Modeling Word Occurences for the Compression of

Concordances™
A. Bookstein S. T. Klein T. Raita

Center for Information Dept. of Math. & CS Comp. Sci. Dept.
and Language Studies Bar Ilan University University of Turku
University of Chicago Ramat-Gan 52900 20520 Turku

Chicago, IL 60637 Israel Finland

bkst@caper.uchicago.edu tomi@bimacs.cs.biu.ac.il raita@euroni.cs.utu.fi

Abstract

An earlier paper developed a procedure for compressing concordances, assuming that all
elements occurred independently. The models introduced in that paper are extended here to
take the possibility of clustering into account. The concordance is conceptualized as a set of
bitmaps, in which the bit locations represent documents, and the 1-bits represent the occurrence
of given terms. Hidden Markov models (HMM) are used to describe the clustering of the 1-
bits. However, for computational reasons, the HMM is approximated by traditional Markov
models. A set of criteria is developed to constrain the allowable set of n-state models, and a
full inventory is given for n < 4. Graph theoretic reduction and complementation operations
are defined among the various models, and are used to provide a structure relating the models
studied. Finally, the new methods were tested on the concordances of the English Bible and of
two of the world’s largest full-text retrieval system: the Trésor de la Langue Francaise and the
Responsa Project.

1. Introduction

With increasing attention being given to the digital library—massive amounts of information, much
of it in textual format, stored and widely accessible by computer— data compression is assuming a
new degree of importance. As noted before [16], effective compression of a text-based information
retrieval system (IRS) involves far more than compressing the text itself: it is often overlooked that
to be able to access and manipulate text, auxiliary data-structures must also be created and stored.

Most large information retrieval systems depend on inverted files for access to their information.
In this approach, query processing does not directly involve the original text files (in which key
words might be located using some pattern matching technique), but rather auxiliary dictionary
and concordance files. The dictionary is a list of all the different words appearing in the text
and is usually ordered alphabetically. For each entry in the dictionary, there is a pointer into the
concordance, which lists each occurrence of the word. While the dictionary is only moderately
large, the exact size of a concordance depends on a number of parameters, such as the omission
or inclusion of the most frequent words (the so-called stop-words) and whether stemming is first
done — in our experiments, all words, as they appear in the text, are used. However, the size of an
uncompressed concordance is generally of the same order of magnitude of that of the text itself.

*Two of the authors (A.B. and S.T.K.) wish to acknowledge that the material in this paper is based upon research
supported by the U.S. National Science Foundation under award number IRI-9307895, and by grant No. 92-00163
from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel. T.R. acknowledges support
by the Academy of Finland under grant No. 18587.

Compressing the concordance serves several purposes. Not only does it save space, but it also
saves processing time by reducing the number of I/O operations needed to fetch parts of the con-
cordance into main memory (see [16, 6, 25]). Thus, to distribute a functional, full-text IRS, con-
sideration must be given how to store the concordance efficiently. But concordance compression
has theoretical interest as well. Current approaches to data compression tend to take a two stage
approach: first one models the source, defining the message set and the probability of each message;
then one creates the code for each message [2]. The concordance of a full text information retrieval
system is the ideal entity on which to test this approach. As a well structured component of the IR
system, it would seem particularly susceptible to modeling.

When choosing an appropriate compression scheme, we note that in a static IRS, compression
and decompression are not symmetrical tasks. Compression is done only once, while building the
system, whereas decompression is needed during the processing of every query and directly affects
the response time. One may thus use extensive and costly preprocessing for compression, provided
reasonably fast decompression methods are possible. Moreover, in an IRS, while we compress full
files (text, concordance, etc.), we decompress only (though possibly many) short pieces on demand;
these may be accessed at random by means of pointers to their exact locations. This limits the
value of adaptive methods based on tables that systematically change from the beginning to the
end of the file.

This paper is based on the following conceptualization of a concordance: every occurrence of a
word in the database can be uniquely characterized by a sequence of numbers that gives its exact
position in the text. Typically, such a sequence would consist of the document number d, the
paragraph number p (in the document), the sentence number s (in the paragraph) and the word
number w (in the sentence). This defines a hierarchy of four levels: to identify the location of a
word, we need give only the quadruple (d, p, s, w), containing the coordinate of the occurrence. The
concordance contains, for every word of the dictionary, the lexicographically ordered list of all its
coordinates in the text.

In our implementation, we translate this model to an equivalent one, which we describe for a
simpler two level hierarchy. In this represention, we indicate 1) the index of the next document
containing the word, 2) the number of times the word occurs in the document, followed by 3) the
list of word indices of the various occurrences:

wordy : (di, my; wii,Wi2,..., Wim,)
(day, ma; wan,...,Wam,)
(dN, mny ; wN71,...,wN7mN)
words :

where d; is the document number, m; the number of occurrences of the given word in the i-th
document, and w; ; the index within d; of the j-th occurrence of the word. To fully represent the
concordance, we must model each of the components of the coordinate, and develop compression
methods appropriate for each entity.

We see that the concordance can be a rather complicated data structure, especially if it permits
hierarchical access to the database. But one or more components indicated above can usually be
conceptualized as a bitmap (for example, the values indicating which documents a term appears in,
or which paragraphs within a document contain a term), with auxiliary information indicating the
number of terms in a unit of the hierarchy. Some of the global auxiliary information can be stored
in the dictionary; other mechanisms may be needed for other.

In this paper we shall focus on compressing those components of the concordance that can
be represented as bitmaps. Thus, when we refer to a concordance below, we are thinking of a
set of bitmaps, each indicating, for example, the documents (or other textual units) in which a
word occurs. Formally, each vector is the occurrence map of a given word W. Each bit position
corresponds to one document, and the bit in position 7 is 1 if and only if the word W appears in

-2 —

document i, i.e., there is at least one coordinate of W which has ¢ in its d-field. In the sequel, we
shall use the languages of bits or documents interchangeably.

In order to encode the values of successive bits of the bitmap efficiently, we must obtain a good
underlying model for the bit-generation process. A variety of methods have been used [7, 24, 18, 25]
to compress concordances. The model of [3] assumed that all documents are approximately of the
same size, that there is no between-document clustering of term occurrences, and that within a sin-
gle document, words are independently distributed. On the basis of these assumptions, probability
distributions were derived for each term, describing the behavior of the variables comprising coordi-
nates in the concordance. The probabilities corresponding to the actual coordinate values were then
transformed to bits by using arithmetic encoding, though Huffman or Shannon-Fano codes could
have been used as well.

In this paper we generalize the independence models to incorporate a tendency of terms to
cluster. This is a natural extension of the independence model, since textual data contains inherent
dependencies. For example, if the documents of an Information Retrieval system are grouped
by author or some other criterion, the d-values of many terms will tend to appear in clusters
because of the specific style of the author, or because adjacent documents might treat similar
subjects. Similarly, term-occurrences will cluster within documents, reflecting content variations
over a document.

In the next part of this paper, we begin our study of various models of clustering by introducing a
Hidden Markov model (HMM) to represent bitmap generation. For computational reasons, we then
switch to traditional Markov models which approximate the HMM. A set of criteria is developed
in Section 2.3 to constrain the allowable set of n-state models, and a full inventory is given for
n < 4. Graph oriented operations among the various models are defined in Section 3., and are used
to simplify the organization of the models. Section 4. concentrates on 4-state-models. One of the
models is analyzed in detail in 4.3. Similar results can be derived for the other models, and are
given without the proofs in 4.4.

Section 5. presents the details of the experimental evaluation. The encoding algorithm is formally
stated in Section 5.1. The following sections suggest ways for parameter and performace estimation.
Finally, the new methods were tested on the concordances of the English Bible and of two large
full-text retrieval systems: the Trésor de la Langue Francaise (TLF) and the Responsa Retrieval
Project (RRP). The results, including comparisons with other compression methods that appeared
in the literature, are presented in Section 5.4.

2. Models of Clustering

The most common method for compressing a concordance is a form of run-length encoding, perhaps
using a variable length encoding scheme for representing the run lengths [21, 26]. In effect this
assumes a model of statistically independent term occurrence. But terms don’t occur independently.
They tend to cluster over authors and over time. Within documents, they cluster over text segments
discussing the concept represented by the term. We thus expect a model recognizing term clustering
to represent more accurately the occurrences of terms, and to offer more effective compression
capability.

Should the tendency for clustering be pronounced, codes based on assumptions of term indepen-
dence will produce poor compression. In this section we look at some Markov models of clustering
that potentially can be used to improve compression. The simpler independence model examined in
[3], which ignores clustering effects, can be considered a degenerate Markov model with one state.

We shall conceptualize our bitmap as being generated as follows. At any bitmap site we are in
one of two states: a cluster state (C), or a between-cluster state (B). Initially we are in one of these
states, as determined by an initial probability distribution. Subsequently, governed by probabilities

-3 —

associated with the state we are in, we generate a bitmap-value of zero or one; then, again governed
by a probability distribution determined by the current state, we enter a new state as we move to
the next bit-map site. This process is continued iteratively until the full bitmap has been generated.
Such a model has been referred to as a Hidden Markov Model (HMM) in the literature, and will be
defined in more detail below.

