath in G associated with �0�1 � � ��n�1 is consistent with P . This is the essential idea behindthe graph congruence and is why everything works.4. 4-state Markov modelsThere is a natural tradeo� when deciding the order n of the Markov model to be used. The highern, the better can the model describe the bit generation process | but more bits are needed tocommunicate the model parameters to the decoder. The independence model of [3] corresponds ton = 1 and in [4], we considered n = 3. To maintain the same complexity as the 2-state HMM ofSection 2.1 (which has four parameters), in this section we shall focus on 4-state Markov models.4.1 Interpretation of the modelsThe models we have developed are intended to be simpli�cations of the HMM. To make explicit therelationship between these two types of models, we describe one in detail.The scenario represented by M{4S2, for example, is as follows. Suppose we start within acluster, that is in state C. As long as ones are generated, we remain within the cluster. However, if1More precisely, identifying the probability of generating a 1 in state X2 with that of state C.{ 14 {



a zero is generated, it suggests the possibility of having left the cluster, but the possibility remainsthat we are still in C, and that the 0 is just a random occurrence. This possibility, consistent withthe underlying HMM, is taken into account by entering the transitional state X1. If, once in X1,the next bit generated is a 1, we go back to the cluster state and conclude that the preceding zerowas merely an accident; if, however, a second zero is produced, we conclude that we have left thecluster and are now in state B. State B remains then in e�ect as long as zeros are generated, andthe behavior is symmetrical. That is, if a 1 is generated, we are not yet sure it is the beginning ofa cluster, so we go into a transitional state X2. A second 1 con�rms that we are in a cluster, so wego to C, but a zero drops us back to B.Below, we shall analyze in detail modelM{4S1, and indicate without proof the results for theother C{symmetric models. In addition, for illustration and contrast, we shall present the results forone of the asymmetric models that performed well in our experiments, as well as of its C{symmetriccounterpart.4.2 Relation to earlier modelsIn earlier work [3], we assumed an independence model, which is equivalent to a single state Markovmodel that ignores that word occurrences may cluster. A primitive clustering e�ect can be describedby a two-state Markov model, with only a Cluster-State and a Between-Cluster state. But such amodel has no tolerance for zeros (one) in a Cluster (Between-Cluster) state.The model discussed in [4] isM{3C. It di�ers fromM{4S1 in that a single 1 is enough to makethe transition from B to C. In the complementary three-state modelM{3B, the transitional stateis entered on the way from B to C: a single zero is enough to leave the cluster, but at least twoconsecutive 1's are needed to pass from the between to the cluster state. The third possible 3-statemodel M{3S is C-symmetric, e.g., two zeros are needed to get from C to B, and two ones areneeded to pass from B to C. These three models exhaust this set of 3-state models satisfying theplausability requirements enumerated above.The reason thatM{3B, the complementary model ofM{3C, has not been mentioned in [4] isbecause of the interpretation of the bit-vectors in our application. The ones correspond to documentscontaining the designated term, the zeros to documents in which the term does not occur. Nowmost of the terms of any natural language database occur in only a small part of the documents, sothat the probability of a 1-bit is much smaller than that of a 0-bit. It is thus reasonable to allowsingle zeros to appear within a cluster as in M{3C, while the occurrence of a single 1, which initself is a relatively rare event, can already be considered as indicating the start of a new cluster. Itmight thus well be that for our applications the symmetry condition should not hold, and indeed,some non-symmetric 4-state models peformed consistently better in our experiments, reported inSection 5..Our goal for the 4-state models is to predict the size of the gaps separating documents thatcontain the term and then deduce corresponding quantities for the 3-state models, 2-state modelsand the independence model. Gap length is an important characteristic of clustering, and thedistribution of gap lengths distinguish a clustered model from the independence models. We shallderive formulae that indicate how the gap lengths depend on the underlying parameters for thevarious models. These formulae also o�er an indication of whether clustering is a factor for aparticular set of bitmaps.
{ 15 {



4.3 Analysis of M{4S1Let us de�ne the transition probabilities forM{4S1 by:C �! C : �C ; C �! X1 : 1� �C ;X1 �! X2 : �X1 ; X1 �! B : 1� �X1 ;X2 �! C : �X2 ; X2 �! X1 : 1� �X2 ;B �! X2 : �B; B �! B : 1� �B :That is, if we are in state S, �S is the probability of emitting a 1.We next compute several interesting properties of this model.4.3.1 Equilibrium ProbabilitiesWe �rst compute the long run equilibrium probabilities for these states. Let � = [�C ; �X1 ; �X2 ; �B ]be the vector of probabilities of being in states C, X1, X2, B respectively in the long run. Orderingthe states as induced by �, we get the transition matrixT = 0BB@ �C 1� �C 0 00 0 �X1 1� �X1�X2 1� �X2 0 00 0 �B 1� �B 1CCA :Since � satis�es � = �T; we have the following system of equations�C = �C�C + �X2�X2 (1)�X1 = �C(1� �C) + �X2 (1� �X2) (2)�X2 = �X1�X1 + �B�B (3)�B = �X1(1� �X1) + �B(1� �B): (4)In addition, we also have the condition �C +�X1 +�X2 +�B = 1: Now solving the equations for�C ; �X1 ; �X2 and �B ; we get�C = �X2�B�X2�B + 2(1� �C)�B + (1� �C)(1� �X1) (5)�X1 = �X2 = (1� �C)�B�X2�B + 2(1� �C)�B + (1� �C)(1� �X1) (6)�B = (1� �C)(1� �X1)�X2�B + 2(1� �C)�B + (1� �C)(1� �X1) : (7)4.3.2 Run LengthsEach bit in a bitmap can be individually encoded, using arithmetic coding based on the probabilityof a one-bit at each stage; this is the encoding algorithm used in our experiments and described inmore detail in Section 5.. Alternatively, it may be more convenient to encode the gaps between onebits. The reason why this alternative representation is equivalent is shown in the Appendix. Toencode the gap sizes, we need their distribution, which is easily derived using the above model.We thus compute the probability of a run of k zeroes, following a 1. Observe that if a 1 was justgenerated, the associated transition must have left us in state C or state X2. Thus denoting by �0C{ 16 {



and �0X2 the probabilities of being in state C and X2 respectively after we have just generated a 1,we have �0C + �0X2 = 1. Let pkjC be the probability of a run of k zeroes followed by a one, giventhat we are initially in state C. Thenp0jC = �C ;p1jC = (1� �C)�X1 ;...pnjC = (1� �C)(1� �X1)(1� �B)n�2�B ; for n � 2:We de�ne pkjX2 similarly as pkjC . Thenp0jX2 = �X2 ;p1jX2 = (1� �X2)�X1 ;...pnjX2 = (1� �X2)(1� �X1)(1� �B)n�2�B; for n � 2:Let pk be the probability of a run of exactly k zeroes following a 1. Thenpk = pkjC�0C + pkjX2�0X2 ;so we have p0 = �C�0C + �X2�0X2 ; (8)p1 = (1� �C)�X1�0C + (1� �X2)�X1�0X2 ;and for n � 2; pn = (1� �X1)(1� �B)n�2�B �(1� �C)�0C + (1� �X2)�0X2� : (9)It remains to compute �0C and �0X2 . Observe that if we are in state C; then the previous statemust have been C or X2. Therefore �0C = �C�C + �X2�X2p(1)where p(1) is the probability of generating a 1. Butp(1) = �C�C + �X1�X1 + �X2�X2 + �B�B :Hence �0C = �C�C + �X2�X2�C�C + �X1�X1 + �X2�X2 + �B�B : (10)Similarly, if we are in state X2, then the previous state must have been X1 or B, and�0X2 = �X1�X1 + �B�B�C�C + �X1�X1 + �X2�X2 + �B�B : (11)Substituting (1) and (3) from the equations for the steady state probabilities into (10) and (11), we�nd that �0C = �C�C + �X2 ; �0X2 = �X2�C + �X2 : (12)Substitute the expressions for �C and �X2 as functions of the �'s using (5) and (6), we get aftersome simpli�cation �0C = �X21� �C + �X2 ; �0X2 = 1� �C1� �C + �X2 : (13){ 17 {



4.3.3 Expected Run LengthUsing the above expressions for pn and �0, we can calculate the average size of a gap as:1Xn=0npn = (1� �C)�X1�0C + (1� �X2)�X1�0X2+ (1� �X1) �(1� �C)�0C + (1� �X2)�0X2��B 1Xn=2n(1� �B)n�2= (1� �C)�X1�0C + (1� �X2)�X1�0X2+ (1� �X1) �(1� �C)�0C + (1� �X2)�0X2� 1 + �B�B= (1� �C)(1� �X1 + �B)�B �0C + (1� �X2)(1� �X1 + �B)�B �0X2= 1� �X1 + �B�B �(1� �C)�0C + (1� �X2)�0X2�= 1� �X1 + �B�B � (1� �C)�X21� �C + �X2 + (1� �X2)(1� �C)1� �C + �X2 �= (1� �X1 + �B)(1� �C)�B(1� �C + �X2)= (1� �C)�1 + 1� �X1�B �� 11� �C + �X2� : (14)In fact, we are only interested in genuine gaps, that is, gaps of length at least 1. The expectedgenuine gap size is 11�p0 P1n=1 npn; but from (8) and (13), we get1� p0 = �C�X2 + �X2(1� �C)1� �C + �X2 = 1� �C1� �C + �X2 :It thus follows from (14) that the genuine gap size is11� p0 1Xn=1npn = 1 + 1� �X1�B :Note that this expression is independent