Unfortunately, while we believe that such a model is likely to be a reasonable representation
for most bitmaps that describe concordances, it is analytically difficult to use. The problem is
that, even if we know the initial state, we cannot know for certain which state we are in at any
bitmap location; even the complete observable history of the generation process is inadequate for
determining the state sequence. This makes parameter estimation difficult, and also complicates
the formulae needed for compression and decompression.

However, in many situations, the one-bits are strongly associated with cluster states, and the
zero-bits with the between-cluster states. Thus, while we never know for certain which state we
are in, if we have just generated a sequence of ones, or of zeroes, it is very likely we are in a
cluster state, or between-cluster state, respectively. It is mainly when we believe we are in a cluster
(between-cluster) state and generate a zero (one) that there is genuine confusion.

For such situations, an approximation to the HMM seems reasonable. We shall introduce several
traditional Markov models. These models will have a Cluster state and a Between-cluster state,
reflecting the underlying hidden Markov process. But if we are in a cluster (between-cluster) state
and generate a zero (one) then we enter one of the other states, which acts as a transition or
uncertainty state. In this way we can introduce some of the aspects of the HMM while enjoying the
simplicity of traditional Markov analysis.

2.1 Hidden Markov Model

In a conventional Markov model, given the initial state, we always know the state we are in. The
system moves from one state to another governed by the model’s matrix of transition probabilies.
In making a transition, it emits a symbol, and the symbol uniquely determines the next state.

In a HMM, if we are in a given state, there is a probability distribution describing the symbol that
is emitted, and a different probability distribution determining the next state. Thus the probability
of emitting a symbol has been separated from the probability of making a specific transition to the
next state.

To define the HMM formally, we need three probability distributions: one giving the probability
of starting in state ¢ (distribution 7(i)); one governing transitions between states ¢ and j (distribution
A(i,7)); and for each state ¢, a distribution which gives the probability of generating a given symbol
k (distribution B(i, k)). For our models, comprised of two states and two characters, five parameters
are needed to define the model completely. However, since the impact of the parameter determining
the initial state-probability is quickly attenuated, we shall refer to the HMM as a four-parameter
model, allowing us to concentrate on the state transitions and character emissions.

HMM’s have been used widely in speech recognition [22] and recently also in the prediction of
protein structure [1, 15] and information retrieval research [20]. In our application the model has
two states, one for being in a cluster and another one for being between clusters. In Figure 1 we
have an example of an HMM, taken from TLF: it corresponds to the word extravagant, which
appears in 392 of the 39000 documents. The probability of starting in state Sy, 7(1), is 0.65 and of
starting in state So is 0.35. If we are in state S;, we will stay there with probability A(1,1) = 0.77.
In state S; the probability of emitting a zero bit is B(1,0) = 1.00. The probability of moving from
state S to state Ss is small (A(1,2) = 0.23), but once we do move, the probability of emitting a
1-bit increases from 0 to 0.03; once in So, there is a high probability (0.72) that we return back to
state S1. Thus, the state S; corresponds to the between-cluster state and the state S» to the cluster
state; in this special case of low 1-bit density, the two states are quite similar in their likelihood of

,4,

generating a 1-bit.

To use the HMM we must first estimate its parameters. Initially, we choose arbitrary probabilities
for all parameters. We then use an iterative procedure that, in each stage, improves the values of
the parameters. More about the procedure and the implementation issues can be found in [22].
Once estimated, we store the parameter values of the model (four probabilities in the above model).
Given the parameters, we can compute the equilibrium state probabilities of the model. In the
actual encoding, we begin with these equilibrium state probabilities and compute the probabilities
of a one or zero; this is used to encode the actual value—for example, with arithmetic encoding.
The current state probabilities, the actual bit-value, and the transition matrix allow us to compute
the state probabilities for the next bit site. The procedure continues in this manner until the entire
bitmap is encoded.

0.23

0.72

/ AN

0.65 0.35

Figure 1: Example of the simple HMM for extravagant

2.2 Traditional Markov Model

We are conceptualizing bit-generation as a process in which we are in either a cluster or non-cluster
state, and which state we are in determines the probabities of a 1/0 bit. An advantage of the HMM
is that it recognizes the possibility that we can generate zeroes while we are in a cluster state, and
ones in a non-cluster state.

The simplest traditional Markov model permitting clustering would likewise be comprised of
two states: one representing the high probability of generating a 1 within a cluster, the other the
between cluster condition. However, in such a traditional Markov model, the bit generated would
determine the next state; thus, for example, a zero bit would cause us to leave the cluster state.

To incorporate the flexibility of the HMM within a traditional Markov framework, we introduce
additional states. In this paper, we investigate a family of n-state Markov chains as models of how
our bitmap was generated: we assume we know the initial state of the process; then, as we traverse
the bitmap from beginning to end, at each position we are in a state, and that state determines the
probability of being in any given state at the next location. Each such state transition is associated
with a one or zero bit being generated. When we encode a bitmap, we simulate this process. We
begin in the known initial state, and the bit-values scanned determines the state we are in and the
probability of the next symbol we will scan; these probabilities are used to construct the code.

2.3 Hierarchy of Models

The simplest traditional Markov model is the degenerate model with a single state, equivalent to
the independence model. Such a model cannot exhibit true clustering.

The simplest Markov model permitting clustering is the two state model referred to above. It is
based on two states C' and B, with the probability of a transition to C' (that is, the probability of
generating a 1-bit) depending on the state we are in. The state C' indicates that we are in a cluster,

and thus are more likely to generate occurrences of the designated term. We enter B as soon as we
leave the cluster (that is, generate a zero-bit).

A limitation of the traditional two-state model is that it doesn’t recognize the possibility of
spurious zeroes within a cluster or spurious ones between clusters. That is, we would like to
incorporate the possibility, inherent in the HMM studied above, that we may be in a cluster and
generate zero bits without leaving the cluster, and conversely, being between clusters and generating
1-bits. We accommodate these possibilities by introducing transitional states.

A general n-state model has states C' and B as above and n — 2 transitional states (X1, Xo, ...,
X,—2). It can be represented by a directed graph G = (V, E) in the following way:

MM1. The set of vertices is V' = {vg,v1,...,09n-1} = {C, X1,...,Xn_2, B};

MM2. exactly two directed edges leave each vertex; one edge is labeled by 0, the other by 1,
corresponding to the bit value generated in the transition represented by the nodes connected
by the edge;

MM3. one node is designated as the start node; below we assume the system starts in state B;

MMA4. transition probabilities (going from state i to state j) are assigned to the corresponding
edges.

Thus, our graph resembles the transition diagram of a finite state automaton, with the additional
assignment of transition probabilities. Such models allow us to simulate remaining in a cluster (or
between clusters) even after generating a 0 (1), thereby preserving a very important property of the
HMM. In this sense, we shall think of the transitional states as being accomplices of the C' and B
states: if generating a 0 in a C' state takes us to a transitional state, this suggests that we are only
tentively leaving the C state.

At first sight, an analysis of the graph associated with the Markov model suggests there are n2”
possible structures that can represent Markov models with n states: two edges leave each node, each
of which can enter n possible nodes, so there are n? possibilities for the outgoing edges of each node;
since there are n nodes, the total number of possible graphs in (n?)™. This means that, e.g., even
for n = 4, the number is 65536, and for n = 5 it is almost 10 million. However, almost all of these
are unreasonable as representions of our problem. We thus impose several additional conditions for
a graph to be an acceptable representation of our Markov model. In summary, a legitimate Markov
model can be represented by an edge-labeled graph, satisfying the following conditions (C1)—(C5):

(C1) Each node has exactly two edges leaving it, one labeled by a 1, the other by a 0.

(C2) There are no multiple edges: there are no states I and .J such that the system can go from I to
J by either edge, emitting either a one or a zero. Otherwise, we would have states that served
only as lag or delay states, with the symbol emitted when within such a state not providing real
information; there is no physical justification within our problem for introducing lag states.

(C3) The graph is strongly connected: each node can be reached from any other node.

(C4) There is a loop on C and one on B, but the intermediate states X; cannot have loops. Thus
the transitional states are indeed transitional: we can’t remain in any transitional state while
generating runs of 1’s or 0’s; the former should lead to state C, the latter to state B. And,
once we are in C (B), we remain there as long as we observe 1’s (0’s).

(C5) All edges entering C' are labeled with a 1; all edges entering B are labeled with a 0. This is
true in particular for the loops on C and B.

One can represent each graph G by an incidence matrix Mg = (¢;;). Because of conditions (C1)
and (C2), it seems natural to set ¢;; as the label of the unique edge from v; to v; (0 <1i,j < n)
when such an edge exists; however, we want to reserve the zero value to denote the absence of an
arc. We thus use the following consistent labelling:

0 if ('Ui,'Uj) ¢E
. 1
Cij = 1 if v; — vj
2 if Vi i)’U]'

where, here and below, we use the notation v; — vy if there is a directed edge from node v; to
node v and it is labeled « € {0, 1}.