of �C and �X2 .4.3.4 Density of One-BitsLet D be the total number of documents; we would like to relate this to N , the number of documentscontaining the designated term, given the model parameters. The predicted density of one-bitsN=D,given the easily obtainable values N and D, allows a test of the model. We give two derivations ofthis important result.Heuristic argumentTo estimate N , note that we �rst have a span of zero or more documents without the designatedterm. This is followed by N � 1 spans made up of a document containing the term followed by aninter-term span of zero or more documents. Finally, the last span consists of a document with theterm, followed by a (possibly empty) terminal span. For our heuristic estimate, we assume thateach internal span has a length equal to its expected value, and that the lengths of each of theterminal spans can be approximated as half of this length. So the D documents are made up of theN documents with a designated term, the two end spans and the N � 1 internal spans. ThereforeD = N 1Xn=0npn +N { 18 {



= N(1� �C)�1 + 1� �X1�B �� 11� �C + �X2 �+N:This result immediately gives us an estimate for the density of 1-bits, N=D; this would serve as anestimate of the \p" value of an independence model, should we wish to simplify our model by usingan independence approximation.Formal derivationOne can also derive the above formula by observing that we are in states C or X2 if and only ifwe have just generated a 1. Thus N , the number of ones, is equal to the number of recurrences ofstates C and X2: �CD + �X2D = N , which impliesD = N�C + �X2 = N �X2�B + 2(1� �C)�B + (1� �C)(1� �X1)�X2�B + (1� �C)�B= N (1� �C)�B + (1� �C)(1� �X1)�X2�B + (1� �C)�B +N= N(1� �C)�1 + 1� �X1�B �� 11� �C + �X2 �+N;agreeing with the preceding result.4.3.5 Reductions to simpler modelsBy identi�ng X2 with C, we getM{3C. Now �X2 = �C and we get1Xn=0npn = (1� �C)�1 + 1� �X1�B � ;1Xn=1n pn1� p0 = 1 + 1� �X1�Band D = N(1� �C)�1 + 1� �X1�B �+N:By identifying X1 with B in M{4S1, we get the complementary 3-state model M{3B. Now�X1 = �B and we get 1Xn=0npn = 1� �C�B(1� �C + �X2) ;1Xn=1n pn1� p0 = 1�Band D = N(1� �C)�B(1� �C + �X2) +N:By identi�ng X1 with B inM{3C or by identi�ng X2 with C inM{3B we get the 2-state model.The formulas reduce to 1Xn=0npn = (1� �C)�1 + 1� �B�B � = 1� �C�B ;1Xn=1n pn1� p0 = 1 + 1� �B�B = 1�B{ 19 {



and D = N �1� �C�B �+N:By identifying B with C in the 2-state model, we get the independence model. Now �B = �Cand let � = �B = �C . The formulae become1Xn=0npn = 1� � 1;1Xn=1n pn1� p0 = 1�and D = N� :Model Average genuine gap length 11�p0 Pnpnindep 1=�2-state 1=�BM{3C 1 + 1� �X1�BM{3B 1=�BM{3S 1� �X1 + �X1�B�B(1� �X1 + �2X1)M{4S1 1 + 1� �X1�BM{4S2 1 + �B�X2 � �X1�B(1� �X1 + �X1�X2)M{4S3 �X1�B + (1� �X1)(1� �X2)�B[�X1�X2 + (1� �X2)(1� �X1(1� �X1 + �X2))]M{4C1 1 + (1� �X1)�1 + 1� �X2�B �M{4B1 1=�BTable 1: Average genuine gap size for the di�erent models4.4 Summary of the 4-state modelsUsing identical techniques to those of the previous section, one can derive similar formulae forthe other 4-state models we considered earlier. The calculations are straightforward and therefore{ 20 {



omitted. We report here on the resulting equations only for the symmetric 4-state models, forthe C-biased model which performed best on most experiments (M{4C1), and for its C-symmetriccomplement (M{4B1).Model D=N as function of model parametersindep D = N=�2-state D = N �1� �C + �B�B �M{3C D = N(1� �C)�1 + 1� �X1�B �+NM{3B D = N(1� �C)�B(1� �C + �X2) +NM{3S D = N(1� �C)��X1 + 1� �X1�B �� 11� �C + �C�X1�+NM{4S1 D = N(1� �C)�1 + 1� �X1�B �� 11� �C + �X2�+NM{4S2 D = N(1� �C)��X2 + 1� �X1�B �� 1�X2 + (1� �C)(1� �X1)�+NM{4S3 D = N (1� �C)[�X1�B + (1� �X1)(1� �X2)]�B [�X1�X2 + (1� �C)(1� �X2)] +NM{4C1 D = N(1� �C) �1 + (1� �X1)�1 + 1� �X2�B ��+NM{4B1 D = N(1� �C)�B[�X1�X2 + (1� �C)(�X2 + 1)] +NTable 2: Density of 1-bits for di�erent modelsThe transition probabilities for models M{4S2, M{4S3, M{4C1 and M{4B1 can be summa-rized, respectively, by the following transition matrices, corresponding, as above, to the 4 states inthe order (C;X1; X2; B):TM{4S2=0BB@ �C 1� �C 0 0�X1 0 0 1� �X1�X2 0 0 1� �X20 0 �B 1� �B 1CCA; TM{4S3=0BB@ �C 0 1� �C 00 0 �X1 1� �X1�X2 1� �X2 0 00 �B 0 1� �B 1CCA;
TM{4C1=0BB@ �C 1� �C 0 0�X1 0 1� �X1 0�X2 0 0 1� �X2�B 0 0 1� �B 1CCA; TM{4B1=0BB@ �C 0 0 1� �C�X1 0 0 1� �X10 �X2 0 1� �X20 0 �B 1� �B 1CCA:We then procede by calculating the equilibrium probabilities satisfying � = �T , and evaluating theprobability distributions of the run-lengths. Note that one ought to take care of the fact that the{ 21 {



models di�er slightly; for example, forM{4S1 and M{4S2, we are in state C or X2 if and only ifwe have just generated a 1, while for M{4S3 and M{4B1, this is true for states C or X1 or X2,and forM{4C1, only for state C. This has to be taken into account when evaluating pn. Table 1summarizes the formulae for the average genuine gap size (Pnpn)=(1�p0) for the di�erent models.For the sake of completeness, we have also included the independent, 2-state and 3-state models.Making the same assumptions as above about the spans of zeroes, we can derive the followingrelationships between D and N , which are summarized in Table 2.5. Experimental Evaluation of Models5.1 Model-based coding algorithmThe following algorithm is a formal description of the encoding process for any of the Markov modelsdiscussed above. Given is a bit-vector of length n bits: b1 � � � bn. First the modelM = hQ; �M; Siof the transitions is chosen, where Q is the set of states, S 2 Q is the starting state, and �M :Q�f0; 1g �! Q is the corresponding transition function. A two-dimensional array count[i; j] withi 2 Q and j 2 f0; 1g is used to keep track of the number of times each of the possible transitions hasoccurred. The function encode(b; p) is part of an arithmetic encoder applied to a binary alphabetf0; 1g, where the probability of a 1 is p, and the bit b is to be encoded, i.e., the current sub-intervalI � [0; 1] is partitioned according to p, and the new sub-interval I 0 � I is the one corresponding tob. Model{M codingf Choose modelM/* start in state S and collect statistics */state  � Sfor i  � 1 to nf count[state; bi]  � count[state; bi] + 1state  � �M(state; bi)g /* calculate transition probabilities */for all j 2 Q�j  � count[j; 1]count[j; 1]+count[j; 0]/* second scan for actual encoding */state  � S/* initialize lower and upper limits of output-interval */I`  � 0; Iu  � 1for i  � 1 to nf encode (bi; �state)state  � �M(state; bi)goutput any x 2 [I`; Iu]g { 22 {



encode (b; p)f if b = 1 thenIu  � I` + p (Iu � I`)else I`  � I` + p (Iu � I`)gThe parameter evaluation algorithm for the HMM relies on three control-parameters, (i; r; t).Recall that the parameters of the HMM cannot be solved directly, and that an iterative maximumlikelihood estimation procedure is required. Such procedures generally lead to local, not global,optima. We thus procede as follows: For each bit vector we form i initial models; for each model weundertake r iterations of our estimation procedure. We select the model giving the best compres-sion, and then continue the iterations with the chosen model until the compression gain betweentwo successive repetitions drops below a predetermined threshold value t. At this point we havethe �nal model for the current bit vector, and the parameters (which are the four probabilitiesA(0; 0); A(1; 0); B(0; 0); B(1; 0)) and the encoding result are stored; then follows the encoding phaseusing that model.5.2 Parameter EstimationWe can estimate the parameters directly. We assume that before generating the bitmap, we are instate B. The sequence of one's and zero's making up the bitmap completely determines the stateat any bitmap position. Thus it is easy to tabulate the number, and hence probability, of each typeof transition.For illustration, consider the following bitmap, as processed by the Markov model,M{3C:0 0 1 0 1 1 0 0 � � �Since we begin in state B, the initial zero indicates that the �rst transition is back to state B.Continuing in this manner we �nd the sequence of states corresponding to the above bitmap isgiven as follows (with the initial B preceding the colon):B : B B C X C C X B � � �In this sequence, we are in state B four times, for which we have three transitions. Of thesethree transitions, one is to state C, so on the basis of the information given, we would estimate�B � 1=3; similarly �C � 1=3, and �X � 1=2. Thus each