Thus, because of (C1), each row in M contains a 1, a 2 and n — 2 zeros. For example, the
1200

incidence matrix corresponding to the graph labeled 4S1 in Figure 2 is (0012>, and that of 4C1 is

1200
1200
1020
1002 °
1002

0012
Condition (C5) implies that in the first (last) column, corresponding to C' (B), there are only 1’s
(2’s) or 0’s. From (C4) and (C5) follows that coo =1, ¢p—1n—1 =2 and ¢;; =0for0 <i <n—1. To
check the strong connectivity (C3), note that (Mg)* contains a non-zero value in its (i, j) position,
if and only if there is a directed path from v; to v; in G of length exactly k edges. Thus G is strongly
connected if and only if there are no null entries in the matrix Zz;ll (Mg)*

The above conditions impose severe constraints on the incidence matrix and permit an explicit
enumeration of the legitimate graphs. Further, many are relabeling of others, with X; and X;
interchanged, for certain ¢ and j. This is easily tested: if by interchanging the X; and X; rows and
columns of a matrix gives another legitimate matrix, one of the two models can without loss be
eliminated. For the case n = 4, this reduces the number of models from 65536 to 21. We can remove
an additional 8 models if we introduce, as well, the following plausible condition, which supports
our interpretation of the states X; as transitional states.

(C6) If k zeros (ones) are needed to go from C to B (from B to C), and there is a path of length
£ from X; to B (C) all of whose edges are labeled by zeros (ones), then ¢ < k. For example,
we considered a graph to be unreasonable if a zero value takes us directly from C' to B, but
it requires two zeros to go from a transition state to B.

3. Structure of Models

The models described above have a structure that is best described in terms of two general sets of
operations: Complementation and Reduction. These will be described in the following sections.

3.1 Complementation Operator

The set of resulting graphs has an interesting internal structure: It is possible to divide these graphs
into two classes if we introduce the concept of Complementation (C) functions, and thereby, of a
C-symmetric graph.

In general, given an edge-labeled graph, G, we define its complementary graph, C(G) by means
of a pair of self inverting complementation functions C = (Cs,Cr), defined respectively on the nodes
and on the labels of G.

¢ C(G) has the same set of nodes and labels as G. Since C is self-inverting, any node of C(G) is
the image of some v in G, and similarly for the labels.

-1 -

e C(G) has an edge, labeled by Cr.(«), between nodes Cs(v;) and Cs(v;), for v;,v; € V, if and
only if G' has an edge labeled o from v; to v;.

Thus, if we are given a path 5155 ---S, between nodes S; and S, of G, associated with the se-
quence of labels ajas -« - a,_1, then a C-complementary path Cs(S1)Cs(S2) ---Cs(S,), with labels
Cr(on)Cr(asg)---Cr(ay_1), exists in C(G) between nodes Cs(S1) and Cs(Sy). For the models we are
considering, we insist in addition that Cs(B) = C and that Cr(1) = 0. With these conditions, we
can easily see that a graph G satisfies conditions (C1) to (C6) if and only if the C-complementary
graph C(G) does. Thus the complementation operator defines a structure of our set of models as
follows.

A labeled graph is C-symmetric if C(G) = G. Thus, for every path in G, the corresponding
C-complementary path also exists G. This condition is equivalent to being able to order the nodes
so that complementary elements are at positions which are symmetric relative to the middle point
of the matrix, i.e., ¢;; and ¢,,—1—;n,—1—; are either both zero, or, if the one is 1, the other is 2, for
0 <i,j < n. Thus the first matrix mentioned above, corresponding to 451, satisfies the symmetry
condition, but the second matrix does not. (A similar observation is valid for more general graphs. If
the entries in the incidence matrix are the actual labels of arcs, or the null value (<null>) for nodes
that aren’t connected, then ¢;; = Cr.(cp—1-in—1—;) if ¢; ; isn’t null, and ¢;; =<null> otherwise, for
0 <4,5 <mn. The value <null> could be any number distinct from the arc labels.)

We shall only consider cases where Cp, is binary complementation, though the concept can be
generalized to any self-inverting function Cr. In terms of our complementation functions, we define
Cs(B) = C, and Cs(X1) = Xo; then the thirteen acceptable models divide into three symmetric
models and five pairs of models, each pair of which is comprised of a model and its complement.

While particularly useful for organizing our models, the complementation operator is gener-
ally applicable to edge-labeled graphs. For example, the well-known de Bruijn diagrams are C-
symmetric. In fact, the model labeled 4S1 in Figure 2 is the de Bruijn diagram G, 3 (see [11,
Section 4.3]).

The 13 graphs of the 4-state models satisfying the conditions (C1)-(C6), grouped by comple-
mentation relation, are schematically displayed in Figure 2, and the graphs for all the models with
n < 3 are displayed in Figure 3. The labeling is implicit in the form of the arrows: a solid line
representing an edge labeled 1, and a dotted line an edge labeled zero. For ease of description, we
shall refer in the sequel to the models by their labels in the figures, which mention the number of
their states; e.g., M—4S1 will refer to the model in the upper leftmost corner of Figure 2.

The following conventions were used for naming the various models: each model name consists
of a pair nL or a triplet nLi, where n is the number of states, L € {S,C, B} indicating whether the
model is C-symmetric, i.e., states B and C play symmetric roles, or whether the model is biased
towards the C state or the B state, respectively; ¢ is a running index distinguishing graphs that
would otherwise share a given name. We say that a model is C-biased, if it is harder to get from
C to B than vice versa; that is, one needs more zeros to get from C' to B than one needs ones for
the opposite path. For M—4C2 and M—-4B2 these paths are both of length 2; we consider M-4C2
to be C-biased because starting in C' and generating the sequence 01, we get back to C, whereas
starting in B and generating 10 gets us to an intermediate state. In other words, a C-biased model,
once in state C, is more reluctant to accept a 0 as an indicator of having left the cluster than would
be the case in the complementary situation.

3.2 Reduction Operator

We shall demonstate below how various properties of our models can be derived, given the model
parameters. However, we can save much effort by noting a special relation that exists between some
lower and higher order models: this relationship allows us to directly derive the results for the lower
order model given the corresponding results for the higher order model. In this section we shall

- 8 —

A A
M—451 M-4S52

C-symmetric 4-state models

X2 —————— f
M*4B2
A - v L7 . L& e > xy [e -
’ ; / | / | |
f O— - ? Xy e » f"' Xo g > B Xy e » f
M*4C4 M*4B4 M*4B5 """" M*4C5

Asymmetric 4-state models, grouped in pairs of mutually C-symmetric models

Figure 2: Inventory of 4-state Markov models

C . R -

A ;

c < > X < > B
; "X M-3S
4- X» f“:::;
M-=-3C M-3B

Figure 3: 1-, 2- and 3-state Markov models

explore this relation, which allows us to consider certain models as generalizations of lower order
models. To do this we define the notion of reducibility among models.

We first review the formal structure of our Markov models. Each consists, subject to restrictions
as stated above, of:

e A graph;

e Labels for edges;

¢ An initial probability for each node (here, the probability of B when starting is 1); and,

e Transition probabilities.

Suppose we are given such a structure. We wish to determine when an arbitrary partition
of the nodes defines a graph that itself represents a legitimate Markov model of the type we are

considering; such partitions will be called reductions, an idea closely related to lumpability, as
defined, for example, in ref. [5].

Consider a graph, representing a Markov model, with node set V' = {vg,...,v,_1}. Let P =

{V1,---,V,} be a partition of V. If nodes v; and vy of V are in the same class V;, we write v; = vs.
Such a partition is called a reduction if:
a) P={V},

which is the degenerate case for which the partition consists of a single element — that is, all the
states are merged into a single one, and the graph consists of a single vertex; or,

b) if the partition contains more than one element and satisfies the following conditions on the
underlying graph structure:

(R1) Nodes C and B are in different members of the partition.

(R2) Whenever an arc labeled with a goes from nodes vy to wyq, then, for any ve = vy, if an arc
labeled with a connects v with ws, then ws = wq. That is, all arcs leaving a class and having
the same label are directed to the same target class.

— 10 -

More succinctly, we have:
(v Lw) A (v=v) A (v w,)) = (w1 = wy),
which is schematically represented in Figure 4(a).

(R3) Whenever an arc labeled with « goes from nodes vy to wq, then, for any vy = vy, if an arc
labeled with 3, with 8 # «, connects v with ws, then ws Z w;. That is, if a # 3 :

((’Ul i) wl) A (’1)1 = ’1)2) A (’UQ i) ’wg)) — (w1 5_’5 ’lUQ),

as in Figure 4(b). Note that for the binary case we consider, we have # = 1 — «. In other
words, for two given classes V; and V; of the partition, all the edges connecting any node in
Vi to any node in V; must be labeled identically.

R2 and R3 tell us that all arcs between two classes have the same label, and that all arcs leaving
a class with the same label go to the same target class. For example, for model M—-4S2, one could
define V; = {C, X5} and Vo = {B, X1 }; then all the edges going from V; to V5 are labeled 0, and
all those going from V5 to V; are labeled 1.

(R4) If v = C, then all edges terminating on v must be labeled by 1; similarly, if v = B, then all
edges terminating on v must be labeled by 0.

(R5) There can be no internal edges in any component not containing either C' or B.

a
® [® [
U1 w1 U1 w1
Wo
a
® [® B ®

(a) (b)

Figure 4: Schematic representation of reduction partitions

In addition, to be consistent with the Markov property, we require that:

(R6) If v; = vy, then the probability of a transition to a node in Vj, is the same for v; and v;.
Specifically, v; and v; have the same probability of generating a 1 or a 0.

If we are given a graph G and a reduction, then we can define a reduced Markov graph G' as
follows:

(RG1) Nodes: P.

(RG2) Edges: If v; - vy in G, with v; € V; and vs € V, then V; %5 V5 in G'. This defines
a single edge labeled « leaving any node of G, because of condition (R2), and the definition
is independent of the specific nodes selected because of condition (R3). If V; = V3, then the
edge is a loop, which is possible only for a node containing C or B.

— 11 -

(RG3) Initial probabilities: In general, for a node V; of G’, the initial probability is just the sum
of the initial probabilities in G of the constituent nodes of V;. For the case at hand, this will
be zero for all the nodes, except the one containing B, for which it is 1.

(RG4) Transition probabilities: if V; and V> are nodes in G, we define the transition probability
between V; and V5 as
TV1,V2 = Tvi,vja
for v; € Vi,v; € Va, and Ty, ,, the transition probability between v; and v; in G. (Note that
by (R6), if V; =+ Vs, then v; —— vj for all v; € Vi and v; € V5). Below, when we derive

properties of lower order from higher order models, we will implicitly equate the above T,
and set the transition probabilities between v; and v; to the common value.

(RGb5) Special vertices C' and B: The component in G’ containing C' of G is denoted C, and
similarly for the component containing B. (For completeness, if there is a single component,
we call the node C'.)

The reduction relation is very much like a congruence in algebra, with the reduced graph like a
factor-structure.

Several consequences follow from this definition, taken in conjunction with the restrictions defin-
ing a legitimate graph structure. The most important is that the reduced graph has all the properties
we demand of a legitimate graph.

We assume below that we have at least two components.

(C’1) Each node in G' has exactly two edges leaving it, one labeled by 1, the other by 0; this is a
consequence of (RG2) given the defining property (C1) of G.

(C’2) There are no multiple edges, because of (R3).
(C’3) G’ is strongly connected, because G is.

(C’4) In G', as in G, there will be a 1-loop attached to C and a 0-loop attached to B. Further,
all edges labeled 1 in the C' component of G' must be internal to the C' component, because
of (R2) and the requirement that C' in G has a loop; and all edges labeled by 0 and starting
in the C' component must leave the component, because of condition (R3): if an arc labeled
with 0 connected any vertex in C' with a different vertex in C', then all 0-labeled arcs starting
in C' must end in C; since this is true as well for 1-labeled arcs, no path starting with C' could
connect to B, contradicting the assumption that G is strongly connected. Similar conditions,
for edges labeled 0 and 1 respectively, are true for the B component. Transitional states can
have no loops, because of (R5).

(C’5) All edges entering C' are labeled by 1 and all edges entering B are labeled by 0, by (R4).

Looking forward, the notion of a reduction will allow us to deduce properties of lower order
models, given properties of higher order models. Intuitively, if some analysis assigns a probability
to each node in G, the parallel probability for a node in the reduced graph should be the sum of
the corresponding probabilities of the original graph — this is true, for example, for equilibrium
probabilities.

Similarly, both the original and reduced structures define a probability for any sequence of 1’s
and 0’s. We will be interested in properties that depend on probabilities of strings for which we can
deduce the value for the reduced graph by equating the transistion probabilities in the corresponding
value for the initial graph. This is the case for the expected number of clusters.

Figure 5 displays all the possible reductions among the n-state models we consider, for n < 4.
Models that are C-symmetric are indicated by a double borderline. If M; can be reduced to Ma,

- 19 —

4C1

4C2

451

4B1

X17

4B2

4B5

Figure 5:

Reductions among the various Markov models

- 13 —

this is indicated by an arrow from M; to M-, near to which appear the states to be put in the
same class of the partition.

We note that M—4S1 reduces to the 3-state model M-3C by identifying state! X, with state
C, and to M-3B by identifying state X; with state B. M-4S2 reduces to M-3S by identifying
the two transitional states X; and X». Thus, all the 3-state models (as well as the 2- and 1-state
models) previously studied are special cases of the symmetric 4-state models.

Note also that M—4S2 does not reduce to another 3-state model beside M—3S; only by identifying
both X; with B and X, with C' do we get an acceptable partition, that corresponding to the 2-
state model. For M—-4S53 and the other models appearing at the bottom of Figure 5, an acceptable
partition is obtained only when all four states are merged, yielding the independent 1-state model.

We finally draw attention to the symmetric aspect of the reduction diagram, which reflects the
fact that for each reduction from one model to another, there is a corresponding reduction between
C-symmetric counterparts.

Further consequences include:

e If there is an edge labeled a emanating from a node in a given class V;, and incident onto
a node outside of V;, then there cannot be an edge labeled a from one node to another in
Vi. That is, if an edge labeled a connects v; and wvs, for v1 = vy, then all edges labeled «
starting in the equivalence class defined by v; and v must terminate in that class. This is in
particular true for edges labeled by 1(0) in the class containing C' (B). For example, again
in M~—4S2, the set V' = {C, X1} cannot be a class in a partition, because there is an edge

labeled 0 leaving V', but C 25 X,. This property is a consequence of (R2).

o If from a given vertex v, there is an edge labeled 0 to wy, and another edge labeled 1 to wo,
then w; and wy cannot possibly belong to the same class in a partition, unless v too belongs
to that class. For example, in M—4S1, we have X; 2 B and X, SN X5, implying that the
set { X2, B} may not be part of a partition. This is a consequence of (R3).

e To any path in a reduced graph, G’, there corresponds at least one path in the original graph
G. Denote a path in G’ by the sequence node (output symbol) node ... node. Then, given any
such path P = Vi (ao)Vi(a1)Va(az)...V,, and starting with any node of G included in Vj, the
path in G associated with agaq - - - a1 is consistent with P. This is the essential idea behind
the graph congruence and is why everything works.

4. 4-state Markov models

There is a natural tradeoff when deciding the order n of the Markov model to be used. The higher
n, the better can the model describe the bit generation process — but more bits are needed to
communicate the model parameters to the decoder. The independence model of [3] corresponds to
n =1 and in [4], we considered n = 3. To maintain the same complexity as the 2-state HMM of
Section 2.1 (which has four parameters), in this section we shall focus on 4-state Markov models.

4.1 Interpretation of the models
The models we have developed are intended to be simplifications of the HMM. To make explicit the
relationship between these two types of models, we describe one in detail.

The scenario represented by M-4S2, for example, is as follows. Suppose we start within a
cluster, that is in state C'. As long as ones are generated, we remain within the cluster. However, if

I More precisely, identifying the probability of generating a 1 in state X with that of state C.

— 1) -

a zero is generated, it suggests the possibility of having left the cluster, but the possibility remains
that we are still in C', and that the 0 is just a random occurrence. This possibility, consistent with
the underlying HMM, is taken into account by entering the transitional state X;. If, once in X7,
the next bit generated is a 1, we go back to the cluster state and conclude that the preceding zero
was merely an accident; if, however, a second zero is produced, we conclude that we have left the
cluster and are now in state B. State B remains then in effect as long as zeros are generated, and
the behavior is symmetrical. That is, if a 1 is generated, we are not yet sure it is the beginning of
a cluster, so we go into a transitional state X>. A second 1 confirms that we are in a cluster, so we
go to C, but a zero drops us back to B.

Below, we shall analyze in detail model M—-4S1, and indicate without proof the results for the
other C—symmetric models. In addition, for illustration and contrast, we shall present the results for
one of the asymmetric models that performed well in our experiments, as well as of its C—symmetric
counterpart.

4.2 Relation to earlier models

In earlier work [3], we assumed an independence model, which is equivalent to a single state Markov
model that ignores that word occurrences may cluster. A primitive clustering effect can be described
by a two-state Markov model, with only a Cluster-State and a Between-Cluster state. But such a
model has no tolerance for zeros (one) in a Cluster (Between-Cluster) state.

The model discussed in [4] is M-3C. It differs from M-4S1 in that a single 1 is enough to make
the transition from B to C. In the complementary three-state model M—-3B, the transitional state
is entered on the way from B to C: a single zero is enough to leave the cluster, but at least two
consecutive 1’s are needed to pass from the between to the cluster state. The third possible 3-state
model M-3S is C-symmetric, e.g., two zeros are needed to get from C to B, and two ones are
needed to pass from B to C. These three models exhaust this set of 3-state models satisfying the
plausability requirements enumerated above.