parameter is easily evaluated and theseparameters can be used as the basis for compressing the bitmap. Further, the standard deviation ofthis estimate, for state S, is given by �S =p�S(1� �S)=NS , if we experience NS transitions fromstate S in the pertinent bitmap. The standard deviations make it possible to compute con�denceintervals and do tests of hypotheses.For a large bitmap, the �-values can be stored with the bitmap to permit decompression. Butseveral mechanisms can be tried to reduce the cost of storing these parameters. For example, wecan save the space for storing these parameters by evaluating them adaptively, beginning withreasonable initial values.We can also lower storage costs by reparameterizing the model: The �'s are our model's basicparameters. But we can also consider a reparameterization that is suggestive: �C � �, �X � �X�C ,and �B � �B�X , which de�ne the parameters �, �X , and �B . These parameters satisfy simplerconstraints (0 � �X ; �B � 1) independently of one another and of �, which will ease problems of{ 23 {



estimation. We also expect that regularities in the data will be more easily expressed in terms of the�'s than in terms of the �'s. It is also useful to de�ne � � �X�B , so that �B = ��C . � is a singlevalue reecting the strength of clustering: it indicates the relative likelihood of a term appearing ifwe are inside a cluster as compared to if we are outside a cluster.This reparameterization allows us to lower storage costs if we �nd the �'s are related in a regularmanner over the terms. For example, since stateX is intermediate between states C and B, we might�nd that �X is reasonably approximated by the average of �C and �B , that is, that �X = (1+�)=2.It may also be possible, without serious deterioration in performance, to divide the parametersinto a small number of categories. Thus, we might divide our terms into four clustering classes:one class would represent no clustering (� = 1); the other three states would represent varyingclustering strengths, with the values of the clustering parameter, �, for these states determinedempirically. This simpli�cation allows clustering strength to be represented with the cost of justtwo bits per term.5.3 Performance EstimatesThe availability of a detailed model permits us to estimate model performance. For illustration,we will establish some properties for model M{4S1. If we are in state S 2 fB;X1; X2; Cg, weexpect that we can encode the next bitmap element in H(�S) bits (where H(x) � �(x log(x)+(1�x) log(1 � x))). Using eqs. for �C , �X1 , �X2 , and �B , we estimate that the D bits of the bitmapcan be reduced to BM = (�CH(�C) + �BH(�B) + �X1H(�X1) + �X2H(�X2))Dbits, if the model is valid and we base our codes on that model.This estimate of performance can be used as a rough test of the Markov model. But even if themodel is valid, we are left with the question of whether the savings of using the full model justi�esthe additional complexity relative to, say, the independence model. The relative performance of thetwo models is easily computed.Under the assumption of the independence model, the appearance of a one-bit is determined bya single parameter, p, the density of one-bits. Developing a code using the value p and assuming azeroth order model, the size of the bitmap is reduced toBI = H(p)Dbits. But if the true model isM{4S1, we can compute the value we would �nd for p from the modelparameters, and thereby predict the performance we would get if we pretended the independencemodel was valid. The density of one-bits is just the probability of a random bit being set to one.The model predicts that the probability of a one-bit is given by:p = �B�B + �X1�X1 + �X2�X2 + �C�C= �C + �X2 ;the last equality following from the equilibrium equations. The equation p = �C + �X2 could havebeen asserted directly: the probability of a one-bit is just the probability of going to state C fromany of the states, or going to the state X2; but the long term probability of going to these states isthe same as the probability of being in them, as the last equation asserts.The ratio BM=BI gives the relative advantage of using the full Markov model vs using theindependence model even if the true model is more complex.