The reason that M—3B, the complementary model of M-3C, has not been mentioned in [4] is
because of the interpretation of the bit-vectors in our application. The ones correspond to documents
containing the designated term, the zeros to documents in which the term does not occur. Now
most of the terms of any natural language database occur in only a small part of the documents, so
that the probability of a 1-bit is much smaller than that of a 0-bit. It is thus reasonable to allow
single zeros to appear within a cluster as in M-3C, while the occurrence of a single 1, which in
itself is a relatively rare event, can already be considered as indicating the start of a new cluster. It
might thus well be that for our applications the symmetry condition should not hold, and indeed,
some non-symmetric 4-state models peformed consistently better in our experiments, reported in
Section 5..

Our goal for the 4-state models is to predict the size of the gaps separating documents that
contain the term and then deduce corresponding quantities for the 3-state models, 2-state models
and the independence model. Gap length is an important characteristic of clustering, and the
distribution of gap lengths distinguish a clustered model from the independence models. We shall
derive formulae that indicate how the gap lengths depend on the underlying parameters for the
various models. These formulae also offer an indication of whether clustering is a factor for a
particular set of bitmaps.

— 15 —

4.3 Analysis of M—4S1

Let us define the transition probabilities for M—4S1 by:

c —
X1 —
X2 —
B —

C:T¢, c —
Xy FX1, Xy —
C: FXZ, Xy —»
X, : Tg, B —

X1:1=-T¢;
B:1-Tx,;
Xi:1—-Tx,;
B:].—FB.

That is, if we are in state S, I's is the probability of emitting a 1.

We next compute several interesting properties of this model.

4.3.1 Equilibrium Probabilities

We first compute the long run equilibrium probabilities for these states. Let 7 = [rc, 7x,, Tx,, TB]
be the vector of probabilities of being in states C, X1, X5, B respectively in the long run. Ordering

the states as induced by w, we get

T =

the transition matrix

Ie 1-Te O 0

0 0 Ty, 1-Tyx
Iy, 1-Tx, 0 0

0 0 g 1-Tg

Since 7 satisfies 7 = «T, we have the following system of equations

Urel
7'(')(1
TX,

TB

= 7cle +7mx,Tx,

mx,I'x, + mlR

mo(l1—To) + mx, (1

- FXz)

= 7TX1(1—FX1)+7TB(1—FB).

In addition, we also have the condition 7¢ + 7x, + 7x, + 75 = 1. Now solving the equations for

TCo, Tx,, Tx, and Tg, we get

el
7TX1 :71')(2

TB

4.3.2 Run Lengths

I'x,I'p

I'v,I'p + 2(1 - Fc)FB + (1 - FO)(]. — FXl)

(1-Te)Ts

Ix,I'p +2(1 —Te)Tp + (1 —Te)(1 —Tx,)

(1-Tc)(1 =Tx,)

Tx,Tp +2(1 —Te)Tg + (1 —To)(1 —Ix,)

Each bit in a bitmap can be individually encoded, using arithmetic coding based on the probability
of a one-bit at each stage; this is the encoding algorithm used in our experiments and described in
more detail in Section 5.. Alternatively, it may be more convenient to encode the gaps between one
bits. The reason why this alternative representation is equivalent is shown in the Appendix. To

encode the gap sizes, we need their distribution, which is easily derived using the above model.

We thus compute the probability of a run of k zeroes, following a 1. Observe that if a 1 was just
generated, the associated transition must have left us in state C or state X». Thus denoting by 7y,

— 16 —

and 7'y, the probabilities of being in state C' and X respectively after we have just generated a 1,
we have 7, + 7, = 1. Let pyc be the probability of a run of k zeroes followed by a one, given
that we are initially in state C. Then

pojc = lg;
pic = (1-To)lxy;
ppjc = (1=Te)(1-Tx,)(1- I's)" *Tg, for n > 2.

We define pyx, similarly as pyc. Then

Pojx, = FXz;
Pix, = (1 - FXz)FX1;
Dn|x, = (]. — FX2)(1 — FXl)(]- — FB)n72FB, forn > 2.

Let pg be the probability of a run of exactly k zeroes following a 1. Then

! !
Dk = Pr|lcTo + Pr|X2T X,

so we have

po = Tome +Tx,my,; (8)
p = (1-To)Tx, 7o + (1 —Tx,)Tx, T,;
and for n > 2,
pn = (1=Tx,)(1 =Tp)"Tp [(1 - To)me + (1 = Tx,)7y,] - (9)

It remains to compute 7 and 7%, . Observe that if we are in state C, then the previous state
must have been C or X5. Therefore

mcle + mx,Ix,
p(1)

where p(1) is the probability of generating a 1. But

T =

p(l) =ncle +7mx,I'x, +7x,I'x, + 78IB.

Hence o 4 r
T T
T = OO 7 X2 2a : (10)
melo +7x,Ix, + 7x,Tx, + 78IB
Similarly, if we are in state X5, then the previous state must have been X; or B, and
r)
= o (1)

mcle+7mx,Tx, + mx,Ix, + 7806

Substituting (1) and (3) from the equations for the steady state probabilities into (10) and (11), we

find that - Tx
! ! 2

m = _ m = - 12

7 ro+7x, X2 7 ro +x, (12)

Substitute the expressions for 7o and 7x, as functions of the I'’s using (5) and (6), we get after
some simplification
I'x, , 1-T¢

e __-—c 13
1-To+Dy,’ 71 _To+Ty, (13)

T =

— 17 -

4.3.3 Expected Run Length

Using the above expressions for p, and 7', we can calculate the average size of a gap as:

)
Z npn = (1 - FC)FX17TIC + (1 - FXz)FX17rIX2
n=0

+(1-Tx,) [(1=Te)me + (1 = Tx,)7%,] Tp > n(l —Tp)" >

, , 1+TIg
+ (]_ — FXl) [(1 — FC)?TC + (]- - FXZ)WXQ:I FB

_ (A-Te)-Tx,+Tp) , (1-TIx,)(1-Tx, +T5) ,
= T + Tx
FB FB 2
1-Tx, +1p
= # [(1 —Te)me + (1 — FXQ)W'XZ]
_ 1-Tx, +TIp |: (1—Fo)FX2 (I—FXZ)(I—F(;)]
I's 1—FC+FX2 1—Fc—|—FX2
(1 —I'x, + FB)(I — FO)

Ip(1 —Te +TIx,)

(1-T¢) <1 41 _F;X> <1 — rcl+ Fx2> . (14)

In fact, we are only interested in genuine gaps, that is, gaps of length at least 1. The expected

genuine gap size is 1fp0 > npy; but from (8) and (13), we get

_Tolx, +Tx,(1-T¢) _ 1-T¢

1- = .
Po 1-Tec+Tx, 1-Tec+ 7Tk,

It thus follows from (14) that the genuine gap size is

" 1-Tx
npp =1+ —L.
1—170n;1 " I's

Note that this expression is independent of I'c and I'x,.

4.3.4 Density of One-Bits

Let D be the total number of documents; we would like to relate this to /V, the number of documents
containing the designated term, given the model parameters. The predicted density of one-bits N/D,
given the easily obtainable values N and D, allows a test of the model. We give two derivations of
this important result.

Heuristic argument

To estimate IV, note that we first have a span of zero or more documents without the designated
term. This is followed by N — 1 spans made up of a document containing the term followed by an
inter-term span of zero or more documents. Finally, the last span consists of a document with the
term, followed by a (possibly empty) terminal span. For our heuristic estimate, we assume that
each internal span has a length equal to its expected value, and that the lengths of each of the
terminal spans can be approximated as half of this length. So the D documents are made up of the
N documents with a designated term, the two end spans and the N — 1 internal spans. Therefore

[oe]
D = Nann+N

n=0

— 18 —

1-Tyx 1
= N1-To)[1+ 1 +N
(C>< Ts ><I—FO+FX2>

This result immediately gives us an estimate for the density of 1-bits, N/D; this would serve as an
estimate of the “p” value of an independence model, should we wish to simplify our model by using
an independence approximation.

Formal derivation

One can also derive the above formula by observing that we are in states C or X5 if and only if
we have just generated a 1. Thus N, the number of ones, is equal to the number of recurrences of
states C' and Xo: 7D + wx, D = N, which implies

N\ TxTs+2(1 - To)lp + (1= Te)(1 - Tx,)
T + Tx, FXZFB + (1 — FO)FB
(1-Te)lp+ (1 -Te)(1 - TIk,)
Ix,I's + (1 —T¢)Ts

1-Tx 1
= NO1-Tg)[1+ ! + N,
(C)< I'p ><1—FO+FX2>

agreeing with the preceding result.

D =

= N

+N

4.3.5 Reductions to simpler models

By identifing X» with C, we get M~-3C. Now I'x, = ['» and we get

> 1-T
> np, = (1-To) <1+F7X1>,
n=0

B
o0

1-T
Zn Pn — 14+ X1
= 1-po I'p

and

1-T
D=N(1-T¢) <1+—X1>+N.
s

By identifying Xy with B in M-451, we get the complementary 3-state model M-3B. Now
I'x, =TI'p and we get

- " FB(l —Ic+ FXg),

< p 1
;nl—po_g
and
p=_N1-To)

FB(l —Ic+ FXg)

By identifing X; with B in M-3C or by identifing X» with C' in M-3B we get the 2-state model.
The formulas reduce to

oo

1-T 1-T,
annz(l—rc><1+ . B)z T
n=0 B B

[e%S)
1-T 1

j:n Dn :1+ B:_
l—po I's I'p

n=1

- 19 -

and

D:N(l_ro>+N.
s

By identifying B with C in the 2-state model, we get the independence model. Now I'g = I’
and let I' =I'g = I». The formulae become

= 1
;npn:f_la

el 1-po T
and N
D=—.
r
Model Average genuine gap length ﬁ > npn
indep 1/T
2-state 1/Tg
1-T
M-3C 14—
I's
M-3B 1/Tg
1-T I'x,T
M-3S Xt 2B
Tp(1 —Tx, +1%,)
M-481 14 1o
I's
1+TIBTx, —TI'x
M-452 2 .
FB(I —I'x, +Tx, FXg)
Ix,T 1-Tx,)1-T
M43 x: I + (x.) (1 —Tx,)
Ia[lx, Tx, + (1 =T,)(1 = Ix, (1 = Ix, +Ix,))]
1-T
M-4C1 1+(1-Tx,) <1+ X2>
I's
M-4B1 1/Tg
Table 1: Average genuine gap size for the different models

4.4 Summary of the 4-state models

Using identical techniques to those of the previous section, one can derive similar formulae for
the other 4-state models we considered earlier. The calculations are straightforward and therefore

— 20 —

omitted. We report here on the resulting equations only for the symmetric 4-state models, for
the C-biased model which performed best on most experiments (M-4C1), and for its C-symmetric
complement (M-4B1).

Model D/N as function of model parameters
indep D=N/T
2-state D=N <w>
s
1-Tx,
M-3C D=N1-T¢) (14 T +N
B
N(1-T¢)
M-3B D= +N
FB(l —Te+ FXQ)
1-Tx 1
- D=N(1-I¢)|T L N
M-3S (O)<X1+ T,)(1—F0+FCFX1>+
1-Tx 1
M-4S1 D=NQ1-T¢) |1+ : +N
(C)< T ><I—FO+FX2>

1—FX1>< 1)
M-482 | D=N(1-T¢) Tx, + +N
(1-To) (X Tp Ty, + (1 —Te)(1—Tx,)

(1-To)[Ix,Tp + (1 —Tx,)(1 = Iy,)]

I‘B[l—‘)('11—‘)('2 + (1 - FC)(l - FXZ)]
M-4C1 D=N(1-T¢) 1+(1—FX1)<1+1—FFXQ>}+N
B
M-4B1 D= N(1 - To) +N

[p[lx, Ix, + (1 = Te)(Tx, + 1)]

Table 2: Density of 1-bits for different models

The transition probabilities for models M-4S2, M-4S3, M-4C1 and M-4B1 can be summa-
rized, respectively, by the following transition matrices, corresponding, as above, to the 4 states in
the order (C, X1, X», B):

Tc1-Tc 0 0 I 0 1-To 0

T | ITx, 0 01-Tx T | 0 0 Iy, 1-Tx,
MAS2 I Iy, 0 01-Tyx, || MAS3| Ix,1-Tx, 0 0

0 0 Igl-Tg 0 TIg 0 1-Tp

Tc1-Te 0 0 Tc 0 01-T¢

T [Tx, 0 1-Tx, 0 T | Tx, 0 01-Tx,
MACL [Ty, 0 0 1-Tyx, | MBI 0 Iy, 01T,
g 0 0 1-Tgy 0 0Tpl-Tp

We then procede by calculating the equilibrium probabilities satisfying 7 = #T, and evaluating the
probability distributions of the run-lengths. Note that one ought to take care of the fact that the

- 21 —

models differ slightly; for example, for M—-4S1 and M-4S52, we are in state C or X5 if and only if
we have just generated a 1, while for M-4S3 and M-4B1, this is true for states C' or X; or X3,
and for M—-4C1, only for state C'. This has to be taken into account when evaluating p,,. Table 1
summarizes the formulae for the average genuine gap size (> np,)/(1 —po) for the different models.
For the sake of completeness, we have also included the independent, 2-state and 3-state models.

Making the same assumptions as above about the spans of zeroes, we can derive the following
relationships between D and N, which are summarized in Table 2.

5. Experimental Evaluation of Models

5.1 Model-based coding algorithm

The following algorithm is a formal description of the encoding process for any of the Markov models
discussed above. Given is a bit-vector of length n bits: by - --b,. First the model M = (Q, ¢, S)
of the transitions is chosen, where) is the set of states, S € @ is the starting state, and dq

Q@ x {0,1} — @ is the corresponding transition function. A two-dimensional array count[i, j] with
i €@ andj € {0,1} is used to keep track of the number of times each of the possible transitions has
occurred. The function encode(b,p) is part of an arithmetic encoder applied to a binary alphabet
{0, 1}, where the probability of a 1 is p, and the bit b is to be encoded, i.e., the current sub-interval
I C [0,1] is partitioned according to p, and the new sub-interval I' C I is the one corresponding to

b.

Model-M coding
{

Choose model M

/* start in state S and collect statistics */
state +— S
fori +— 1ton
{
count[state,b;] <— count[state,b;] + 1
state <+— O (state, b;)

}
/¥ calculate transition probabilities */
for all j € Q
5 count[j, 1]
J count[j, 1]+count[4, 0]

/* second scan for actual encoding */
state +— S
/¥ initialize lower and upper limits of output-interval */
Iy, «— 0, I, «<— 1
fori «— 1lton
{
encode (b;, Ostate)
state <+— O (state, b;)

}

output any z € [I;,I,]

— 29

encode (b,p)
{
if b =1 then
I, «— LI + p(I,—I)
else
Iy «— Iy + p(I,—1Iy)

The parameter evaluation algorithm for the HMM relies on three control-parameters, (i,r,t).
Recall that the parameters of the HMM cannot be solved directly, and that an iterative maximum
likelihood estimation procedure is required. Such procedures generally lead to local, not global,
optima. We thus procede as follows: For each bit vector we form 4 initial models; for each model we
undertake r iterations of our estimation procedure. We select the model giving the best compres-
sion, and then continue the iterations with the chosen model until the compression gain between
two successive repetitions drops below a predetermined threshold value t. At this point we have
the final model for the current bit vector, and the parameters (which are the four probabilities
A(0,0),A(1,0),B(0,0), B(1,0)) and the encoding result are stored; then follows the encoding phase
using that model.

5.2 Parameter Estimation

We can estimate the parameters directly. We assume that before generating the bitmap, we are in
state B. The sequence of one’s and zero’s making up the bitmap completely determines the state
at any bitmap position. Thus it is easy to tabulate the number, and hence probability, of each type
of transition.

For illustration, consider the following bitmap, as processed by the Markov model, M—-3C:
00101100 ---

Since we begin in state B, the initial zero indicates that the first transition is back to state B.
Continuing in this manner we find the sequence of states corresponding to the above bitmap is
given as follows (with the initial B preceding the colon):

B: BBCXCCXB ---

In this sequence, we are in state B four times, for which we have three transitions. Of these
three transitions, one is to state C, so on the basis of the information given, we would estimate
I =~ 1/3; similarly I'c &~ 1/3, and I'x = 1/2. Thus each parameter is easily evaluated and these
parameters can be used as the basis for compressing the bitmap. Further, the standard deviation of
this estimate, for state S, is given by 0g = 1/I's(1 —T's)/Ng, if we experience Ng transitions from
state S in the pertinent bitmap. The standard deviations make it possible to compute confidence
intervals and do tests of hypotheses.

For a large bitmap, the I'-values can be stored with the bitmap to permit decompression. But
several mechanisms can be tried to reduce the cost of storing these parameters. For example, we
can save the space for storing these parameters by evaluating them adaptively, beginning with
reasonable initial values.

We can also lower storage costs by reparameterizing the model: The I'’s are our model’s basic
parameters. But we can also consider a reparameterization that is suggestive: I =T, T'x = 0x1¢,
and I'p = 0gl'x, which define the parameters I', 8x, and g. These parameters satisfy simpler
constraints (0 < x,0p < 1) independently of one another and of T, which will ease problems of

— 23 —

estimation. We also expect that regularities in the data will be more easily expressed in terms of the
#’s than in terms of the I'’s. It is also useful to define ® = 0x60p, so that ' = OI. O is a single
value reflecting the strength of clustering: it indicates the relative likelihood of a term appearing if
we are inside a cluster as compared to if we are outside a cluster.

This reparameterization allows us to lower storage costs if we find the €’s are related in a regular
manner over the terms. For example, since state X is intermediate between states C and B, we might
find that I'x is reasonably approximated by the average of I'c and I's, that is, that fx = (1+0)/2.

It may also be possible, without serious deterioration in performance, to divide the parameters
into a small number of categories. Thus, we might divide our terms into four clustering classes:
one class would represent no clustering (@ = 1); the other three states would represent varying
clustering strengths, with the values of the clustering parameter, ©, for these states determined
empirically. This simplification allows clustering strength to be represented with the cost of just
two bits per term.