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5.4 Experimental resultsIn our earlier papers we used the Bible as \database", its chapters acting as documents. Because ofits small size, this choice was useful for testing purposes, as well as providing performance data foran interesting database. We can now provide performance statistics for two of the world's largestnatural language IRS's: the TLF, a database of 680 MB of French language texts (112 millionwords) of the 17th{20th centuries [6], and the database of the RRP, 350 MB of Hebrew and Aramaictexts (60 million words) written over the past ten centuries [14]. Their uncompressed concordancesspan about 345 MB for TFL (excluding references to the 100 most frequent words, considered asstop-words), and 450 MB for the Responsa database, for which each word is referenced. In fact,we took only sub-collections of these: for TLF, the 35070 terms belonging to the (lexicographic)range between elle and flaube, without limiting the document range, so that each uncompressedbitmap had length D = 38757 bits; for RRP we took all the 300000 di�erent terms, but restrictedthe document range to include only the D = 8119 documents written in the 20th century. In orderto allow comparisons with the methods of the earlier papers, we include also results on the Bible.Table 3 gives general statistics on the tested �les and summarizes the results. The columncorresponding to the English Bible (King James Version) uses the same restriction as in our earlierwork, i.e., only words appearing in at least 60 documents are tested. For real-life databases, mostof the words occur rarely, so their bitmaps will be encoded by simply enumerating the 1-bits (see[8]). We thus decided, for TLF and RRP, to consider only words that appear in at least 0.2% ofthe possible documents, and to partition the terms into three classes, according to the number ofdocuments N in which the terms occur. The classes are: N 2 [0:2% � 1%), N 2 [1% � 3%) andN 2 [3%� 100%]. The threshold values thus were 78, 388 and 1162 for TLF and 16, 81 and 244 forRRP.The upper part of Table 3 shows, for each class, the number of di�erent terms, and their totalnumber of occurrences. In the lower part of the table, each line corresponds to one of the methodsdiscussed above. To understand the values in the table, recall that we are representing the toplevel of the concordance as follows: for each term, we list sequentially the documents in which theterm occurs. As our measure of compression for the list corresponding to a term, we compute thenumber of bits needed to encode this list with our methods, and divide this value by the number ofdocuments in which the term occurs. The table gives the average of this quantity for all the termsin a class. In other words, it is the average, per 1-bit, of the number of bits needed to encode the1-bits of all the bitmaps in this class. The results for HMM correspond to the estimation parameters(10; 1; 0:001), that is, the best out of 10 initial models, each after a single iteration, is chosen, andthen improved until the relative gain between successive runs falls below 0.001. The 4- and 3-statemodels are referred to by their names. The independence model is the 1-state Markov model used in[3]. The row entitled run-length gives the best result out of a range of di�erent run-length encodingschemes, including Elias'  and � codes [10], various Exp-Golomb codes [23] and Start-Step-Stopcodes [13].As can be seen for the �les for which HMM results are listed, they usually were best amongall the tested methods. However, just to produce the numbers on the TLF, more than 6 days ofCPU were necessary (as compared to at most one hour for all the other tests). This also explainswhy not all the values are given. The best values for the other methods are framed. We see thaton all the real concordance �les, the C-biased modelM{4C1 performed best, except for the lowestdensity bitmaps, for which M{4C4 was slightly better. Moreover, when ordering the methods bycompression e�ciency, similar rankings were obtained, with all the C-biased methods performingbetter than any of the B-biased ones.We have not included the cost of storing the necessary parameters, which is negligible in most ofthe cases. Four probabilities need be stored for the 4-state models and 3 for the 3-state models. Ifwe choose the best out of a possible set of 8 probabilities (as in [4]), then only 3 bits are needed tostore the parameters for each term. But since only the high frequency terms are to be compressed,the average number of added bits per term occurrence is very small. For the ranges given in Table 3{ 25 {