5.3 Performance Estimates

The availability of a detailed model permits us to estimate model performance. For illustration,
we will establish some properties for model M—4S1. If we are in state S € {B, Xy, X»,C}, we
expect that we can encode the next bitmap element in H(T'g) bits (where H(z) = —(z log(z) + (1 —
z)log(l — z))). Using eqs. for ¢, 7x,, 7x,, and mp, we estimate that the D bits of the bitmap
can be reduced to

By = (ﬂ'oH(Fo) + ﬂ'BH(FB) + leH(Fxl) + WXQH(FXQ))D

bits, if the model is valid and we base our codes on that model.

This estimate of performance can be used as a rough test of the Markov model. But even if the
model is valid, we are left with the question of whether the savings of using the full model justifies
the additional complexity relative to, say, the independence model. The relative performance of the
two models is easily computed.

Under the assumption of the independence model, the appearance of a one-bit is determined by
a single parameter, p, the density of one-bits. Developing a code using the value p and assuming a
zeroth order model, the size of the bitmap is reduced to

Br = H(p)D

bits. But if the true model is M—4S1, we can compute the value we would find for p from the model
parameters, and thereby predict the performance we would get if we pretended the independence
model was valid. The density of one-bits is just the probability of a random bit being set to one.
The model predicts that the probability of a one-bit is given by:

p = 7plp+7x,I'x, +7x,I'x, +1clc
= 7no+TXx,,
the last equality following from the equilibrium equations. The equation p = m¢ + 7x, could have
been asserted directly: the probability of a one-bit is just the probability of going to state C' from

any of the states, or going to the state X»; but the long term probability of going to these states is
the same as the probability of being in them, as the last equation asserts.

The ratio Bys/Br gives the relative advantage of using the full Markov model vs using the
independence model even if the true model is more complex.

,Q}},

5.4 Experimental results

In our earlier papers we used the Bible as “database”, its chapters acting as documents. Because of
its small size, this choice was useful for testing purposes, as well as providing performance data for
an interesting database. We can now provide performance statistics for two of the world’s largest
natural language IRS’s: the TLF, a database of 680 MB of French language texts (112 million
words) of the 17t"-20%" centuries [6], and the database of the RRP, 350 MB of Hebrew and Aramaic
texts (60 million words) written over the past ten centuries [14]. Their uncompressed concordances
span about 345 MB for TFL (excluding references to the 100 most frequent words, considered as
stop-words), and 450 MB for the Responsa database, for which each word is referenced. In fact,
we took only sub-collections of these: for TLF, the 35070 terms belonging to the (lexicographic)
range between elle and flaube, without limiting the document range, so that each uncompressed
bitmap had length D = 38757 bits; for RRP we took all the 300000 different terms, but restricted
the document range to include only the D = 8119 documents written in the 20" century. In order
to allow comparisons with the methods of the earlier papers, we include also results on the Bible.

Table 3 gives general statistics on the tested files and summarizes the results. The column
corresponding to the English Bible (King James Version) uses the same restriction as in our earlier
work, i.e., only words appearing in at least 60 documents are tested. For real-life databases, most
of the words occur rarely, so their bitmaps will be encoded by simply enumerating the 1-bits (see
[8]). We thus decided, for TLF and RRP, to consider only words that appear in at least 0.2% of
the possible documents, and to partition the terms into three classes, according to the number of
documents N in which the terms occur. The classes are: N € [0.2% — 1%), N € [1% — 3%) and
N € [3% — 100%]. The threshold values thus were 78, 388 and 1162 for TLF and 16, 81 and 244 for
RRP.

The upper part of Table 3 shows, for each class, the number of different terms, and their total
number of occurrences. In the lower part of the table, each line corresponds to one of the methods
discussed above. To understand the values in the table, recall that we are representing the top
level of the concordance as follows: for each term, we list sequentially the documents in which the
term occurs. As our measure of compression for the list corresponding to a term, we compute the
number of bits needed to encode this list with our methods, and divide this value by the number of
documents in which the term occurs. The table gives the average of this quantity for all the terms
in a class. In other words, it is the average, per 1-bit, of the number of bits needed to encode the
1-bits of all the bitmaps in this class. The results for HMM correspond to the estimation parameters
(10,1,0.001), that is, the best out of 10 initial models, each after a single iteration, is chosen, and
then improved until the relative gain between successive runs falls below 0.001. The 4- and 3-state
models are referred to by their names. The independence model is the 1-state Markov model used in
[3]. The row entitled run-length gives the best result out of a range of different run-length encoding
schemes, including Elias’ v and § codes [10], various Exp-Golomb codes [23] and Start-Step-Stop
codes [13].

As can be seen for the files for which HMM results are listed, they usually were best among
all the tested methods. However, just to produce the numbers on the TLF, more than 6 days of
CPU were necessary (as compared to at most one hour for all the other tests). This also explains
why not all the values are given. The best values for the other methods are framed. We see that
on all the real concordance files, the C-biased model M—4C1 performed best, except for the lowest
density bitmaps, for which M-4C4 was slightly better. Moreover, when ordering the methods by
compression efficiency, similar rankings were obtained, with all the C-biased methods performing
better than any of the B-biased ones.

We have not included the cost of storing the necessary parameters, which is negligible in most of
the cases. Four probabilities need be stored for the 4-state models and 3 for the 3-state models. If
we choose the best out of a possible set of 8 probabilities (as in [4]), then only 3 bits are needed to
store the parameters for each term. But since only the high frequency terms are to be compressed,
the average number of added bits per term occurrence is very small. For the ranges given in Table 3

— 25 —

Database: Bible TLF RRP
60-929 || 78-387 | 388-1162 | 116200 || 16-80 | 81-243 | 244-o0
terms 623 2032 619 381 28039 7421 4631
occurrences || 131874 || 352522 | 402890 | 1387698 || 967543 | 1008365 | 3962924
HMM 2.490 6.62 3.39
run-length 2.923 8.60 6.76 3.71 9.18 7.13 4.06
independent 2.683 9.09 7.26 4.02 9.17 7.27 3.95
2-state 2.593 8.72 6.88 3.66 8.92 7.01 3.78
M-3C 2.570 8.57 6.73 3.56 8.86 6.94 3.72
M-3B 2.579 8.70 6.86 3.62 8.91 6.98 3.76
M-=3S 2.560 8.65 6.80 3.55 8.90 6.96 3.71
M-4S1 2.555 8.55 6.71 3.52 8.85 6.92 3.70
M-452 2.595 8.65 6.80 3.54 8.89 6.96 3.71
M-4S3 2.544 8.64 6.78 3.51 8.90 6.95 3.69
M-4C1 2.557 8.48 6.65 3.51 6.89 3.69
M-4C2 2.555 8.55 6.71 3.52 8.84 6.92 3.70
M-4C3 2.544 8.52 6.68 3.48 8.84 6.90 3.67
M-4C4 8.51 6.67 3.48 8.84 6.90
M-4C5 2.546 8.62 6.76 3.51 8.89 6.94 3.68
M-4B1 2.572 8.70 6.86 3.61 8.91 6.98 3.75
M-4B2 2.561 8.66 6.81 3.56 8.89 6.96 3.72
M-4B3 2.552 8.65 6.79 3.54 8.90 6.96 3.71
M-4B4 2.560 8.68 6.83 3.57 8.90 6.97 3.73
M-4B5 2.556 8.68 6.83 3.56 8.91 6.97 3.71

Table 3: Statistics and compression results

— 26 —

for TLF and RRP, it is always below 1%, except for the low frequency Responsa terms, for which
it reaches 4% for the 4-state models.

When we began these experiments, we were concerned that our results might be very database
sensitive, since both language and, at the highest level of the concordance with which we are
now dealing, the database organization would be expected to influence the extent of clustering.
We therefore were surprised to note the extent of similarity between the TLF and RRP results:
within the same range of term density, the results for a given method differ by only 1-5%, with
compression on TLF being consistently better. We therefore conclude that the main factor acting
on the compression efficiency is the 1-bit density of the bitmaps, rather than language dependent
features. As expected, compression improves with increasing density.

We are conceptualizing the concordance as indexing term occurrences at a variety of levels, for
example, document or section or sentence. Most of our results reflect compression at the document
level. The Bible results give us insight into how our algorithms perform at lower levels of the
hierarchy, since here we are considering occurrences of terms over text segments of a single document.
This observation, together with the fact that the Bible maps were much denser (at least 6.4% 1-
bits), may explain why the results for the Bible differ so markedly from that of the Responsa and
TLF databases.

Note also that the best results improve upon those obtained from the independence model by
5-13%, which is not negligible, considering the sizes of the databases. There is also a clear tendency,
both for TLF and RRP, of having greater improvement with increasing density. We thus conclude
that the new models presented here may indeed represent a genuine improvement in our ability to
compress concordances.

6. Conclusion

The main objective of this paper has been to develop models that describe the dependencies among
term occurrences in text in order to create codes that compress concordances more effectively
than those based on the usual assumption of term independence. The assumption that governed
our considerations was the existence of an underlying Hidden Markov Model, or HMM. We did
indeed find a small, but significant, improvement in compression effectiveness when using an HMM.
However, such models make great demands on computational resources.