Database: Bible TLF RRP60{929 78{387 388{1162 1162{1 16{80 81{243 244{1terms 623 2032 619 381 28039 7421 4631occurrences 131874 352522 402890 1387698 967543 1008365 3962924HMM 2.490 6.62 3.39run-length 2.923 8.60 6.76 3.71 9.18 7.13 4.06independent 2.683 9.09 7.26 4.02 9.17 7.27 3.952-state 2.593 8.72 6.88 3.66 8.92 7.01 3.78M{3C 2.570 8.57 6.73 3.56 8.86 6.94 3.72M{3B 2.579 8.70 6.86 3.62 8.91 6.98 3.76M{3S 2.560 8.65 6.80 3.55 8.90 6.96 3.71M{4S1 2.555 8.55 6.71 3.52 8.85 6.92 3.70M{4S2 2.555 8.65 6.80 3.54 8.89 6.96 3.71M{4S3 2.544 8.64 6.78 3.51 8.90 6.95 3.69M{4C1 2.557 8.48 6.65 3.51 8.81 6.89 3.69M{4C2 2.555 8.55 6.71 3.52 8.84 6.92 3.70M{4C3 2.544 8.52 6.68 3.48 8.84 6.90 3.67M{4C4 2.544 8.51 6.67 3.48 8.84 6.90 3.67M{4C5 2.546 8.62 6.76 3.51 8.89 6.94 3.68M{4B1 2.572 8.70 6.86 3.61 8.91 6.98 3.75M{4B2 2.561 8.66 6.81 3.56 8.89 6.96 3.72M{4B3 2.552 8.65 6.79 3.54 8.90 6.96 3.71M{4B4 2.560 8.68 6.83 3.57 8.90 6.97 3.73M{4B5 2.556 8.68 6.83 3.56 8.91 6.97 3.71Table 3: Statistics and compression results
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for TLF and RRP, it is always below 1%, except for the low frequency Responsa terms, for whichit reaches 4% for the 4-state models.When we began these experiments, we were concerned that our results might be very databasesensitive, since both language and, at the highest level of the concordance with which we arenow dealing, the database organization would be expected to inuence the extent of clustering.We therefore were surprised to note the extent of similarity between the TLF and RRP results:within the same range of term density, the results for a given method di�er by only 1{5%, withcompression on TLF being consistently better. We therefore conclude that the main factor actingon the compression e�ciency is the 1-bit density of the bitmaps, rather than language dependentfeatures. As expected, compression improves with increasing density.We are conceptualizing the concordance as indexing term occurrences at a variety of levels, forexample, document or section or sentence. Most of our results reect compression at the documentlevel. The Bible results give us insight into how our algorithms perform at lower levels of thehierarchy, since here we are considering occurrences of terms over text segments of a single document.This observation, together with the fact that the Bible maps were much denser (at least 6.4% 1-bits), may explain why the results for the Bible di�er so markedly from that of the Responsa andTLF databases.Note also that the best results improve upon those obtained from the independence model by5{13%, which is not negligible, considering the sizes of the databases. There is also a clear tendency,both for TLF and RRP, of having greater improvement with increasing density. We thus concludethat the new models presented here may indeed represent a genuine improvement in our ability tocompress concordances.6. ConclusionThe main objective of this paper has been to develop models that describe the dependencies amongterm occurrences in text in order to create codes that compress concordances more e�ectivelythan those based on the usual assumption of term independence. The assumption that governedour considerations was the existence of an underlying Hidden Markov Model, or HMM. We didindeed �nd a small, but signi�cant, improvement in compression e�ectiveness when using an HMM.However, such models make great demands on computational resources.To limit these costs, we approximated the HMM by traditional Markov models. A set of criteriawe developed allowed us to greatly reduce the very large set of candidate n-state models, making itpossible to provide a full inventory for n � 4. Further simpli�cation is provided by graph theoreticreduction and complementation operations