To limit these costs, we approximated the HMM by traditional Markov models. A set of criteria
we developed allowed us to greatly reduce the very large set of candidate n-state models, making it
possible to provide a full inventory for n < 4. Further simplification is provided by graph theoretic
reduction and complementation operations defined among the various models. These were used to
provide a structure relating the models studied, and may well find application in other graph based
problems. Finally, tests on the concordances of the English Bible and of two of the world’s largest
full-text retrieval system: the Trésor de la Langue Francaise and the Responsa Project, demonstrated
that traditional Markov models allowed great improvements in computational efficiency, at the cost
of very little deterioration of compression performance.

The concordance remains a large and still relatively unstudied component of Information Re-
trieval Systems. This paper concentrated on models of localized clustering. But with sparse bitmaps,
such models prematurely leave a cluster or between-cluster state. We could compensate for this by
introducing more transitional states; instead further work is being planned in which models which
better retain the memory of which state it is in are developed.

Appendix

Equivalence of encoding bits and run lengths

We have contemplated two different ways of encoding a bitmap: we can encode each bit in turn,

-

using arithmetic encoding to attain the entropy limit; or we can count the number of zeroes between
ones, and encode the gap size. One would expect these to be equivalent. Here we argue this is the
case.

We assume a state model. Suppose we have just encoded a one-bit (or are at the beginning of
the bitmap) and are in state Sp. Let us compute the number of bits required to encode the next
sequence of bits up to and including the next one-bit, or until we reach the end of the bitmap.

To establish our notation: If we are in state S; and generate a zero-bit, we make a transition
into state S;y1. If we are in state S;, the probability of generating a one-bit is T';. Note that we are
not making any assumptions on the memory-size of the model.

Suppose we have D bits left to encode. Then the probability of a string of r zeroes is given as
follows:

r P,
0 Ty

1 (1 —To)Iy

2 (1-To)(1 - 1"1)1“

(1-Ty)(1 - I‘l) (1-=Tp_2)p_

D - T
D (1-To)(1=T1)--(1=Tp)1 —Tp)

Thus the expected length to encode the r value is:

H = -Tolog(T)
—(1 — 1"0)1"1 log ((1 — 1"0)1"1)

—(1 — Fo)(l — Fl) e (1 — FD_Q)FD_l lOg ((1 — Fo)(l — Fl) te (1 — FD_Q)FD_l)
—(1=To)(1=T1)-+-(1=Tp-2)(1 =Tp-1)log((1=To)(1 =T1)-+- (1 =Tp-2)(1 —Tp-1))

Expanding the logarithms, we find:

H = Fo[— lOg Fo]
+(1 = To)l'1 [~ log(1 —To) — log(T"1)]

+(1— FO)(l —T4) (1 =Tp_2)Tp_1[—log(1l — Tp) —log(l — T) —
log(1 —=Tp_2) — log(Tp—_1)]
+(1 - Fo)(l —Iy)---(1=Tp_2)(1 —Tp_1)[—log(l —Tp) —log(1 —T4) —
—log(l —Tp_2) —log(1 —Tp_1)]

But note that if we are in state S;, it requires —log(1 —I';) bits to encode a single zero-bit and
—log(T;) bits to encode a single one-bit. Thus we see that the terms in brackets are just the total
number of bits that would be required to encode the string of zero-bits followed by a one-bit (or
terminating zero-bit) for the string represented by the term, if we encode a single bit at a time.
Thus H is also the expected value of the code-size of the next run of zero-bits, encoding each bit
individually, as was to be shown.

The second form can be reorganized to give a very nice alternative expression for H. To do this,
we bring together terms with the same log['; and log(1 — T;):

H = —FO lOgFO — (1 — Fo) lOg(l — Fo) [Fl + (1 — Fl)FQ + (1 — Fl)(l — FQ)Fg + -

— 28 —

+(1-T1)A=T2)--(1-Tp_)I'p+ (1 -T1)(1=T2)---(1-Tp_1)(1 —Tp)]

(1-To)(1—-T4)---Tp_slogl'p_2 — (1 —T9)(1 —T})

-+ (1=Tp_2)log(l —=Tp_s) [Ip—1+ (1 =Tp_1)]
—(1-Ty)(1—=T4) - Tp_1loglp_1 — (1 —Tp)(1 —T)

. (]. — FD,1) lOg(]. — FDfl).

Each sum of terms in brackets equals one (as can be seen by telescoping backwards), leaving an
expansion of the form:

Ho+ (1 —To)Hy + -+ (1 —To)(1=Ty)-+- (1= Tp_s)Hp_1,

where H; is just the entropy —I;logD; — (1 — T';)log(1 — T';), which is the expected number of
bits required to encode the next bit position in state S;, provided we get that far. But each H;
is multipled by the probability of indeed getting that far, so the sum cummulates the expected
contributions to the encoding of the next run of zeroes of each bitmap position.

References

[1] Asai, K., Hayamizu, S., Onizuka, K. HMM with Protein Structure Grammar, Proc. 26th
Hawaii Int. Conf. on System Sciences (1993) 783-791.

[2] Bell T.C., Witten I.H., Cleary J.G., Modeling for text compression, ACM Computing
Surveys 21 (1989) 557-591.

[3] Bookstein A., Klein S.T., Raita T., Model based concordance compresssion, Proc. Data
Compression Conference DCC-92, Snowbird, Utah (1992) 82-91.

[4] Bookstein A., Klein S.T., Raita T., Markov models for clusters in concordance compres-
sion, Proc. Data Compression Conference DCC-9/4, Snowbird, Utah (1994) 116-125.

[5] Kemeny, J.G. and Snell, J.L., Finite Markov Chains, New York: Van Nostrand (1960).

[6] Bookstein A., Klein S.T., Ziff D.A., A systematic approach to compressing a full text
retrieval system, Information Processing € Management 28 (1992) 795-806.

[7] Choueka Y., Fraenkel A.S., Klein S.T., Compression of Concordances in Full-Text Re-
trieval Systems, Proc. 11-th ACM-SIGIR Conf., Grenoble (1988) 597-612.

[8] Choueka Y., Fraenkel A.S., Klein S.T., Segal E., Improved Hierarchical Bit-Vector
Compression in Document Retrieval Systems, Proc. 9-th ACM-SIGIR Conf., Pisa (1986) 88—
97.

[9] Cormack G.V., Horspool R.N., Data compression using dynamic Markov modelling, The
Computer Journal 30 (1987) 541-550.

[10] Elias P., Universal codeword sets and representation of the integers, IEEE Trans. on Inf.
Th., IT-12 (1975) 194-203.

[11] Even S., Algorithmic Combinatorics, The Macmillan Company, NY (1973).

[12] Feller W., An Introduction to Probability Theory and its Applications, Wiley, New York
(1968).

[13] Fiala E,R., Greene D.H., Data compression with finite windows, Comm. of the ACM 32
(1989) 490-505.

— 29 —

[14] Fraenkel A.S., All about the Responsa Retrieval Project you always wanted to know but
were afraid to ask, expanded summary, Jurimetrics J. 16 (1976) 149-156.

[15] Haussler D., Krogh A., Mian S., Sjolander K., Protein Modeling using Hidden Markov
Models: Analysis of Globins, Proc. 26th Hawaii Int. Conf. on System Sciences (1993) 792-802.

[16] Klein S.T., Bookstein A., Deerwester S., Storing Text Retrieval Systems on CD-ROM:
Compression and Encryption Considerations, ACM Trans. on Information Systems 7 (1989)
230-245.

[17] Knuth D.E., The Art of Computer Programming, Vol I, Fundamental Algorithms, Addison-
Wesley, Reading, Mass. (1973).

[18] Linoff G., Stanfill C., Compression of indexes with full positional information in very large
text databases, Proc. 16-th ACM-SIGIR Conf., Pittsburgh (1993) 88-95.

[19] Llewellyn J.A., Data compression for a source with Markov characteristics, The Computer
Journal 30 (1987) 149-156.

[20] Mittendorf E., Schiuble P., Document and passage retrieval based on Hidden Markov
models, Proc. 17-th ACM-SIGIR Conf., Dublin (1994) 318-327.

[21] Moffat A., Zobel J., Coding for compression in full-text retrieval systems, Proc. Data
Compression Conference DCC-92, Snowbird, Utah (1992) 72-81.

[22] Rabiner L.R., A tutorial on hidden Markov models and selected applications in speech
recognition, Proc. IEEE, 77, 2, (Feb. 1989) 257-286.

[23] Teuhola J., A compression method for clustered bit-vectors, Inf. Proc. Letters 7 (1978)
308-311.

[24] Wisniewski J.L., Compression of index term dictionary in an inverted file oriented database:
some efficient algorithms, Information Proc. € Management 22 (1986) 493-501.

[25] Witten I.H., Bell T.C., Nevill C.G., Models for compression in full-text retrieval systems,
Proc. Data Compression Conference DCC-91, Snowbird, Utah (1991) 23-32.

[26] Witten I.H., Moffat A., Bell T.C., Managing Gigabytes, Compressing and Indexing
Documents and Images, International Thomson Publishing, London (1994).

— 30 -