de�ned among the various models. These were used toprovide a structure relating the models studied, and may well �nd application in other graph basedproblems. Finally, tests on the concordances of the English Bible and of two of the world's largestfull-text retrieval system: the Tr�esor de la Langue Fran�caise and the Responsa Project, demonstratedthat traditional Markov models allowed great improvements in computational e�ciency, at the costof very little deterioration of compression performance.The concordance remains a large and still relatively unstudied component of Information Re-trieval Systems. This paper concentrated on models of localized clustering. But with sparse bitmaps,such models prematurely leave a cluster or between-cluster state. We could compensate for this byintroducing more transitional states; instead further work is being planned in which models whichbetter retain the memory of which state it is in are developed.AppendixEquivalence of encoding bits and run lengthsWe have contemplated two di�erent ways of encoding a bitmap: we can encode each bit in turn,{ 27 {



using arithmetic encoding to attain the entropy limit; or we can count the number of zeroes betweenones, and encode the gap size. One would expect these to be equivalent. Here we argue this is thecase.We assume a state model. Suppose we have just encoded a one-bit (or are at the beginning ofthe bitmap) and are in state S0. Let us compute the number of bits required to encode the nextsequence of bits up to and including the next one-bit, or until we reach the end of the bitmap.To establish our notation: If we are in state Si and generate a zero-bit, we make a transitioninto state Si+1. If we are in state Si, the probability of generating a one-bit is �i. Note that we arenot making any assumptions on the memory-size of the model.Suppose we have D bits left to encode. Then the probability of a string of r zeroes is given asfollows:r Pr0 �01 (1� �0)�12 (1� �0)(1� �1)�2� � �D � 1 (1� �0)(1� �1) � � � (1� �D�2)�D�1D (1� �0)(1� �1) � � � (1� �D�2)(1� �D�1)Thus the expected length to encode the r value is:H = ��0 log(�0)�(1� �0)�1 log ((1� �0)�1)� � � ��(1� �0)(1� �1) � � � (1� �D�2)�D�1 log ((1� �0)(1� �1) � � � (1� �D�2)�D�1)�(1� �0)(1� �1) � � � (1� �D�2)(1� �D�1) log ((1� �0)(1� �1) � � � (1� �D�2)(1� �D�1))Expanding the logarithms, we �nd:H = �0[� log �0]+(1� �0)�1[� log(1� �0)� log(�1)]+ � � �+(1� �0)(1� �1) � � � (1� �D�2)�D�1[� log(1� �0)� log(1� �1)� � � �� log(1� �D�2)� log(�D�1)]+(1� �0)(1� �1) � � � (1� �D�2)(1� �D�1)[� log(1� �0)� log(1� �1)� � � �� log(1� �D�2)� log(1� �D�1)]But note that if we are in state Si, it requires � log(1� �i) bits to encode a single zero-bit and� log(�i) bits to encode a single one-bit. Thus we see that the terms in brackets are just the totalnumber of bits that would be required to encode the string of zero-bits followed by a one-bit (orterminating zero-bit) for the string represented by the term, if we encode a single bit at a time.Thus H is also the expected value of the code-size of the next run of zero-bits, encoding each bitindividually, as was to be shown.The second form can be reorganized to give a very nice alternative expression for H . To do this,we bring together terms with the same log �i and log(1� �i):H = ��0 log �0 � (1� �0) log(1� �0) [�1 + (1� �1)�2 + (1� �1)(1� �2)�3 + � � �{ 28 {



+(1� �1)(1� �2) � � � (1� �D�1)�D + (1� �1)(1� �2) � � � (1� �D�1)(1� �D)]� � � � �(1� �0)(1� �1) � � ��D�2 log �D�2 � (1� �0)(1� �1)� � � (1� �D�2) log(1� �D�2) [�D�1 + (1� �D�1)]�(1� �0)(1� �1) � � ��D�1 log �D�1 � (1� �0)(1� �1)� � � (1� �D�1) log(1� �D�1):Each sum of terms in brackets equals one (as can be seen by telescoping backwards), leaving anexpansion of the form:H0 + (1� �0)H1 + � � �+ (1� �0)(1� �1) � � � (1� �D�2)HD�1;where Hi is just the entropy ��i log �i � (1 � �i) log(1 � �i), which is the expected number ofbits required to encode the next bit position in state Si, provided we get that far. But each Hiis multipled by the probability of indeed getting that far, so the sum cummulates the expectedcontributions to the encoding of the next run of zeroes of each bitmap position.
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